Physical quantity	Name of	Symbol for	Expression in terms	
	SI unit SI unit		of SI base units	
2 1		**	-1	
frequency	hertz	Hz	S	
force	newton	Ν	m kg s ⁻²	
pressure, stress	pascal	Pa	$N m^{-2}$	$= m^{-1} kg s^{-2}$
energy, work, heat	joule	J	N m	= m ² kg s ⁻²
power, radiant flux	watt	W	$J s^{-1}$	= m ² kg s ⁻³
electric charge	coulomb	С	A s	
electric potential,	volt	V	J C ⁻¹	$= m^2 kg s^{-3} A^{-1}$
electromotive force				
electric resistance	ohm	Ω	V A ⁻¹	$= m^2 kg s^{-3} A^{-2}$
electric conductance	siemens	S	Ω^{-1}	$= m^{-2} kg^{-1} s^3 A^2$
electric capacitance	farad	F	$C V^{-1}$	$= m^{-2} kg^{-1} s^4 A^2$
magnetic flux density	tesla	Т	$V \text{ s m}^{-2}$	= kg s ⁻² A ⁻¹
magnetic flux	weber	Wb	V s	$= m^2 kg s^{-2} A^{-1}$
inductance	henry	Н	V A ⁻¹ s	$= m^2 kg s^{-2} A^{-2}$
Celsius temperature ²	degree Celsius	°C	Κ	
luminous flux	lumen	lm	cd sr	
illuminance	lux	lx	cd sr m ⁻²	

1.4.3 SI derived units with special names and symbols

(2) The Celsius temperature θ is defined by the equation

$$\theta/^{\circ}\mathrm{C} = T/\mathrm{K} - 273.15$$

The SI unit of Celsius temperature is the degree Celsius, °C, which is equal to the Kelvin, K. °C should be treated as a single symbol, with no space between the ° sign and the letter C. (The symbol °K, and the symbol °, should no longer be used.)

⁽¹⁾ For radial (angular) frequency and for angular velocity the unit rad s⁻¹, or simply s⁻¹, should be used, and this may *not* be simplified to Hz. The unit Hz should be used *only* for frequency in the sense of cycles per second.

Physical quantity	Name of SI unit	Symbol for SI unit	<i>Expression in terms</i> of SI base units	
activity ³	becquerel	Bq	s ⁻¹	
adsorbed dose ³ (of radiation)	gray	Gy	J kg ⁻¹	$= m^2 s^{-2}$
dose equivalent ³ (dose equivalent index)	sievert)	Sv	J kg ⁻¹	= m ² s ⁻²
plane angle ⁴ solid angle ⁴	radian steradian	rad sr	1 1	$= m m^{-1}$ = m ² m ⁻²

⁽³⁾ The units becquerel, gray, and sievert are admitted for reasons of safeguarding human health.

⁽⁴⁾ The units radian and steradian are describe as 'SI supplementary units'. However, in chemistry, as well as in physics they are usually treated as dimensionless derived units, and this was recognized by CIPM in 1980. Since they are then of dimension 1, this leaves open the possibility of including them or omitting them in expressions of SI derived units. In practice this means that rad and sr may be used when appropriate and may be omitted if clarity is not lost thereby.