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Long-distance charge transport through DNA.
An extended hopping model*

Bernd GieseT, Martin Spichty, and Stefan Wessely
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Abstract Long-distance transfer of a positive charge through DNA can be described by a
hopping model. In double strands where the (AbBf)Jdges between the guanines are short

(n = 3), the charge hops only between guanines, and each hopping step depends strongly
upon the guanine to guanine distances. In strands where thg §&dlences between the
guanines are rather long % 4), also the adenines act as charge carriers. To predict the yields
of the HO-trapping products one has to take into account not only the charge-transfer rates
but also the rates of @-trapping reactions.

In the 1990s, the question of long-distance electron transfer through DNA raised a controversial dis-
cussion [1]. We entered this area three years ago by studying radical-induced DNA strand cleavage reac-
tions. Our experiments showed that photolysis of a 4'-acylated nucleoside in the DNA doubl& strand
yields radical catior2 that selectively oxidizes guanine (G) and forms a guanine radical cafionn(G

3 (Fig. 1) [2].

This reaction sequence led to an assay that made it possible to follow the charge migration
through DNA by trapping of the positive charge at the heterocyclic base [3]. In order to understand the
experimental results, we suggested in 1998 a hopping mechanism [3] for long-distance charge transport
through DNA, which is based on the theoretical model of Jortner [4]. A similar hopping mechanism,
which is slightly different in the details, was also suggested by Schuster [5], and today there is a con-
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Fig. 1 Assay for the charge injection into a guanine (G).

*Lecture presented at the XVIIIUPAC Symposium on Photochemistry, Dresden, Germany, 22—27 July 2000. Other presenta-
tions are published in this issue, pp. 395-548.
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Fig. 2 Yield of H,O-trapping products at the GGG sequenegPin long-distance charge transfer by a hopping
between guanines (G).

sensus that long-distance charge transport through DNA occurs by a multistep hopping process [6]. Out
of the four natural heterocyclic bases guanine (G) has the lowest ionization potential [7], therefore G is
the preferred carrier of the positive charge. Thus, in double stda@dsf Fig. 2 the positive charge

hops between the guanines to the GGG unit, which has an even lower redox potential than a single G.
Trapping of the guanosine radical catiorijGeads to productsdand R g that are separated and ana-

lyzed quantitatively by gel electrophoresis.

This hopping model implies that the electron transfer from a G f6ia faster than the trapping
reaction by HO so that the charge should be partly distributed over the guanines before it is trapped
[8]. Therefore, the yields of productg Becrease only slightly fromdpto Ps,, although the distance
to the charge donor G increases by 10 A per each hopping step (Fig. 3).

This slow decrease of the product yields must not be mixed up with a weak distance influence on
the charge-transfer rate. It is the ratio between the charge transfer an@th@pping rates that gov-
erns the product ratios (Fig. 4). We have quantitatively described this situation using the
Curtin—-Hammett principle [10]. The product ratio decreases only slightly as long agQheattion
is slower than the charge-transfer steps.

Figure 5 shows how the charge migration fropvia G,, G;, G, to the GGG unit precedes the
product formation.

Despite this weak distance influence on the product formation, the influence of the distance on
the charge-transfer rakg; of each hopping step is large, and Bhealue is about 0.7 & (Fig. 6) [3,9].

Thus, the electron-transfer rate betweéhadd G over an (A:T)bridge dramatically decreases
with n until one reaches the situation in which the endothermic oxidation of the adjoining adenine (A)
by G is as fast as the oxidation of a distant G [10]. Using a buffer at pH = 7, this seems to be the case
if the number of A:T base pairsof the (A:T), bridge is larger than 3 where the charge-transfer rate
between the guanines is smaller than €& As shown in Fig. 7, in these strands also adenines (A)
become charge carriers [10]. Once A is oxidized, the charge migrates in fast hopping steps between the
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Fig. 3 Product yields Pand Rggformed by trapping of the guanosine radical catiofi)(By H,O during
charge transfer through DNA double strahd’he positive charge is injected intq &d migrates via $G;,
and G to the GGG unit.
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Fig. 4 Reaction profile diagram for the charge transfer ap@-tlapping of the guanines,® G, of double
strand7 at pH = 7.
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Fig. 5 Calculated charges atG G;™, G, (+), and HO-trapping products &3, P53 and R, (0) at the positions
G,, G;, and G, respectively, during charge transfer through double stfaigpH = 7.
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Fig. 6 Experimentally determine@-values using the assays of Giese [3] or Lewis and Wasielewski [9].
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Fig. 7 Dependence of the charge-transfer rate on the numiiieA: T base pairs between,@nd G in DNA
double strands at pH = 7.

adjoining adenines until it reaches a G, so that the overall charge-transfer rate decreases only slowly
with a further elongation of the (A:Jbridge.

In conclusion, the yields of the trapping produgisiBpend not only upon the charge transfer but
also on the KO-trapping rates. In DNA double strands, where th@-tapping reaction is very slow
and the number of adjoining A:T base pairs is large, guanines and adenines are the carriers of the pos-
itive charge, and only a small distance influence on the ratios of produwi§ Be observed. However,
if the H,O-trapping rate is very fast and the number of adjoining A:T base pairs is small into G, only
guanines can act as the charge carriers, and the distance influence on the product ratios will be large. In
between these two extremes, a complex situation arises. According to the Curtin—~Hammett principle,
the product ratios can be predicted using the known charge transfer rate constanfsValijeaf 0.7
AL, and a kinetic model that treats the long-range charge transfer by a hopping mechanism between the
guanines for short A:T sequences, or guanines and adenines for long A:T sequences [10].
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