I  U  P  A  C






News & Notices

Organizations & People

Standing Committees

Divisions

Projects

Reports

Publications
. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data

Symposia

AMP

Links of Interest

Search the Site

Home Page

 

Pure Appl. Chem. Vol. 73, No. 3, pp. 503-511 (2001)

Pure and Applied Chemistry

Vol. 73, Issue 3

Luminescent sensors and photonic switches*

A. Prasanna de Silva**, David B. Fox, Thomas S. Moody, and Sheenagh M. Weir

School of Chemistry, Queen's University, Belfast BT9 5AG, Northern Ireland

Abstract: The principles of photochemistry continue to fuel progress in luminescent sensors and photonic switches. Examples of sensors based on photoinduced electron transfer (PET) are discussed, including those which form the basis of successful systems used in physiology and medicine. More complex formats usually involve multiple receptors. One progression takes us to lanthanide complexes enabled with sensory capabilities. Another path takes us to molecular-scale implementation of logic gates such as AND and INHIBIT. Such luminescent switches can be enriched by combination with nonluminescent cousins. The latter are based on internal charge-transfer excited states (ICT). An example of rudimentary arithmetic at the molecular scale is presented by running a luminescent AND gate in parallel with a nonluminescent XOR gate. Thus, small molecules can process small numbers for the first time outside of our brains.

*Lecture presented at the XVIIIth IUPAC Symposium on Photochemistry, Dresden, German , 22-27 July 2000.Other presentations are published in this issue, pp.395-548.
**Corresponding author

 


Page last modified 5 June 2001.
Copyright © 2001 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.