1.3.11 Colloid and surface chemistry

Name	Symbol Definition		SI unit	Notes
specific surface area surface amount of B,	$a, a_s, s a = A/m$ n_B^s, a_B^a		m² kg ⁻¹ mol	(1)
adsorbed amount of B	, wb		11101	(1)
surface excess of B	$n_{ m B}{}^{ m \sigma}$		mol	(2)
surface excess	$\Gamma_{\mathrm{B}}, (\Gamma_{\mathrm{B}}{}^{\mathrm{\sigma}})$	$\Gamma_{\rm B} = n_{\rm B}^{\ \ \sigma}/A$	mol m ⁻²	(2)
concentration of B				
total surface excess	$\Gamma, (\Gamma^{\sigma})$	$\Gamma = \sum_{i} \Gamma_{i}$	mol m ⁻²	
concentration				
area per molecule	<i>a</i> , σ	$a_{\rm B} = A/N_{\rm B}^{\ \sigma}$	m^2	(3)
area per molecule in	$a_{ m m},\sigma_{ m m}$	$a_{\rm m, B} = A/N_{\rm m,B}$	m^2	(3)
a filled monolayer				
surface coverage	heta	$\theta = N_{\rm B}{}^{\rm \sigma}/N_{\rm m,B}$	1	(3)
contact angle	heta		1, rad	
film thickness	t, h, δ		m	
thickness of (surface	τ, δ, t		m	
or interfacial) layer				
surface tension,	γ, σ	$\gamma = (\partial G/\partial A_{\rm s})_{T,p}$	$N m^{-1}$, $J m^{-2}$	
interfacial tension				

⁽¹⁾ The values of n_B^s depends on the thickness assigned to the surface layer.

⁽²⁾ The values of n_B^{σ} and Γ_B depend on the convention used to define the position of the Gibbs surface. They are given by the excess amount of B or surface concentration of B over values that would apply if each of the two bulk phases were homogeneous right up to the Gibbs surface. See PAC 31 (1972) 377-638.

⁽³⁾ $N_{\rm B}{}^{\sigma}$ is the number of adsorbed molecules ($N_{\rm B}{}^{\sigma} = L n_{\rm B}{}^{\sigma}$), and $N_{\rm m,B}$ is the number of adsorbed molecules in a filled monolayer. The definition applies to entities B.

Name	Symbol	Definition	SI unit	Notes
			1	
film tension	$\Sigma_{ m f}$	$\Sigma_{\mathrm{f}} = 2\gamma_{\mathrm{f}}$	N m ⁻¹	(4)
reciprocal thickness	κ	$\kappa = (2F^2I_c/\varepsilon RT)^{1/2}$	\mathbf{m}^{-1}	
of the double layer				
average molar masses				
number-average	M_n	$M_n = \sum n_i M_i / \sum n_i$	kg mol ⁻¹	
mass-average	M_m	$M_m = \sum n_i M_i^2 / \sum n_i M_i$	kg mol ⁻¹	
Z-average	M_z	$M_z = \sum n_i M_i^3 / \sum n_i M_i^2$	kg mol ⁻¹	
sedimentation coefficient	S	s = v/a	S	(5)
van der Waals constant	λ		J	
retarded van der Waals	β , B		J	
constant				
van der Waals-Hamaker	$A_{ m H}$		J	
constant				
surface pressure	$\pi^{\scriptscriptstyle{\mathrm{S}}},\pi$	$\pi^{ ext{ iny S}}=\gamma^0$ - γ	$N m^{-1}$	(6)

⁽⁴⁾ The definition applies only to a symmetrical film, for which the two bulk phases on either side of the film are the same, and γ_f is the surface tension of a film/bulk interface.

⁽⁵⁾ In the definition, v is the velocity of sedimentation and a is the acceleration of free fall or centrifugation. The symbol for a limiting sedimentation coefficient is [s], for a reduced sedimentation coefficient, s° , and for a reduced limiting sedimentation coefficient $[s^{\circ}]$.

⁽⁶⁾ In the definition, γ^0 is the surface tension of the clean surface and γ that of the covered surface.