### CHEMRAWN XVI Conference Consultation Forum

Innovation Stage: the way pure to the applied chemistry

**Transformation of the old process: Ethylbenzene to Styrene with CO2 dilution** 

## MIN CHE CHON Chon International Co., Ltd.

Worldwide Capacity for Production of Styrene Monomer: more than 20 Mt/year (2.3 Mt/year in Korea) More than 90%: Ethylbenzene Dehydrogenation with Steam

Commercial Catalyst: Fe<sub>2</sub>O<sub>3</sub>-K<sub>2</sub>O-CeO<sub>2</sub> with additives

Role of Steam in Ethylbenzene Dehydrogenation (EBD)

- Shift of the equilibrium towards higher conversions
- Supply for heat of reaction with superheated steam
- Decrease of the amount of coke by steam gasification

Drawbacks of EBD Process with Steam

- High energy consumption during the condensation of steam due to high latent heat of water
- Catalyst deactivation in the presence of CO<sub>2</sub> as a by-product
- The need for high steam-to-ethylbenzene ratio

### **Production of Styrene Monomer in Korea**

Year 1999 (Unit: 1000 T/Y)

| Company         | Capacity   | Location       | Starting year         | Process Licensor           |
|-----------------|------------|----------------|-----------------------|----------------------------|
| YNCC            | 140        | Yeochon        | 1986, 1995            | Badger Eng.                |
| LG Chemical     | 330        | Yeochon        | 1990, 1991            | Lummus/Monsanto            |
| SK Oxychemical  | 300<br>260 | Ulsan<br>Ulsan | 1991<br>1997          | Badger/Mobil/ARCO*<br>ARCO |
| Dongbu Chemical | 210        | Ulsan          | 1978, 1989            | Monsanto/Lummus            |
| Samsung GC      | 590        | Daesan         | 1991, 1996            | Badger                     |
| Hyundai PC      | 325        | Daesan         | 1991, 1996            | Badger Raytheon            |
| Total           | 2,155 -    | → 2.5 M        | t/year capacity (Year | 2001)                      |

\*Dehydrogenation process of MBA (Methyl benzyl alcohol)

### **Problems of Conventional EBD Process**

### Problems

- **1. High Energy Consumption by Use of Excess Steam** – estimated to 10% of production cost
- **2. Low equilibrium conversion** of ethylbenzene to styrene due to limitation of thermodynamic equilibrium
- **3. Increase in risk to crack of the reactor and preheater due to high temperature operation**
- 4. Catalyst deactivation with evaporation of potassium

**Suggestion for conventional process** 

\*New process using carbon dioxide as soft oxidant

### **Alternative Processes for Styrene Production**

- Oxidative dehydrogenation with oxygen
  - ; Higher yield by shift of the dehydrogenation equilibrium Flammable, Need for two catalysts with an oxidation Pd or Pt
- 2. Selective oxidation of H<sub>2</sub> from dehydrogenation with O<sub>2</sub>
  - ; Overcome the contamination of mixing the steam and  $O_2$ Need for very selective and stable catalysts for oxidation of  $H_2$  and at high temperature
- 3. Membrane process
  - ; Oxidative dehydrogenation avoiding the flammability Need for effective permeability of membrane
- 4. Oxidative dehydrogenation with carbon dioxide

### **SODECO2®** Technology Development

**SODECO**<sub>2</sub>**®** (Styrene from Oxidative Dehydrogenation via CO<sub>2</sub>):

**Styrene Monomer Process via Oxidative Dehydrogenation of Ethylbenzene using Carbon Dioxide as Soft Oxidant** 

Source of CO<sub>2</sub> ----- By Product CO<sub>2</sub> discharged from Petrochemical Industry

> Developed by: Dr. S. E. Park and his group KRICT CCME (Catalysis Center for Molecular Engineering)

### New Development in Dehydrogenation Process using Carbon Dioxide as Soft Oxidant



New development

### **Advantages of Carbon Dioxide in Dehydrogenation**

- 1. Role of soft oxidant to remove hydrogen as a product (less dangerous than oxygen)
- 2. High heat capacity of CO<sub>2</sub>: 49.1 J/ mol·K at 673K

(37.0 J/mol·K at 673K for H<sub>2</sub>O and

33.2 J/mol<sup>-</sup>K at 673K for O<sub>2</sub>)

- 3. High selectivity to styrene (97%)
- 4. Activity Enhancement (high conversion)
- 5. Equilibrium shift to give lower reaction temperature
- 6. Cheaper gas than steam or oxygen

# Comparison of Carrier Gases for Dehydroge nation of Hydrocarbons

| Characteristics | Steam                  | Oxygen                 | Carbon Dioxide         |
|-----------------|------------------------|------------------------|------------------------|
| Function        | Not oxidant            | Strong oxidant         | Soft oxidant           |
|                 | Diluent                | Not Diluent            | Diluent                |
| Heat capacity   | Medium                 | Low                    | High                   |
|                 | (37.0 J/mol·K at 673K) | (33.2 J/mol·K at 673K) | (49.1 J/mol·K at 673K) |
| Heat capacity   | High selectivity       | High activity          | High selectivity       |
|                 | Catalyst stability     | Exothermic             | Activity enhancement   |
|                 | Coke resistance        | Less deactivation      | Equilibrium shift      |
|                 | Keeping oxidationstate |                        | Cheap carrier gas      |
| Disadvantage    | Expensive diluent      | Low selectivity        | Not commercialized     |
|                 | Highly endothermic     | Dangerous              | Endothermic            |
|                 | High latent heat       | Hot spot               | Catalyst deactivation  |
|                 | High operation cost    |                        |                        |

### **Characteristics of SODECO<sub>2</sub><sup>®</sup> Process**

- **1.** Direct utilization of CO<sub>2</sub> as a by-product discharged fr om petrochemical industry (Self-sufficiency of CO<sub>2</sub>)
- 2. Utilization of CO<sub>2</sub> as soft oxidant to alleviate chemical equilibrium of ethylbenzene dehydrogenation
- **3. Selective dehydrogenation process using CO<sub>2</sub>** (1.5% high in styrene selectivity)
- 4. Energy saving effect against conventional process (33% saving effect: 6.5 M dollar for 0.6 Mt-SM/year)
- 5. High activity at lower temperature

(Release of risk in crack of reactor materials)

### **Schematic Diagram of SODECO<sub>2</sub><sup>®</sup> Process**

### **SODECO**<sub>2</sub><sup>®</sup> (Styrene via Oxidative Dehydrogenation of Ethylbenzene with CO<sub>2</sub>)



\*Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

## **Schematic Diagram of SODECO<sub>2</sub><sup>®</sup> Process**

### **SODECO**<sub>2</sub><sup>®</sup> (Styrene via Oxidative Dehydrogenation of Ethylbenzene with CO<sub>2</sub>)



\*Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

## **Schematic Diagram of SODECO<sub>2</sub><sup>®</sup> Process**

### **SODECO**<sub>2</sub><sup>®</sup> (Styrene via Oxidative Dehydrogenation of Ethylbenzene with CO<sub>2</sub>)



\*Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

## **Development of Commercial EBD catalysts**

|                                 | Generation  |             |             |                            |
|---------------------------------|-------------|-------------|-------------|----------------------------|
| Function                        | 1st (~1960) | 2nd (~1980) | 3rd (~2000) | SODECO <sub>2</sub> ®      |
| Main Component                  | Fe/K        | Fe/K        | Fe/K        |                            |
| Chemical Promoter               | 0           | Се          | Ce, Ce-Zr   | New Catalyst fo            |
| Textual Promoter                | Cr          | W,Cu        | Mg          | enation with CO            |
| Selectivity Promoter            | -           | -           | Мо          | <sub>2</sub> as an oxidant |
| Others (Binder, etc.)           | Са          | Са          | Са          |                            |
| Commercial catalysts            | -           | BASF/Shell  | NGC, etc.   | KRICT                      |
| Catalytic Activity <sup>a</sup> | < 55        | 55 ~ 60     | 60 ~ 65     | > 65 ~ 80                  |

<sup>a</sup>Styrene yield, %

## Catalyst for SODECO<sub>2</sub><sup>®</sup> Process

| Function              | Component                                                  |                               |
|-----------------------|------------------------------------------------------------|-------------------------------|
| Active Phase          | Fe <sub>3</sub> O <sub>4</sub>                             | V <sub>2</sub> O <sub>5</sub> |
| Activity Promoter     | Mn                                                         | -                             |
| Stability Promoter    | Мо                                                         | Sb                            |
| Structural stabilizer | Ca ,Mg                                                     | Mg                            |
| Catalyst Support      | Promoted-Al <sub>2</sub> O <sub>3</sub> , ZrO <sub>2</sub> |                               |

## **Comparison of catalytic performance between commercial and CO<sub>2</sub>-SM catalyst**

| Catalyst                 | Commercial (steam)          | CO <sub>2</sub> -EBD         |
|--------------------------|-----------------------------|------------------------------|
|                          | SOR: 625-575(600)           | SOR: 525 – 575               |
| Temperature (°C)         | EOR: 655-605(630)           | EOR: not fixed               |
| Pressure (atm)           | 0.75                        | 0.75                         |
| Space velocity           | 0.75-1.0                    | 1.0                          |
| (LHSV, h <sup>-1</sup> ) |                             |                              |
| Carrier/EB (molar)       | 8-12                        | 2-10                         |
| Styrene yield (%)        | 60-66                       | 55 – 65                      |
| Styrene selectivity (%)  | 94.0-96.5                   | 97.0 – 98.0                  |
| Catalyst lifetime        | 2 years                     | ?                            |
| Others                   | Only H <sub>2</sub> product | X(CO <sub>2</sub> ) = 40-45% |
|                          |                             | CO/H <sub>2</sub> = 1.0-1.5  |

SOR : Start-of-run; EOR : End-of-run

## Scale-up Study vof SODECO2® Process from Lab to Mini Pilot



**Microactivity Test Unit** 

**Bench-scale** 

**Mini Pilot** 

|               |                | Micro(Lab.) |
|---------------|----------------|-------------|
| Bench         | Pilot          |             |
|               | <b>F</b> (in.) | 3/8         |
| 1/2           | 2              |             |
| Reactor       | length(ft.)    | 1           |
| 3             | 4              |             |
| Catalyst volu | une            | 15 <b>m</b> |
| <b>500ml</b>  | 4 liter        |             |
| Shape of cata | alyst          | granul e    |
| ambana!d      | Tablat         | -           |

## **Characteristics of Reactor Systems**

| Equipment            | Micro uint                                                                       | <b>Bench scale</b>                                                               | Mini Pilot                                                                       |
|----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| CO <sub>2</sub> Feed | Mass flow controller                                                             | Mass flow controller                                                             | Mass flow controller                                                             |
|                      | Cylinder gas (R-grade)                                                           | Cylinder gas (R-grade)                                                           | CO <sub>2</sub> from EG/EO Plan                                                  |
| EB Feed              | Syringe pump                                                                     | LC pump                                                                          | LC pump                                                                          |
| Pre-heater           | Preheating                                                                       | Pre-heater (electric) wi                                                         | Pre-heater (electric)                                                            |
|                      | Zone                                                                             | th mixer                                                                         | with mixer                                                                       |
| Temperature          | Single heating zone                                                              | 5-zoned heater                                                                   | 5-zoned heater                                                                   |
| control              |                                                                                  | with PID controller                                                              | with PID controller                                                              |
| Product<br>analysis  | Gas component;<br>on-lined GC(TCD)<br>Liq. component;<br>Condensed to<br>GC(FID) | Gas component;<br>on-lined GC(TCD)<br>Liq. component;<br>Condensed to<br>GC(FID) | Gas component;<br>on-lined GC(TCD)<br>Liq. component;<br>Condensed to<br>GC(FID) |

## Bench Scale Unit for Ethylbenzene De hydrogenation with CO<sub>2</sub>



**Jesign Sivi Production Capacity : 2.5 Ton / yr Catalyst volume = 500 ml Shape :spheroid (F=3mm)** LHSV =  $1.0 h^{-1}$ , CO<sub>2</sub>/EB = 5/1, 50% yield @ 560°C

### SM Production via SODECO<sub>2</sub><sup>®</sup> Process @ Pilot-scale system



CO<sub>2</sub> Conv.= 42% @ 560°C (Dual 4 Tubes of Bench scale)

### Comparison of economical properties for EBD processes

**Basis for calculation : 0.6Mt-SM/yr** 

|                             | SODECO <sub>2</sub> ® | Conventional   |
|-----------------------------|-----------------------|----------------|
| Temperature(°C)             | 560                   | 600            |
| SM Selectivity(%)           | 96.5                  | 95.0           |
| Economic effect             | \$ 2.7 M              |                |
| Loss of latent heat         | 66 %                  | 100%           |
| Cost for super-heated steam |                       | <b>\$ 17 M</b> |
| <b>Energy saving</b>        | <b>\$ 6.6M</b>        |                |
| Total                       | <b>\$ 9.3 M</b>       |                |

## **Project Financing**

## ✓ <u>Critical Technology-21 Program</u>

**Greenhouuse Gas Research Center Financed by the Ministry of Science and Technology** 

## ✓ <u>SGC Daesan Petrochemical Complex</u>

**Pilot Scale Demonstration Unit for Catalyst Performance Test** 

## ✓ <u>Key to Success</u>

**Scale-up Technology of Catalyst Stable Enough for industrial Application** 

### **Related Publications**

### ? Patents

- "Catalyst for Dehydrogenating Aromatic Hydrocarbons with Carbon Dioxide," U.S. Patent 6, 034,032, U.S.Patent 6, 037, 511 (2000).

- "Dehydrogenation of Alkylaromatic Hydrocarbons using Carbon Dioxide as Soft Oxidant" 2 003-13139(Korea), 2003-057644(Japan), 03004382.2 (Europe), U.S. Patent *under application* 

- 4 Patents of Korea

### **?** Research Papers

Environ. Challenge and Greenhouse Control in 21C, Green Chem (2003), Catal. Today,(2003), Res. Chem, Intermed, <u>28</u>, 461,(2002), Catal. Commun., <u>3</u>, 227 (2002); Appl. Organomet. Chem., <u>14</u>, 815 (2001); J. Catal., <u>195</u>, 1 (2000); Catal. Lett., <u>65</u>, 75 (2000); Catal. Lett., <u>69</u>, 93 (2000); Res. Chem. Intermed., <u>25(5)</u>, 411 (1999); Chem. Lett., <u>(10)</u>, 1063 (1998) etc.

#### ? Presentations

ACS Keynote Lecture(2001), ACS Fuel Chem. Div. (1996), ACS Fuel Chem. Div. (2002), 5<sup>th</sup>, 6<sup>th</sup>, 7<sup>th</sup> Int.Conf.Carbon Dioxide Util. (1999, 2001, 2003)

### **Dr. Sang-Eun Park**

### Affiliation: Korea Research Institute of Chemical Technology E-mail:separk@pado.krict.re.kr

| Year         | Organization                                                    | Title                               | Others                                                 |
|--------------|-----------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|
| 1977-1984    | <b>Central Research In<br/>st. Of Chon Enginee<br/>ring Co.</b> | Chief Researcher                    | Chemical Engineeri<br>ng Design Process<br>Development |
| 1984-1986    | Dept. of Chemistry,<br>Texas A&M Univ.                          | Researcher<br>Associate             | Post Doc.                                              |
| 1987-1987    | Dept. of Chemistry,<br>KAIST                                    | Visiting<br>Researcher              |                                                        |
| 1987-present | KRICT                                                           | Senior Researcher<br>to<br>Director |                                                        |

### **PFD for Conventional Styrene Monomer Process**



\*Energy cost for superheated steam: 15 M dollar for 0.6 Mt-SM/year capacity

## Lummus/UOP Classic SMTM Process





**Furnace** 

### Lummus/UOP-SMART Process; (Styrene Monomer Advanced Reheat Technology)



The SMART SM<sup>™</sup> process combines oxidative reheat technology with adiabatic dehydrogen ation technology to produce high purity (99.85 wt% minimum) styrene monomer (SM) from e thylbenzene.

This results in EB conversion of more than 80%, as well as eliminating the costly interstage r eheater and reducing superheated steam requirements.

## **UOP-SMART Process**



### Purity of CO<sub>2</sub> by-product from Ethylene Oxide (EO) Process

| Component        | Case1  | Case2  |
|------------------|--------|--------|
| CO <sub>2</sub>  | 99.46% | 99.9%  |
| H <sub>2</sub> O | 0.51%  | -      |
| 0 <sub>2</sub>   | 50ppm  | 100ppm |
| N <sub>2</sub>   | 50ppm  | 100ppm |
| Methane          | -      | 300ppm |
| Ethylene         | 140ppm | 200ppm |
| Ethane           | 80ppm  | 100ppm |

\*Separation of EO and CO<sub>2</sub> through absorption process to purify EO product

### Catalytic Activity in EBD with CO<sub>2</sub> in Bench-scale



### **New CO<sub>2</sub>-EBD catalyst vs. Commercial steam-EBD catalyst**



Lowering reaction temperature (up to 50°C) due to alleviation of chemical equilibrium with carbon dioxide SM Production : 20 M-t/Yr (SM Yield = 65% @ 560°C)

\* Korea Patent Appl. 02-11418 (2002.3.4), EU Patent Appl. 03004382.2 (2002.3.3)

### Comparison of styrene yields in steam-EB D and CO<sub>2</sub>-EBD catalysts



\*US Patent 6,037,511(2000) for catalyst; US Patent 6,034,032 (2000) for process

# Simplified Reaction Equations of EB Dehydrogenation via SODECO<sub>2</sub>® and conventional

Oxidative Dehydrogenation of EB via SODECO2® Process

 $CO_{2} \longrightarrow CO + [O]_{s}$   $C_{6}H_{5}CH_{2}CH_{3} + [O]_{s} \longrightarrow C_{6}H_{5}CH=CH_{2} + H_{2}O$   $C_{6}H_{5}CH_{2}CH_{3} + CO_{2} \longrightarrow C_{6}H_{5}CH=CH_{2} + CO + H_{2}O$   $[]^{*}: a surface vacancy$   $[O]_{s}: a lattice oxygen atom$ 

Simple Dehydrogenation of EB with Steam

 $C_6H_5CH_2CH_3 \longrightarrow C_6H_5CH=CH_2 + H_2$ 

# Mechanism for Oxidative Dehydrogenation of EB with CO<sub>2</sub> over Iron-oxide catalyst



S.-E. Park et.al., AIChE 2000 Spring Meeting, Atlanta, GA, Mar. 9 - 12, 2000.

## **SODECO**<sub>2</sub><sup>®</sup> Technology Development

**SODECO**<sub>2</sub><sup>®</sup> (Styrene from Oxidative Dehydrogenation via CO<sub>2</sub>): New process for styrene production with CO<sub>2</sub> discharged from oxidation p rocess

Discharge of 0.556 tone of carbon dioxide per 1 tone of ethylene oxide (EO) Purity of  $CO_2$  as a by-product of EO process: > 99% (Others: 0.5% H2O a nd less than 300 ppm of C1 and C2 hydrocarbons) Production of EO: 600,000 t/year in Korea (CO<sub>2</sub> 330,000 t/year in EO proc ess)

### **Creation of New Chemical Industry by Utilization of Carbon Dioxide Discharged from Chemical Process**



Iron mill