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Abstract - Computer handling of mass spectra serves two main purposes:
the interpretation of the occasional, problematic mass spectrum, and the
identification of the large number of spectra generated in the gas-
chromatographic-mass spectrometric (GC-MS) analysis of complex natural
and synthetic mixtures. Methods available fall into the three categories
of library search, artificial intelligence, and learning machine.
Optional procedures for coding, asbbreviating and filtering a library of
spectra minimize time and storage requirements. Newer techniques make
increasing use of probability and information theory in accessing files
of mass spectral information.

INTRODUCTION

The inspection of the large libraries of mass spectra now available has become a task for
computers rather than manual procedures. Furthermore, the advent of computerised GC-MS
systems equipped with facilities for rapid scanning has led to the acquisition of many
spectra per analysis, though several spectra may be those of a single compound. For example,

a scanning cycle of 2 sec. generates 1,800 spectra in a one hour GC-MS run, and 14,400 spectra
by the end of an eight-hour day.

Although itself partially responsible for the volume of mass spectral data, computerised
data handling offers the best means for dealing with this surfeit. Problems commonly
associated with GC-MS analyses include overlapping GC peaks, short elution intervals, a wide
range of peak sizes, large numbers of compounds in complex mixtures, and varisble background
signals. Deconvoluting spectra of overlapping components can produce spectra that are pre-
sumed to correspond to those of the pure compounds (Ref.l, 2). Methods are also available
for correcting the skewing of m/e intensities that results from scanning the leading or
trailing edge of the GC peak (Ref.2). Consideration of background signals allows the elimi-
nation of background spectra from further study, and also allows subtraction of these sig-
nals from the spectra of minor components (Ref.2). All of these spectral enhancement methods
are part of the data storage and retrieval process in the sense that they reduce the number
of spectra requiring identification, and improve the quality of the acquired spectra, thus
increasing the likelihood of future retrieval success.

The structure of a spectral library and the arrangement and nature of the data placed in it
should relate to the motivation for retrieval. The library can act as a repository for in-
formation in the form of full or partial mass spectra which may be accessed in response to a
specific request. Questions one might ask of such a library are: What is the mass spectrum
of a specific compound?; What are the characteristic fragmentations of a class of com-
pounds?; What m/e can be used to discriminate between one group of compounds and all

others? The first question could precede a manual identification of an unknown mass spectrum;
the second could precede a study of fragmentation mechanisms; and the third, the monitoring
of a specific group of compounds by mass fragmentography (Ref.3)

The library can also act as a source of the spectra needed to confirm the suspected presence
of a particular component in a sample. In a reverse search (Ref.4, 5), library spectra are
compared to the unknown spectrum, thereby indicating the presence of a component even if the
unknown spectrum is that of a mixture of compounds.

The greatest interest in storage and retrieval of mass spectral data lies in the identifica-
tion of the spectrum of a single, unknown, chemical compound. The spectroscopist may be
interested in ascertaining only the gross structural features of the unknown, but more often
one wishes to match it with a specific reference compound. Failing a specific identifica-
tion, as will happen when that reference spectrum is not in the library, the retrieval
method should either suggest a possible structure or list reference compounds of structure
similar to the unknown. Naegeli and Clerc (Ref.6) list other desirable features of such

1817



1818 MICHAEL ED. HOHN, MICHAEL J. HUMBERSTON and GEOFFREY EGLINTON

retrieved spectra; acceptable results with slightly impure samples; allowances for in-
strumental error; a search strategy tailored to the problem at hand; and relative ease of

utilisation by the chemist.

The discussion which follows deals mainly with the methods availsble for the identification
of an unknown by detailed processing of its mass spectrum as these methods hold the greatest
interest at present. However, reverse search and feature extraction are discussed where
appropriate. In keeping with the format of this symposium, methodological descriptions will
center around prominent examples. An attempt will be made to synthesise current aspects of
the topic rather than review the literature. For a review, see Ref.T. The three
approaches used in identifying an unknown spectrum comprise library search, artificial in-
telligence, and learning machine.
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Fig.l General scheme of library search.

LIBRARY SEARCH

Most library search systems are similar in the steps used to create the library and in the
subsequent retrieval of reference spectra (Fig.l). Individual systems minimize requirements
for storage and for search time in different ways, particular steps being combined or
omitted.

Library creation begins with a set of complete reference spectra, which have been coded and
abbreviated before being stored in the library. The coding and ebbreviation schemes must be
applied wniformly to all spectra, reference and unknown.

The actual search begins with a filter or a sequence of filters that limit the file search
to a subset of the complete library. The search involves calculation of a similarity index
between each reference compound and the unknown; the resultant indices allow ranking the

candidate identifications according to their goodness of fit with the unknown. The chemist
has the option to stop at this point and to accept the best fitting reference as identical
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with the unknown if the similarity is sufficiently great. Alternatively, one can retrieve
the complete candidate spectra if these have been stored. A manual inspection could then
follow.

Creation of a binary code entails the selection of a lower threshold for m/e pesk size after
normelisation, and recording for each m/e value a "1" if a peak is present, a "O" if other-
wise (Ref. 8, 9). This code allows an obvious saving of storage capacity by expressing a
number of positions in a single binary word, and provides a means of comparing spectra
through binary similarity indices (Ref.10). Tabulating matching peaks between an unknown
and a reference spectrum corresponds to a logical AND operation on the binary codes; tabu-
lating mismatches corresponds to a logical EXCLUSIVE OR (Ref.8). The binary code is thus
well suited for calculations on the digital computer, permitting very rapid file searches.

A binary code is also appropriate for recording and comparing derived spectral features such
as ion series and spectral moments, and data additional to mass spectral imformation (Ref.6).
Spectral abbreviation usually accompanies binary coding of discrete m/e positions.
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Fig.2 Spectrum abbreviation = the "2 most intense peaks per 1L amu
window" rule.

Abbreviation serves to minimise the redundancy within a given mass spectrum stored in the
library. Recording only the n most intense peasks in each spectrum leads to unsatisfactory
results because these peaks often fall into a restricted, undiagnostic mass range. A
widely used technique records the n most intense peaks in each non-overlapping interval of
m amu's (Ref,11, 12). Commonly, n is set equal to 2 and m to 14, and the first interval is
set to begin at m/e 6 to avoid splitting recurring peak clusters among adjacent intervals
(Fig.2). This procedure usually ensures that the molecular ion - if present — will not be
deleted from the abbreviated spectrum. An abbreviated spectrum may be recorded either as
peek positions, or as positions and intensities.

Presearch techniques ~ called here "filters" - permit rapid rejection of spectra that are
obviously not identical to the unknown. Dromey (13) describes a Series Displacement Index
(SDI), an intensity-weighted measure of the displacement of spectral peaks from a reference
ion series, in this case, that in the spectra of the alkenes. The SDI was found to charac-
terise molecular class and hence allows a program to direct the search to a subset in the
library. Discrete m/e information can also function as a filter. In a "key ion" strategy,
the unknown spectrum is searched for ions or combinations of ions known to be characteristic
of a library subset. Carried further, the use of key ions would describe a tree and could
obviate the need for a spectral library (Ref.14). A filter based on the molecular ion has
only limited usefulness because of the difficulty in obtaining a confident identification of
the ion, and the decreased ability of the file search to suggest homologues if the unknown
is not represented in the library (Ref.12).

Use of a key ion filter recognises the differential information content of m/e values, and
reflects the experience of the spectrometrist. Following this approach, one can devise a
similarity index such that comparisons between spectra are weighted according to the infor-
mation content of each spectral feature. The weightings can derive from the spectrometr-
ist's experience (Ref.6) or from study of the spectral library. McLafferty's Probability
Based Matching system (Ref.5, 15) rests upon a tabulation of the number of reference spectra
containing a peak for each m/e value in turn. In the subsequent calculation of a similarity
index between any two spectra, each term - corresponding to a single m/e value - is

weighted according to the data in the "uniqueness table". Most significance is given to
matches at relatively unique m/e values. The similarity index also takes into account the
rarity of particular ranges of intensity at each m/e position. In addition to probabili-
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stic measures of similarity, one can devise indices as distance measures (Ref.16) .

ARTIFICIAL INTELLIGENCE

"Artificial intelligence" is used here to describe programs that purport to imitate the mass
spectrometrist's interpretation techniques. Mass spectral features are not treated as
quantities to be compared and contrasted between spectra, but rather as the results of
fragmentation processes. From the observed spectral patterns, the programs attempt to infer
the fragmentation processes that these patterns reflect, and reconstruct the unknown struc-
ture. The usual storage and retrieval methods access a library of mass spectral features -
a much condensed "library" of weights in the case of the learning machine described below -
whereas artificial intelligence methods access a library of fragmentation rules. A brief
description of the Stanford system is presented below (Ref.1T).

LEARNING MACHINES

Learning machines offer a method of spectral identification that minimizes storage and time
requirements, but most published applications lack the resolution needed to attach a speci-
fic name to an unknown. Development of a learning machine initially requires a large set of
spectra and generous quantities of time on a large computer. Briefly, "training" of a
learning machine begins with the chemist dividing the set of spectra among two or more cate-
gories, each characterised by a structural feature of interest. For each pair-wise combina-
tion of categories, a weighting vector is calculated; vector multiplication between this
vector and the vector of m/e values of an unknown mass spectrum yields a scalar. The mag-
nitude or sign of the scalar indicates to which category the spectrum best belongs (Ref.T,
18). A sequence of such decisions would be used to determine type and number of functional
groups, number of carbons and presence of heterocyclic rings (Ref.19, 20).

Because the learning machine comprises an empirical derivation of spectral features that
discriminate between specified categories, it could find application in constructing a
search filter, based for example, on ions or indices. Such an application of the learning
machine would be most appropriate when the chemist is faced with the task of creating a
search system on a poorly-studied group of compounds, or one with which he has had little
experience.

Jurs (20) utilises a learning machine that simultaneously calculates the weighting vectors
and drops from consideration m/e values with low discriminatory power between the specified
categories. Starting with a training set of 300 spectra, a total of 14 different values of
m/e were found to correlate with the presence of oxygen in the parent molecule. (The high-
est m/e value found among the spectra was 195.) A rapid multiplication and addition of
these 14 terms could successfully predict oxygen presence or absence in 90% of 330 test
spectra. Note that this calculation requires fewer terms than an ion series calculation in
a library presearch routine.

DESCRIPTION OF ENTIRE SYSTEMS

The foregoing discussion has stressed the computational elements of the three identification
methods in relation to the task required and the important constraints of time and storage
capacity (Table 1). The organisation of the library also determines time and storage re—
quirements, but a full treatment of the topic of file structure lies beyond the scopeof
this paper. As an example of the optional range of structures, one can construct a spec-
tral data base so as to allow direct access to spectra containing a given key ion through a
list of such ions and a series of pointers to respective library subsets. A library can be
so "inverted" on a calculated key, e.g. the Series Displacement Index (Ref.13).

TABLE 1 Options available

Task Constraint Methods
Recognition of class Limited storage and L i hine
or partial structure time earning macnin
OR
Feature retrieval "Unlimited" storage File search
and time Artificial intelligence
Identify or confirm Limited storage and File search with filters,
specific compound - time abbreviation
"n g i "
tgzilmlted storage and Complete file search
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From these general considerations, the discussion will now turn to specific retrieval sys-
tems described in the literature. Presentation of each will be brlef, intended to point out
the distinctive features and the particular procedures involved in their implementation.

Chemist

2

Fragmentation
rules

Hypothetical A Class Unknown
m/e positions .assignment spectrum

ya s

ﬁ( Comparison

Fig.3 General procedure in heuristic, DENDRAL-like programs
for mass spectral interpretation.

The DENDRAL program of the Stanford group (Ref,17) represents a collection of fragmentation
rules; implementation of this and similar programs (Ref.21) begins with the chemist speci-
fying the fragmentation pathways and rules characteristic of a given group of compounds
(Fig.3). Confronted with an unknown, the DENDRAL-like programs may use the molecular ion to
assign the unknown to a compound class. The program then accesses the characteristic frag-
mentation rules of that class and selects those consistent with the observed mass spectrum.
The heuristic aspect of the program allows extension to any class once the chemist provides
the fragmentation rules. Both high resolution (INTSUM, (Ref.21)) and low resolution (DEN-
DRAL, (Ref.17)) mass spectral data afford interpretation.

Clerc (6) describes a library search method that minimizes the time required to compute the
similarity indices. At the time of library creation, selected spectral features such as ion
series and significent peaks are stored as a binary code, and empirically ranked according
to discriminatory power. In comparing an unknown with a reference spectrum, the terms in the
similarity index are computed from the most discriminating feature to the least; calculation
of each term leads to a comparison of the cumulative matches and mismatches with a given
threshold. If the deviation between the spectra falls above the threshold, the calculation
of similarity between the two spectra is abandoned before compilation of all the terms, and
the search moves on to the next reference spectrum. This algorithm acts as a filter, with
the difference that the processes of filtration and the calculation of similarity occur sim-
ultaneously. Output comprises an ordered list of compounds in the reference library that
best fit the unknown, together with the respective similarity indices. The system is inten-
ded for use with any compound class, and can also include data other than mass spectral
features.

The Self-Training Interpretive and Retrieval System (STIRS, (Ref.22)) confronts the problem
of identification when the unknown compound is not represented in the reference library.
Fundamentally a library search method, STIRS compares the unknown with a reference spectrum
through calculation of eleven "Match Factors between the spectra. Each Match Factor utili-
ses an individual spectrsl feature - e.g. ion series, primary neutral loss, or characteristic
ion - that is known to correlate with structural attributes. Comparison of an unknown spec-—
trum with a reference spectrum of the same compound will yield high values for the Match
. Factors. If the unknown is not represented in the reference library, then a list of the best
matches accompanies each Match Factor; if a number of reference spectra in a given list
share a structural attribute, the program indicates that the unknown also possesses this
attribute. Manual inspection of these suggested structural features usually allows deriva-
tion of the unknown structure.
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The Probability Based Matching system (PBM, (Ref.5, 15)) exploits the advantages of a pro-
babilistic similarity index and a reverse search in the analysis of mixtures. The similar—
ity index described above expresses the "confidence" that a given spectrum contains that of
a particular reference compound. The so-called "forward search" found in most retrieval
systems tacitly assumes that the unknown spectrum represents a reasonably pure, single com—
pound, with allowances made for slight impurities and instrument error. This assumption is
not made with a reverse search and any reference spectrum will be matched to the unknown as
long as the unknown spectrum contains the peaks in the reference spectrum. Peaks left
unaccounted for in the unknown spectrum are assumed to represent another component of the
mixture; similarly taken into consideration is the augmentation of peaks in the unknown
spectrum by ions due to any other components. The PBM system reduces the need for complete
chromatographic separation and is suited to the direct analysis of simple mixtures. The
output consists of an ordered list of compounds, the confidence of identification, and the
respective contribution to the mixture. The method is not intended for detecting compounds
unrepresented in the reference library; these problems are left to STIRS or other systems.

The Mass Spectral Search System (MSSS) offers a number of library retrieval methods, inclu-
ding retrieval on the basis of molecular weight, formulae, MSDC class terms and combinations
of these (Ref.23). Identification methods presently include the Biemann approach, a strai-
ghtforward search of a library of spectra abbreviated by the "2 most intense peaks per 1k
amu" rule. The STIRS and PBM methods are to be implemented shortly (at the time of this
writing). Using a library of 39,500 spectra representing 28,000 different compounds stored
on large, structured disc files, the service is implemented on the Cyphernet system and
accessed interactively in the United States and Western Europe by telephone. Costs include
a $300 annual fee, a $9 fee per search, and additional fees according to retrieval options
utilised. The system is not suited to the identification of large nunbers of spectra, but
offers the advantages of a large spectral library that is continually updated.

As a final example of a mass spectral retrieval system, the INTERP program in use at Bristol
was designed with two aspects particularly in mind: the chemist often knows the chemical
class of his unknown; and within that class, inspection of only a few, distinctive ions oft-
en allows structural or specific identification (Ref.1ll, 24). The chemist implements the
method for a given class of compounds by providing a hierarchy of categories and tests for
determining membership at each node in the tree (Fig.l4). Identification of an unknown pro-
ceeds by working through the hierarchy, applying the tests - an average of 4 at each node,
and continuing until no further tests are satisfied or a terminal node is reached. The pro-
gram outputs the specific compound or group of compounds, corresponding to the node which
best matches with the unknown, the number of matching peaks for the reference and unknown
(i.e. the number of tests satisfied) and the ion current accounted for.

Standard spectra

Chemist selects
diagnostic ions

Unknown
Tree of tests Tree search spectrum

Compound structure,
with no. ions and ion
current accounted for

Fig.L Steps in the identification of an unknown by the
Bristol INTERP program.

CONCLUSIONS

A mass spectrum is the single most definitive data set readily obtainable in seconds from
microguantities (ca. 10™7g) of a compound. Analyses of many biological, medical and geo-
chemical samples presently based on GC data alone would benefit from the greater confidence
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in identification possible by GC-MS. The inevitable increase in the use of mass spectrome-
ters as routine analytical tools must be accompanied by parallel developments in the ease,
speed and certainty of computer-based identifications.

Developments in storage and retrieval systems have led to a diversification of methods. While
on the one hand this diversification requires the chemist to choose among a baffling array
of alternatives — forward search and reverse search; sequential files and trees; complete
file search and inverted-file search with keys — it also means the application of computer-—
based systems to a range of problems, a closer tying-in of a specific technique to the pro-
blem at hand, and the incorporation of optional search and interpretation strategies into the
same program. For instance, forward search and reverse search techniques are available for
analysis of pure compounds and mixtures, respectively. Developing a given technique in the
context of a specific problem permits effective use of the computational facilities and
allows one to place more confidence in the information it retrieves.

TABLE 2. Systems for the computerised identification of mass spectra

Method Computer Computation time Applications¥*
per unknown

DENDRAL (Ref.1T) PDP-6 L-5 min. Occasional

Clerc's method (Ref.6)  CDC6LOO/6500 10 sec. GC-MS ’

STIRS (Ref.22) PDP-9 20 min. Occasional

PBM (Ref.5) PDP-11/L45 2 sec. GC-MS

MSSS (Ref.23) - 15 min. Occasional

INTERP (Ref.1lk) PDP-8/e 0.25 sec. GC-MS

¥ For meaning of "Occasional" and "GC-MS" see section "Conclusions".
These evaluations are those of the present authors.

The need to identify an occasional, problematical mass spectrum versus a large number of spe-
ctra that may be easy to recognise individually constitutes a fundamental dichotomy in the
application of mass spectral information systems. Methods appropriate to the former situat-—
ion generally require powerful computation and large library facilities, whereas methods sat-
isfying the second need minimize storage and time requirements and are well-suited to the
treatment of GC-MS data (Table 2). In many applications of mass spectrometry, an analysis
involves a known class of compounds, either as a single compound or a mixture. This fact
permits use of a small, laboratory computer for the identifications, and the choice between
real-time or delayed processing as only a small, specialised library needs to be accessed.
Unusual and unexpected spectra could be left to more detailed treatment by large file search
or interpretive programs, probably on a main-frame computer or a network service.

BecausE of the uncountable millions of possible organic compounds, present libraries contain-
ing 10" spectra are clearly inadequate for any but the most commonly-studied compounds. The
storage and organisational problems increase with high resolution MS and ionisation proced-
ures that generate markedly different spectra, e.g. chemical ionisation and field desorption.
The use of a single, small library or a set of specialised libraries accessed through a key
may be mandatory in leboratories where the nature of the compounds, the type of spectrum, or
the number of spectra generated precludes use of a service such as MSSS. Depending upon the
reasons for creating a local data base, a choice exists between the chemist obtaining comm-
ercial and published collections of spectra, or producing the data himself. The first option
offers the advantage that a sizeable library can be constructed with a minimal outlay of time
and manpower (Table 3). Generating one's own data allows personal control over the validity
of the spectra, the relevance of the collection to work underway in the laboratory, and the
instrumental conditions during spectral acquisition.

The diversification of mass spectral storage and retrieval methods has not only meant a wider
range of basic methods available, but has resulted in a refinement of methods as well, par-
ticularly in the development of "smart" techniques in library searching. Early search stra-
tegies treated each piece of data of a given type as though equivalent in information. Thus,
a complete search of a library compared all of the reference spectra with the unknown, rather
than utilising a filter to limit the search to a subset. Similarly, all peaks were weighted
equally regardless of m/e value. Information theory suggests that m/e values should be
weighted by their information content when calculating similarity between two spectra.
"Smart" library search systems - employing filters, keys, inverted files, and m/e weighting
schemes — provide savings in time and storage needs, can give more reliable retrievals, and
indicate uncertainty in an identification. The future will see increased use of these tech-
niques and greater attention paid to library organisation, requiring the close cooperation of
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analytical chemists, information scientists and software specialists.

TABLE 3. Main sources of mass spectral data

. . s Approx.
Distributor Description fo.of spectra Notes
1. MSDC Full spectra collection (tape) 18,000 1
2. MsDC Full spectra collection (data .
sheets) 7,000 1
3. MSDC Eight peak index - tape 31,000 1
4. MsDC Eight pesk index - book 31,000 1
5. Wiley Inter- Registry of mass spectral
science data - tape 23,000 2
6. Wiley Inter- Registry (McLafferty) of
science mass spectral data - book 18,000 2
T. Heyden Compilation of mass spectral
data (Cornu & Massot) 10,000
8. NBS : NIH/EPA Collection - Tape '19,000 3
9. U.S. NTIS Mass spectra of compounds of
biological interest - book 2,000 L
10. MsSDC Mass spectra of compounds of
biological interest - tape 2,000 1
11. TRC Complete mass spectra (data
sheets) 6,0007? 5
’ Notes

1. Mass Spectrometry Data Centre, AWRE, Aldermaston, Berkshire.

2. Contains about 6,000 spectra from 2.

3. Contains about 3,000 spectra from 1.

4. National Technical Information Service, U.S. Department of Commerce,
Springfield, Virginia.

5. Thermodynamics Research Centre, Texas A & M University.
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