Innovation Tools for Commercializing Process Technology

Robert H. Jensen UOP LLC

CHEMRAWN XV Ottawa, Canada August 9, 2003

Agenda

Background

- Technology accomplishments in the Process Industry
- UOP's incentive for innovation
- Challenges of the 21st century

Innovation tools

- Gated Technology Delivery Process
- Tools for materials innovation
- Tools for process innovation

Process Industry Background

The history of the Process Industry is a story of technical accomplishment and innovation.

Achievements during the last century have led to both tremendous growth and a high level of technical sophistication.

Innovations in the Chemical Process Industry are Slowing

PlatformingTM **Technology** More Octane Barrels (Yield x RON) via Lower Pressure and More Selective Catalysts

Fluid Catalytic Cracking Technology More Octane Barrels via Zeolitic Catalysts and Engineering Improvements

Top Ten Refining Processes Licensed by UOP

Process		Description	No. Units
1	Merox TM	Mercaptan Oxidation	1650
2.	Platforming TM	Catalytic Reforming	753
3.	Unionfining TM (VGO, Distillate, Naphtha)	Hydrotreating	675
4.	Polymerization	Poly Gasoline Production	301
5.	FCC	Catalytic Cracking	212
6.	Unicracking TM	Hydrocracking	126
7.	Sulfolane	BTX Extraction	106
8.	HF Alkylation	Gasoline Production	105
9.	Catalytic Condensation	Higher Olefin Production	101
10	. Isomerization	C ₅ /C ₆ Isomerization	99

UOP must continue to focus on innovation to meet the challenges of the 21st century. Sustainable Development Challenges of the 21st Century for the Refining and Petrochemical Industry

Clean Fuels

- Cost-effective ways to produce zero sulfur/low nitrogen transportation fuels
- Reduction of aromatics and olefins in gasoline while maintaining octane
- Alternatives to Crude Oil
 - Natural gas utilization
 - Renewable sources
- Minimum Environmental Impact
 - Refinery emissions
 - Spent catalyst handling

Agenda

Background

- Technology accomplishments in the Process Industry
- UOP's incentive for innovation
- Challenges of the 21st century

Innovation tools

- Gated Technology Delivery Process
- Tools for materials innovation
- Tools for process innovation

UOP's Gated Technology Delivery Process

Designed specifically for new product/process development
Requires technology goals/economic case
Requires gate criteria
Incorporates Six Sigma methodology
Facilitates collaborations with producer-partners

UOP Processes Developed in Collaboration with Others

Process	UOP Partner	Application
Cyclar [™]	BP	LPG to Aromatics
Detal [™]	CEPSA	Fixed Bed Alkylation for Detergent
Ethermax [™]	Koch	Etherification
МТО	Norsk Hydro	Methanol to Olefins
Sunoco/UOP Phenol Process	Sunoco	Cumene Oxidation
Tatoray™	Toray	Toluene Transalkylation
Thiopaq [™] Spent Caustic Treating	Paques Natural Solutions	Biodesulfurization of Caustic

Agenda

Background

- Technology accomplishments in the Process Industry
- UOP's incentive for innovation
- Challenges of the 21st century
- Innovation tools
 - Gated Technology Delivery Process
 - Tools for materials innovation
 - **New Materials**
 - ✓ Combinatorial Chemistry
 - ✓ Advanced Characterization
 - ✓ Manufacturing
 - Tools for process innovation

Materials Innovation Tools

Materials

✓ New Materials Invention
 ✓ Materials Modification

Manufacturing

Rapid Scale-up Diverse Crystallization Methods Diverse Portfolio of Forming Technologies Combinatoria Chemistry ✓ End-to-EndTM Tool Box

Advance Characterizatio

Active Site ✓ Structure Solution Tool Bo Reaction Mechanism Adsorption Modelin

Zeolite Discovery and Use By Decade

Tools Used to Solve the Structure of UFI

UFI

Model vs. TEM

High

Res

TEM

TEM: Unique surface aromatic reactivity

Small Crystals

XRD

Electron Diffraction

TEM

UOp

Structure Solution of a New Zeolite: UZM-5 (IZA 3-letter code UFI)

New Tools Accelerate Structure Solution of Nanocrystalline Zeolites

Event	Beta	UZM-5
First Synthesized	1967	1999
Time to Solve Structure	>10 yrs	10 months
Structure Reported	1988	2002

Structure provides an understanding of catalytic and adsorptive properties

•Zeolites offer high acid site density for catalytic applications (low Si to Al ratio)

 Zeolites offer ion-exchange capacity and compositional diversity for separation applications

Impact of Combinatorial Chemistry

Technology Commercialization

Time (yrs)

Reduced Risk for Breakthrough Programs Reduced time for catalyst discovery and process development
 Increased probability of success

Increased throughput of technology commercializations

Stronger patent position

End-to-EndTM Combinatorial System

Combinatorial Synthesis: One-shot synthesis of libraries of materials Post Syn Processing: Ion Exchange, Metals Addition

Finishing Step: Oxidation, Steaming, Oxychlorination

Pretreatment: Reduction *Screening:* Parallel screening of catalytic formulations

•Fully Integrated Systems •Significant Increase in Throughput

Combi Target: New Paraffin Isomerization Catalyst

C₅ Isomerization

Values are blending RON

Commercial Isom Catalysts

C₅/C₆ Isomerization Catalysts Activity Comparison

Formation of high octane products favored by low temperature.

- Two classes of commercial isom catalysts exist:
 - <u>Chlorided alumina catalyst:</u> most active; reactor system is highest capital investment
 - <u>Sulfated zirconia and</u> <u>zeolitic:</u> lower activity; reactor system is lower capital cost

Market Need: higher activity catalyst for use in lower capital reactor system

Identification of Catalyst Leads

Meets Target > 5% Yield Improvemen

WHSV / hr⁻¹

Prototypes are a Significant Improvement to Reference

Pilot Plant Testing Confirms Combi Leads

<u>Conventional</u> 271 Catalysts / 3 years

New, Combi-Developed PI-242TM Catalyst

- PI-242TM catalyst developed from combi formulation
- Higher activity than sulfated zirconia or zeolitic
- Simple drop-in into lowest capital reactor system

C₅/C₆ Isomerization Catalysts Activity Comparison

Agenda

Background

- Technology accomplishments in the Process Industry
- UOP's incentive for innovation
- Challenges of the 21st century
- Innovation tools
 - Gated Technology Delivery Process
 - Tools for materials innovation
 - Tools for process innovation
 - Experimental data
 - **Engineering technology**
 - Separations

Process Innovation ToolsExperimental DataEngineering Technology

✓ Pilot Plants
 Analysis
 Informatics

Modeling

Reactor Systems Kinetic Modeling Cold Flow Modeling Computational Fluid Dynamics

Core skill Instrumentatio and Contro Process Flowsheetin and Desig

Separation

Adsorbents Adsorption Systems Membranes

Reactor Design Options

Reactor Design from Kinetic Modeling

Reactor Design for Alkylene Process

Process requirements: – Short contact time - Rapid disengagement - Frequent regeneration Solution: circulating liquid riser reactor

Fluidization Testing in Alkylene Cold Flow Model

- RTD studies
- Catalyst density
- Catalyst attrition
- Distributor design

Summary

- The Process Industry must focus on innovation to meet the challenges of the 21st century
- Innovation tools can accelerate the delivery of new process technology
 - A Gated Technology Delivery Process
 - Tools for materials innovation ✓ Materials

 - ✓ Combinatorial Chemistry
 - ✓ Advanced Characterization
 - ✓ Manufacturing
 - Tools for process innovation
 - \checkmark Experimental data
 - ✓ Engineering technology
 - Separations
 - Iodeling

