GLOSSARY OF TERMS USED IN ECOTOXICOLOGY

(IUPAC Recommendations 2009)

Prepared for publication by
MONICA NORDBERG1,‡, DOUGLAS M. TEMPLETON2, OLE ANDERSEN3, AND JOHN H. DUFFUS4

1Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; 3Roskilde University Centre, Roskilde, Denmark; 4The Edinburgh Centre for Toxicology, Edinburgh, Scotland, UK

*Membership of the Chemistry and Human Health Division Committee during the preparation of this report (2006–2008) was as follows:

President: P. W. Erhardt (USA, 2006–2007); D. M. Templeton (Canada, 2008); Secretary: M. S. Chorghade (USA, 2006–2008); Titular Members: O. Andersen (Denmark, 2008); J. H. Duffus (UK, 2006–2007); J. Fischer (Hungary, 2006–2007); X. Fuentes-Arderiu (Spain, 2008); M. N. Liebman (USA, 2006–2008); M. Nordberg (Sweden, 2006–2008); F. Pontet (France, 2008); F. Sanz (Spain, 2006–2008); P. Soares de Araujo (Brazil, 2006–2007); G. Tarzia (Italy, 2008); D. M. Templeton (Canada, 2006–2007); H. Timmerman (Netherlands, 2006).

‡Corresponding author: Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; E-mail: monica.nordberg@ki.se

Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.
Glossary of terms used in ecotoxicology

(IUPAC Recommendations 2009)

Abstract: The objective of the “Glossary of terms used in ecotoxicology” is to give clear definitions for those who contribute to studies relevant to ecotoxicology but are not themselves ecotoxicologists. This objective applies especially to chemists who need to understand the ecotoxicological literature without recourse to a multiplicity of dictionaries. The glossary includes terms related to chemical speciation in the environment, sampling, monitoring, and environmental analysis, as well as to adverse ecological effects of chemicals, ecological biomarkers, and the environmental distribution of chemicals. The dictionary consists of about 1139 terms. The authors hope that among the groups who will find this glossary helpful, in addition to chemists, are pharmacologists, toxicologists, ecotoxicologists, risk assessors, regulators, medical practitioners, and regulatory authorities. In particular, the glossary should facilitate the use of chemistry in relation to environmental risk assessment.

Keywords: ecotoxicology; chemical speciation; sampling; monitoring; environmental analysis; ecological biomarkers; risk assessment; IUPAC Chemistry and Human Health Division.

CONTENTS

PREFACE
ACKNOWLEDGMENTS
ALPHABETICAL ENTRIES
ANNEX 1: ABBREVIATIONS AND ACRONYMS USED IN ECOTOXICOLOGY
ANNEX 2: ABBREVIATIONS AND ACRONYMS OF NAMES OF INTERNATIONAL BODIES AND LEGISLATION
ANNEX 3: NUMBERED REFERENCES
ANNEX 4: OTHER SOURCES CONSULTED

PREFACE

Within the framework of IUPAC Division VII, Chemistry and Human Health, the project to develop a “Glossary for terms used in ecotoxicology” was initiated in 2005. Like many IUPAC bodies, the division is concerned to promote world-wide “regulation, standardization, or codification” in relevant areas of chemistry. Over the years, ecotoxicology has grown rapidly in importance. Lack of understanding of the relevant usage of terminology can give rise to confusion. Accordingly, the aim of the project was to compile clear definitions of the current terminology as used in the ecotoxicology literature. In these definitions, chemical terms always follow current IUPAC preferred usage. This is particularly important if there is a less precise, common usage among nonchemists. Thus, readers are referred to the IUPAC Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”) [3] for current definitions of fundamental chemical terms.

The present glossary is compiled primarily for chemists who find themselves working in ecotoxicology or requiring a knowledge of the subject. Faced with an extensive literature and terms that are not always defined in accessible dictionaries, newcomers to the subject can have great difficulty in ob-
taining the background knowledge essential for their work. Further, many toxicologists, whose previous experience has been limited to clinical and experimental toxicology, under new legislation have to assess possible environmental effects of chemicals and need to understand terms used in the relevant literature. There are also regulators and managers who have to interpret toxicological information and therefore need ready access to internationally accepted definitions of relevant terms in common use.

In order to satisfy the requirements of the many groups concerned with ecotoxicology, the terms included in this glossary have come from a wide range of disciplines. The definitions reflect current knowledge and usage. The compilers of this glossary have deliberately included terms peripheral to ecotoxicology but of importance to the subject because they believe that some redundancy of content is preferable to the difficulties caused by having to consult several dictionaries in order to make a start with the subject.

For some of the entries in this glossary, alternative definitions are given in order to make clear differences in current usage that exist between disciplines, or in historic and developing literature. Where appropriate, terms used in definitions are italicized to indicate that they are themselves defined elsewhere in this glossary. For nomenclature, Pure and Applied Chemistry uses the convention that a trivial/common name can be used if followed by the IUPAC name in square brackets. This convention is followed here in Annex 1.

We are grateful to all those who have contributed to this glossary with constructive criticism and who have suggested modifications for its improvement. Their valuable comments have been incorporated. There will still be flaws but we hope that the final version will be sufficiently close to achieving the original objectives to justify the very widespread support that we have received.

ACKNOWLEDGMENTS

The authors wish to acknowledge Mike Schwenk’s participation and active contribution in preparing the text. The contributions, in alphabetical order, of Poul Bjerregaard, Steven Bursian, Valery Forbes, Birger Heinzow, Peter Pärt, Roland Suchenwirth, Martin van den Berg, and Philip Wexler are also gratefully acknowledged.

ALPHABETICAL ENTRIES

abiological
See abiotic.

abiotic
abiological
Not associated with living organisms.
[1]

abiotic transformation
Process in which a substance in the environment is modified by nonbiological mechanisms.
[1]

absolute bioavailability
See bioavailability (in toxico- or pharmacokinetics).
[2]
absolute fitness
See fitness.

absorbate
Substance that enters and is retained inside a solid or semisolid matrix (absorbent).

absorbed dose (of a substance)
internal dose
Amount (of a substance) taken up by an organism or into organs or tissues of interest.
See absorption, systemic.
[1]

absorbed dose (of ionizing radiation), \(D\)
Energy imparted by ionizing radiation to a specified volume of matter divided by the mass of that volume.
[1,3]

absorbent
Solid or semisolid matrix that is able to accommodate and retain an absorbate.
See also sorbate, sorbent.

absorption (in general)
1. Process of one material (absorbate) being retained by another (absorbent).

 Note: The process may be the physical solution of a gas, liquid, or solid in a liquid, attach-

 See also adsorption.

2. Transfer of some or all of the energy of radiation to matter which it traverses.

 Note: Absorption of light at bands of characteristic wavelengths is used as an analytical

 Corrected from [1].

See also adsorption, sorption.

absorption (in biology)
uptake
Penetration of a substance into an organism and its cells by various processes, some specialized, some
involving expenditure of energy (active transport), some involving a carrier system, and others involv-

 Note: In mammals, absorption is usually through the respiratory tract, gastrointestinal tract,

 After [1]
absorption (systemic)
Uptake to the blood and transport via the blood of a substance to one or more organs or compartments in the body distant from the site of absorption.
After [1]

abundance
1. Total number of individual organisms in a population, seen over a defined period of time in a certain place.
 Note: For fish, an estimate of total weight may replace number.
2. Total number of organisms per unit of habitat space seen over a defined period.
3. Amount of an element that exists in nature, usually expressed in relative terms as a percentage of the total amount of all elements in a given medium (e.g., the Earth’s crust).
4. Amount of an isotope of an element that exists in nature, usually expressed in relative terms as a percentage of the total amount of all isotopes of the element.

abundant element
Element which is of common occurrence in the Earth’s crust.
Note: Abundance may be defined in terms of occurrence in other regions, e.g., oceans, “fresh-water”.

abundant metal
See abundant element.

accessible
Capable of being entered or reached; easy of access; such as one can go to, come into the presence of, reach, or lay hold of; get-at-able.
[4]

accessibility
See bioaccessibility.

acclimation
In experimental systems, allowing an organism to adjust to its environment prior to undertaking a study.
See acclimatization, biological.

acclimatization, biological
acclimatation
acclimation
1. Processes, including selection and adaptation, by which a population of microorganisms develops the ability to degrade a substance, or develops a tolerance to it.
[1]
2. In experimental systems, allowing an organism to adjust to its environment prior to undertaking a study.
After [1]
3. Modification of biological processes or structures in the maintenance of homeostasis in response to change in some environmental quality such as temperature, salinity, light, radiation, or toxicant concentration.

Note: It is an expression of phenotypic plasticity of individuals in response to a sublethal change in some environmental factor.

accumulation (in biology)
See *bioaccumulation*.

accumulation factor (AF)
See *biota-sediment accumulation factor*.
See also *bioaccumulation factor*.

acid rain
Subset of *acid precipitation*.

acid precipitation
Rain, fog, snow, sleet, or other particulate matter from the atmosphere with a pH below 5.6 deposited from the air.

Note: Rain under clean air conditions has a pH slightly under 6. This natural acidity is caused by dissolved carbon dioxide dissociating to form carbonate and hydrogen carbonate ions. “Acid rain” is caused by sulfur in fossil fuels, and nitrogen from the air combining with oxygen to form sulfur oxides and nitrogen oxides during combustion.

acid-volatile sulfide (AVS)
Soil- and sediment-associated solid-phase sulfides extractable with cold hydrochloric acid.

Note: AVS may be chemically available by acid extraction without being bioavailable. Thus, AVS can reduce metal toxicity by binding metals in anoxic soils or sediments, thereby rendering them unavailable to most living organisms.

activation
See *bioactivation*.

active transport
Movement of a substance across a cell membrane against an electrochemical gradient, in the direction opposite to normal diffusion and requiring the expenditure of energy.

acute
antonym: *chronic*
1. Of short duration, in relation to exposure or effect; the effect usually shows a rapid onset.

Note 1: In regulatory toxicology, “acute” refers to studies where dosing is either single or limited to one day although the total study duration may extend to two weeks to permit appearance of toxicity in susceptible organ systems.

2. In clinical medicine, sudden and severe, having a rapid onset.

After [1]

acute-to-chronic toxicity ratio (ACR)
Numerical dimensionless quantity that is the ratio of an acute toxicity test result (e.g., LC₅₀) to a chronic toxicity test result (e.g., maximum acceptable toxicant concentration, MATC) where both are expressed in the same units (e.g., mg l⁻¹). Ideally, the data are for the same chemical species.

Note: It is in principle the inverse of an application factor and is used in a similar manner. The ACR is commonly used for estimating chronic toxicity of a chemical on the basis of its acute toxicity. The ACR should be greater than one because the ratio compares an acute to a chronic value.

After [5]

adaptation
See genetic adaptation, physiological adaptation.

additive effect
Consequence that follows exposure to two or more physicochemical agents that act jointly but do not interact: the total effect is the simple sum of the effects of separate exposures to the agents under the same conditions.

[1]

additive index
Quantification of the joint action of toxicants in mixture by adding measures of their toxicity calculated in relation to the toxicity of a reference toxicant.

additivitity (in toxicology)
Property of the toxicities of substances whereby the toxicity of a mixture of the substances reflects the simple sum of the individual toxicant effects.

adduct
New chemical species AB, each molecular entity of which is formed by direct combination of two separate molecular entities A and B in such a way that there is change in connectivity, but no loss, of atoms within the moieties A and B.

Note 1: Stoichiometries other than 1:1 are also possible, e.g., a bis-adduct (2:1). An “intramolecular adduct” can be formed when A and B are groups contained within the same molecular entity.

Note 2: This is a general term that, whenever appropriate, should be used in preference to the less explicit term complex. It is also used specifically for products of an addition reaction.

[1]
adenylate energy charge (AEC)
Index reflecting the balance of energy transfer between catabolic and anabolic processes, calculated from the equation

\[
\text{AEC} = \frac{[\text{ATP}] + \frac{1}{2}[\text{ADP}]}{[\text{ATP}] + [\text{ADP}] + [\text{AMP}]}
\]

where ATP, ADP, and AMP are the amount concentrations of adenosine tri-, di-, and monophosphate, respectively.

adsorbate
Molecular species of gas, dissolved substance, or liquid that adheres to or is adsorbed in an extremely thin surface layer of a solid substance.
[3]

adsorbent
Condensed phase at the surface of which adsorption may occur.
[3]

adsorption
Increase in the concentration of a substance at the interface of a condensed layer and a liquid or a gaseous layer owing to the operation of surface forces.
[1]
See also absorption, interfacial layer, sorption.

adsorption factor
Ratio of the amount of substance adsorbed at the interface of a condensed layer and a liquid or gaseous phase to the total amount of the substance available for adsorption.
[1]

advection (in environmental chemistry)
Process of transport of a substance in air or water solely by bulk motion (in water or air currents).

Note: In open-ocean marine systems, advective transport of chemicals into the water column from sediments is small compared with that by diffusion. In estuarine systems, fresh-water rivers, and lakes, advective processes can contribute substantially to system transport.

After [1]

AFNOR test
See Association Française de Normalisation test.

age class
Group of organisms of the same age within a population.

age composition
Distribution of organisms among the various age classes present in the population. The sum of the number of individuals in all age classes equals the population size.
age distribution
Composition of a population in terms of how its abundance is distributed across age classes.

age-specific birth rate
age-specific fecundity
age-specific fertility rate
Mean number of offspring born to a female in a specific age class in a given year, expressed per 1000 females in that age class.

age-specific death rate
age-specific mortality
age-specific number of individuals dying
Mean number of deaths as tabulated for a life table interval or for a specific age class in a given year, expressed per 1000 in that interval or age class.

age-specific fecundity
See age-specific birth rate.

age-specific mortality
See age-specific death rate.

age-specific fertility rate
See age-specific birth rate.

age-specific number of individuals dying
See age-specific death rate.

aggregation error
Error in Bayesian probability analysis of model systems resulting from the use of a single set of parameters to represent a collection of distinct entities, such as individuals, in a population.

aging (of contamination)
Decrease in bioavailability of a contaminant with time.

Note: Generally this is due to increased absorption by solid particles.

aging (of acetylcholinesterase)
Property of the complex formed by reaction of organophosphate (OP) pesticide with acetylcholinesterase whereby the reversible enzyme-OP complex dealkylates itself to form an irreversibly inhibited enzyme.

air pollution tolerance index (APTI) (in plant ecotoxicology)
Empirical index used to assess the tolerance of individual plants to contaminated air. The numerical value of T_1 is obtained by combining various quantities according to the recipe $[A \cdot (T + P) + R]/10$, where A is the mass of ascorbic acid divided by the dry mass of a leaf, expressed as mg/g, T is the total
mass of chlorophyll divided by the fresh mass, expressed as mg/g, \(P \) is the pH of a leaf extract, and \(R \) is the mass of water in the leaf divided by the wet mass, expressed as percent. Note that, in common usage, the equation is not formulated as a coherent equation, but requires the given units [6].

albinism

hypomelanism

hypomelanosis

Congenital disorder characterized by a lack of melanin pigment in the eyes, skin, and hair.

Note: The condition is known to affect *mammals, fish, birds, reptiles, and amphibians*. The lack of melanin is due to a mutation in one of the genes coding for enzymes producing melanin.

See also *leucism*.

[4]

alga n., pl. *ae*, adj. *al*

Any of various chiefly aquatic, eukaryotic, photosynthetic organisms, ranging in size from single-celled forms to the giant kelp.

Note: Algae of various species, often unicells, are used for *toxicity* testing in *ecotoxicology*. They are an important component of aquatic *food webs*.

algal bloom

Rapid increase in the abundance of *phytoplankton* or *benthic* algae in a given area, often as a result of an increased availability of nutrients or light, or increase in temperature (e.g., the spring bloom).

algicide

Substance intended to kill algae.

algistatic

Inhibiting algal *population* growth.

See *algicide*.

alkalinity

Capacity of natural water to neutralize acid (proton-accepting capacity) as measured by titration of a water sample with a dilute acid to a specific pH endpoint.

Note: Most often, it is a function of carbonate \((\text{CO}_3^{2-}) \), hydrogen carbonate \((\text{HCO}_3^-) \), and hydroxide \((\text{OH}^-) \) concentrations, i.e., the carbonate-hydrogencarbonate buffering of the water. However, dissolved organic compounds, borates, phosphates, and silicates can also contribute to alkalinity.

After [5]

allele

One of several alternate forms of a *gene* that occurs at the same relative position (locus) on homologous *chromosomes*, becomes separated during *meiosis*, and can be recombined following fusion of *gametes*.

After [1]
allogenic succession
Sequential appearance of species driven by external influences that alter local conditions; e.g., silt deposits changing a marshland to woodland.
See succession.

ambient
Surrounding (applied to environmental media such as air, water, sediment, or soil).
[1]

ambient monitoring
Continuous or repeated measurement of agents in the environment to evaluate ambient exposure and health risk by comparison with appropriate reference values based on knowledge of the probable relationship between exposure and resultant adverse health effects.
[1]

ambient standard
See environmental quality standard.

amelia
Developmental abnormality in which the individual is born without limbs.
See also phocomelia.

anadromous
Showing anadromy.

anadromy
Life-history pattern that is characterized by egg incubation and early juvenile development in freshwater, migration to seawater for adult development, and a return to freshwater for spawning.

Note: Obligatory anadromy is the term applied where migration to seawater is required for survival.
See catadromy.

analysis plan (in ecological risk assessment)
Scheme that defines the exact format and design of the assessment, explicitly states the data needed, and describes the methods and design for analyzing these data.

aneuploidy
Deviation from the normal number of chromosomes in an organism.

anoxia
Total absence of oxygen.
See hypoxia.
antagonism (in toxicology)
Combined effect of two or more factors that is less than that expected from simple summation of toxicities of the individual compounds.
After [1]

anthropogenic
1. Caused by or influenced by human activities.
2. Describing a conversion factor used to calculate a dose or concentration affecting a human that has been derived from data obtained with another species, e.g., the rat.
[1]

anthropogenic enrichment factor
See enrichment factor.

antisymmetry (in population biology)
Quality of a population of bilaterally symmetrical individuals in which the difference in measurement of a trait made from the right and left sides of individuals from that population produces a bimodal distribution.
See fluctuating asymmetry.

application factor (AF)
See uncertainty factor.

arcsine square root transformation
\[\text{arcsin} \sqrt{P},\text{ where } P \text{ is the value of a measured effect, e.g., the proportion of exposed organisms in a population.}\]

Note: This transformation of effects data often fulfills an assumption of homogeneous variances for proportions of exposed individuals responding to a stimulus.

artificial soil test
Test with earthworms in which the toxicity of a substance by skin and gut uptake is determined by adding the earthworms to an artificial soil made of sand, clay mineral, and peat, containing the substance of concern.

artisol test
Test with earthworms in which the toxicity of a substance by skin and gut uptake is determined by placing the worms in an artificial substrate consisting of silica, water, and glass balls, containing the substance of concern.

Note: In the artisol test, the earthworms ingest the silica paste as they do soil.

aryl hydrocarbon hydroxylase (AHH) (unspecific mono-oxygenase)
Enzyme activity attributed to cytochrome P-450 monooxygenase isoforms and often measured in units of benzo[a]pyrene hydroxylation.
as low as reasonably achievable (ALARA)
Describing the situation in which everything practicable is done to reduce risks to the minimum with the approval of the regulatory authorities.
See precautionary principle.

assemblage
Set of coexisting populations defined by phylogeny, location, or life style. Assemblages are intermediate between populations and communities.

Note: An operational definition is “species located in the same place at the same time”.

assessment endpoint (in ecological risk assessment)
Ecological property that is to be protected and the precise parameter to be measured for this property. See measurement endpoint.

assessment factor
See uncertainty factor.

Association Française de Normalisation (AFNOR) test
Commercially available test kit, certified by AFNOR as valid and equivalent to a standardized method.

asymptotic threshold concentration (ATCN)
Concentration of a chemical at which some percentage of a population of test organisms is in a state of approximate homeostasis for a prolonged period of time (48 h or more).

Note 1: This can be demonstrated as the concentration at which the toxicity curve is approximately asymptotic (parallel) to the time axis.

Note 2: The asymptotic LC₅₀ is the concentration at which the LC₅₀ remains constant no matter how long exposure continues, i.e., there is no evidence of significantly increasing effects due to a longer exposure time.

After [5]

atmospheric deposition
Process that transfers a chemical from the atmosphere to the Earth’s surface (land, water, or vegetation) by either dry impingement or by transport in rain or snow.
See also dry deposition, wet deposition.

attenuation
Reduction in amount, e.g., of light, decrease in energy per area due to absorption or scattering.

Note: In reference to pollution, the term is mostly applied to reduction in amount of organic contamination following microbial mineralization.
attenuation (in genetics)
Regulation of gene expression in bacteria by premature termination of transcription of a biosynthetic operon.
[1]

aufwuchs
Floral and (or) faunal communities attached to submerged surfaces in aquatic ecosystems. See *periphyton*.

autogenic succession
Sequential appearance of species driven by processes operating within the community environment (compare *allogenic succession*), e.g., primary and secondary successions that occur on newly exposed land.
See *succession*.

autotroph
Organism that is independent of outside sources for organic food materials and manufactures its own organic material from inorganic sources.

autotrophic succession
Sequential appearance of species in a location principally involving plants.
See *succession*.

available
See *bioavailable*.

availability
See *bioavailability*.

axenic animal
See *germ-free animal*.

axenic culture
Growth of organisms of a single species in the absence of cells or living organisms of any other species.

background concentration
Concentration of a substance in a medium prior to a particular action (usually increasing the concentration), or the concentration that would have occurred in the absence of the action.

baseline
1. Line serving as a basis, as for measurement, calculation, or location.
2. Measurement, calculation, or location used as a basis for comparison.
baseline toxicity
General, nonspecific, reversible mode of toxic action that can be produced in most living organisms by the presence of sufficient amounts of many organic chemicals.

Note 1: Effects result from the general disruption of cellular activity. The mechanism producing disruption is unknown, with the main theories being binding to proteins in cell membranes and “swelling” of the lipid portion of cell membranes resulting from the presence of organic chemicals.

Note 2: Hydrophobicity dominates the expression of baseline toxicity.

See *narcosis*.

batch-replacement test
See *static-renewal test*.

Bayesian
Attributed to Thomas Bayes (1702–1761), English mathematician. The term is used to designate concepts relating to inverse probability, especially Bayes’ theorem, a theorem expressing the probability of one of a number of mutually exclusive events \(H_i \) given some other event \(E \), in terms of the probabilities of all the \(H_i \) independently of \(E \) and the probabilities of \(E \) given each \(H_i \).

[4]

Bayesian probability
Subjective or objective concept of probability as a “measure of the state of knowledge”.

Note: Assessment of probability in Bayesian theory can be approached as, e.g., odds for one or the other result of a stochastic outcome. Modern machine learning methods are frequently based on Bayesian theory.

behavioral teratology
Study of behavioral abnormalities in otherwise apparently normal individuals after exposure in the embryonic state to a substance or physical agent.

behavioral toxicology
Study of abnormal behavior produced by exposure to a substance or physical agent.

beneficial metal
Non-essential metal which in some form (chemical species) at an appropriate dose can improve health of defined organisms, commonly human beings.

benefit
Advantage to, or improvement in condition of, an individual, a population, a species, an assemblage, a community, or an ecosystem.

Note: For risk/benefit comparisons, the probability of benefit is the appropriate comparator.

See *risk*.
benthic
Living on the bottom of an aquatic system.
[1]

bioaccessible
Able to come in contact with a living organism and perhaps interact with it with the possibility of absorption into the organism.

Note: Contact with a living organism may not result in any interaction of the substance with, and absorption by, the organism. In other words, bioaccessibility is a necessary precursor of bioavailability but not, on its own, sufficient for bioavailability to occur.

See bioaccessibility.
[1]

bioaccessibility
environmental availability
Potential for a substance to come in contact with a living organism and perhaps interact with it, with the possibility of absorption into the organism.

Note 1: A substance trapped inside an insoluble particle is not bioaccessible, although substances on the surface of the same particle are bioaccessible and may also be bioavailable. Bioaccessibility, like bioavailability, is a function of both chemical speciation and biological properties. Even substances bound to the surface of particles may not be accessible to organisms that require the substances to be in solution. In general, bioaccessibility becomes bioavailability only after chemical activity that may itself be the result of biological activity.

[1]

Note 2: In ecotoxicology, bioaccessibility is often measured by assessment of the fraction of a substance released from a matrix (usually soil or sediment) into an aqueous medium under defined laboratory conditions. Such measurements must be interpreted with care as laboratory conditions rarely equate to those in nature.

Note 3: In human toxicology, bioaccessibility may be measured as the amount of a specific compound released from a matrix when exposed in vitro to conditions mimicking those in the human gut and small intestine. This gives no measure of bioaccessibility on the skin, in the lung, or in the eye.

See bioavailability.

bioaccumulation
Progressive increase in the amount of a substance in an organism or part of an organism that occurs because the rate of intake from all contributing sources and by all possible routes exceeds the organism’s ability to eliminate the substance from its body.

Note: Bioaccumulation of organic molecules usually correlates with lipophilicity. Bioaccumulation of metal ions tends to correlate with strong binding to biomolecules or incorporation into bone and teeth.

See also bioaccessibility, bioavailability, bioconcentration, biomagnification.
[1]

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
bioaccumulation factor (BAF, BF) accumulation factor
Ratio of tissue chemical residue to chemical concentration in an external environmental phase (e.g., sediment, water, soil, air, or food). BAF is measured at a steady state in situations where organisms are exposed to multiple sources (e.g., water, sediment, food), unless noted otherwise.

Note 1: The concentration in the organism is typically expressed per unit body mass or per gram of lipid (bioaccumulation factor, lipid-based).

Note 2: The concentration in sediment may be expressed per gram dry weight of sediment or per gram of organic carbon and may be referred to as the *biota-sediment accumulation factor* (BSAF).

Note 3: The compound may have entered the organism by any available route and from any component of the water or sediment.

Note 4: In relation to uptake from food, the concentration in the organism is typically expressed per unit body mass or per gram of lipid and the concentration in food is expressed per gram dry weight of food.

bioaccumulative chemicals of concern (BCC)
See persistent organic pollutants.

bioactivation
Metabolic conversion of a xenobiotic to a more toxic derivative or to one that has more of an effect on living organisms.

1

bioamplification
See biomagnification.

bioassay
Procedure for estimating the concentration or biological activity of a substance or physical agent by measuring its effect on a living system compared to a standard system.

1

bioavailable
Able to be absorbed by living organisms.

See also *bioaccessible*.

bioavailability (general)
biological availability
physiological availability
Potential for uptake of a substance by a living organism, usually expressed as a fraction of the total amount of the substance available in the matrix of exposure.
Note 1: Bioavailability, like bioaccessibility, is a function of both chemical speciation and biological properties. Even surface-bound substances may not be bioaccessible, and hence not bioavailable, to organisms which require substances to be in solution before they can interact with them.

bioavailability (in toxico- or pharmacokinetics), \(F \)
Ratio of the systemic exposure from extravascular (ev) exposure to that following intravenous (iv) exposure as described by the equation

\[
F = \frac{A_{ev} D_{iv}}{B_{iv} D_{ev}}
\]

where \(F \) (fraction of dose absorbed) is a measure of the bioavailability, \(A \) and \(B \) are the areas under the (plasma) concentration–time curve following ev and iv administration, respectively, and \(D_{ev} \) and \(D_{iv} \) are the administered ev and iv doses.

[1]

biocenosis
biocoenosis
biotic community
biological community
ecological community
All the interacting organisms living together in a specified habitat.

Note: The area occupied by a biocenosis is defined by a characteristic assembly of species.

biochemical (biological) oxygen demand (BOD)
Amount concentration of oxygen taken up through the respiratory activity of microorganisms growing on organic compounds present when incubated at a specified temperature (usually 20 °C) for a fixed period (usually five days).

Note 1: It is regarded as a measure of that organic pollution of water that can be degraded biologically but includes the oxidation of inorganic material such as sulfide and iron(II).

Note 2: The empirical test used in the laboratory to determine BOD also measures the oxygen used to oxidize reduced forms of nitrogen unless their oxidation is prevented by an inhibitor such as (allyl) thiourea.

[1]

biocid/e n., -al adj.
1. Substance intended to kill living organisms.
 [1]
2. Nonagricultural pesticide used to control the severity and incidence of pests or diseases, e.g., algicide, slimicide, or disinfectant for the control of algal, fungal, or bacterial growth.

biocoenosis
See biocenosis.

biocommunity
See community.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
bioconcentration
Process leading to a higher concentration of a substance in an organism than in environmental media to which it is exposed.

Note: Usually applied to uptake by aquatic organisms directly from water.
See bioaccumulation.

bioconcentration factor (BCF)
Measure of the tendency for a substance in water to accumulate in aquatic organisms defined as the ratio of the concentration of the substance of concern in the organism to the concentration in water at equilibrium.

Note 1: The equilibrium concentration of a substance in an aquatic organism can be estimated by multiplying its concentration in the surrounding water by its BCF in that organism.

Note 2: This parameter is an important determinant for human intake of contaminants from water by ingestion of aquatic food.

After [1]

bioconcentration factor, lipid-based
Ratio of the concentration of the substance of concern in the lipid fraction of the test organism to the concentration in the ambient water.

biodegradation
Breakdown of a substance catalyzed by enzymes in vitro or in vivo. In ecotoxicology, it is almost entirely due to microbial or fungal activity.

Note 1: Biodegradation may be classified for purposes of hazard assessment into three categories:
1. Primary. Alteration of the chemical structure of a substance resulting in loss of a specific property of that substance.
2. Environmentally acceptable. Biodegradation to such an extent as to remove undesirable properties of the compound. This often corresponds to primary biodegradation but depends on the circumstances under which the products are discharged into the environment.
3. Ultimate. Complete breakdown of a compound to either fully oxidized or reduced simple molecules (such as carbon dioxide, methane, nitrate, ammonium, and (or) water).

Note 2: The products of biodegradation can be more harmful than the substance that was degraded.

After [1,3]
See also biomineralization.

biodiversity
Occurrence of a number of species within a given ecosystem or biome, or the presence of a number of community types in a given area.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
Note 1: In special cases, biodiversity may include a degree of genetic variation within a single species.

Note 2: Biodiversity is often a measure of the health of biological systems.

Note 3: Biodiversity can be measured on many biological levels, but the term most commonly refers to the number of different species in a defined area (*species richness*) and is quantified by calculating a *diversity index* which takes into account the relative *abundance* of individuals of each species.

See also *diversity index*.

biodiversity action plan (BAP)
Internationally recognized program designed to protect and restore biological systems containing threatened *species* and *habitats*.

Note 1: The original impetus for these plans derives from the 1992 Convention on Biological Diversity (CBD).

Note 2: The principal elements of a BAP typically include: (a) preparing inventories of biological information for selected species or habitats; (b) assessing the conservation status of *species* within specified ecosystems; (c) creation of targets for conservation and restoration; and (d) establishing budgets, timelines, and institutional partnerships for implementing the BAP.

biogeochemical cycle
Movement of elements or molecules among organisms and nonliving compartments of the atmosphere, lithosphere, and hydrosphere.

Note 1: Examples of biogeochemical cycles are the carbon, nitrogen, phosphorus, and sulfur cycles. These are defined as the global flow of C, N, P, and S atoms, respectively, from plants through animals to the atmosphere, soil, water, and back to plants.

Note 2: The water cycle refers to the global flow of water from surface and ground water sources to soil, plants, animals, and the atmosphere, and back to soil and surface water.

biological indicator
bioindicator
indicator species
Any biological *species* or group of species whose performance, *abundance*, or *population* status is used to determine the health of an environment or *ecosystem* by systematic monitoring of chemical, physiological, or behavioral changes.

Note 1: Deviation of bioindicator performance indicates some adverse effect. In a wider sense, the number and abundance of different indicator species (*biodiversity, species richness*) is used to calculate *biotic indices*.

Note 2: Bioindicator is commonly misused as a synonym for the term *biomarker*. Such use is to be deprecated.

See *biomarker*.
biological determinant
Property of living organisms that affects human or environmental health.

Note: Biological determinants may be either endogenous or exogenous. Endogenous biological determinants include genetic characteristics and physiological state. Exogenous biological determinants are other living organisms with which the organisms of concern interact, e.g., beneficial or harmful microorganisms.

biological monitoring (in ecotoxicology)
biomonitoring
Regular systematic use of living organisms (indicator species, bioindicators, sentinel species) to evaluate changes in environmental quality, by repetitive measurements taken in a statistical design.

Note: Biomonitoring may involve the study of individuals, species, populations, and communities to understand changes due to exposures over extended time periods. It may involve continuous or repeated, invasive or noninvasive measurement of behavioral parameters, physiological parameters, or other biomarkers, in captive animals or indigenous species at the individual or a lower organizational level, and may contribute to the determination of biotic indices.

biological monitoring (in human toxicology)
biological assessment of exposure
biomonitoring
Continuous or repeated measurement of any substance, including potentially toxic substances or their metabolites or biochemical effects in tissues, secreta, excreta, expired air, or any combination of these in order to evaluate occupational or environmental exposure and health risk by comparison with appropriate reference values based on knowledge of the probable relationship between ambient exposure and resultant adverse health effects.

[1]

biomagnification
bioamplification
ecological magnification
trophic enrichment
1. Sequence of processes by which higher concentrations of a substance are attained in organisms at higher trophic levels.
2. Result of these processes of bioconcentration and bioaccumulation by which tissue concentrations of bioaccumulated chemicals increase as the chemical passes up through two or more trophic levels.

Note: Biomagnification occurs in a food chain as a consequence of efficient transfer of a substance from food to consumer accompanied by the lack of, or very slow, excretion or degradation of the substance.

After [1]

biomagnification factor, B
Ratio of concentrations of a compound at two consecutive trophic levels at steady state. It can also be expressed in terms of a rate constant-based bioaccumulation model

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
\[B = \frac{C_n}{C_{n-1}} = \alpha f k_e \]

where \(\alpha \) is assimilation efficiency, \(f \) is feeding rate, and \(k_e \) is the first-order elimination constant. \(B \) can be calculated from field data on assumed trophic relations or from laboratory feeding experiments. See trophic enrichment factor.

biomarker (in ecotoxicology)
Quantifiable behavioral, physiological, histological, biochemical, or genetic property that is used to measure response to an environmental change.

Note 1: It may be a chemical measurement of a pollutant or group of pollutants, or metabolite(s) at the organismal or suborganismal level in individual members of a species which is regarded as a suitable bioindicator or sentinel species. Ideally, biomarker results should have the possibility of extrapolation to indicate potential risk to populations, communities, or ecosystems.

Note 2: Biomarkers are used as an early warning system to indicate either exposure before serious irreversible damage occurs or increased susceptibility of subpopulations.

Note 3: Biomarkers are used for biomonitoring potential effects of environmental factors, either in a time frame or by comparing biomarker intensity between putatively affected and nonaffected areas.

biomarker (in human toxicology)
Indicator signaling an event or condition in a biological system or sample and giving a measure of exposure, effect, or susceptibility.

Note: Such an indicator may be a measurable chemical, biochemical, physiological, behavioral, or other alteration within an organism.

[1]

biomarker of effect
effect biomarker
Biomarker that, depending upon the magnitude, can be recognized as associated with an established or possible health impairment or disease.

[1]

biomarker of exposure
exposure biomarker
Biomarker that relates exposure to a xenobiotic to the levels of the substance or its metabolite, or of the product of an interaction between the substance and some target molecule or cell, that can be measured in a compartment within an organism.

[1]

biomarker of susceptibility
susceptibility biomarker
Biomarker of an inherent or acquired ability of an organism to respond to exposure to a specific substance.

[1]
biomass
1. Total amount of biotic material, usually expressed per unit surface area or volume, in a medium such as water.
2. Material produced by the growth of microorganisms, plants, or animals.

biome
Set of plants and animals that occupy a certain geographic area.

Note: The term is usually applied to large areas occupied by climax communities arising as a result of interactions between biotic and abiotic factors.

biomineralization
1. Deposition of minerals mediated by living organisms.

Note: Examples include silicates in algae, carbonates in diatoms and invertebrates, and calcium phosphates (e.g., hydroxyapatite in bone) and carbonates in vertebrates.
2. Complete conversion of organic substances to inorganic derivatives by living organisms, especially microorganisms.

biominification
bioreduction
See trophic dilution.

biomodification
Alteration of the chemical or physical properties of a substance by the action of living organisms.

biomonitor
1. n. Organism that provides quantitative information on the quality of the environment around it.

Note: The ideal substance biomonitor would indicate the presence of a specific pollutant and provide additional information about the amount present.

2. v. To use organisms to monitor pollutants and to deduce possible effects on biota or routes of toxicant exposure to humans.

biomonitoring
See biological monitoring.

biomonitoring (type 1)
Determination of community changes along a gradient or among sites differing in levels of pollution.

biomonitoring (type 2)
Determination of bioaccumulation in organisms among sites notionally varying in the level of contamination.
biomonitoring (type 3)
Determination of effects on organisms using tools such as biochemical markers in sentinel species or some measure of diminished fitness or condition of individuals.

biomonitoring (type 4)
Determination of genetically based resistance in populations of contaminated areas.

biopesticide
Biological agent with pesticidal activity, e.g., the bacterium *Bacillus thuringiensis* when used to kill insects.

bioremediation
Use of biological organisms such as plants or microbes to aid in removing hazardous substances from an area.

biosensor
Device that uses specific biochemical reactions mediated by isolated enzymes, immunosystems, tissues, organelles, or whole cells to detect chemical compounds usually by electrical, thermal, or optical signals.

biosphere
ecosphere
Zone of air, land, and water at the surface of the Earth that is occupied by organisms.

biota-sediment accumulation factor (BSAF)
accumulation factor (AF)
biota-sediment factor (BSF)
Ratio of lipid-normalized tissue chemical residue to carbon-normalized sediment substance concentration (units of mass lipid/mass organic carbon).

Note: Also known as the bioavailability index (BI).

See also bioaccumulation factor (definition 2).

biotic index
One of several ranking systems calculated from the presence or abundance of sensitive species relative to tolerant species.

Note: Biotic indices measure decreased environmental quality from effects on especially sensitive species and should not be compared to diversity indices, which measure community structure.
biotic ligand
Component of a living organism to which an ion or other substance in aqueous solution can bind, usually with subsequent beneficial or harmful effect on the physiology of the organism.

biotic ligand model (BLM)
Model that integrates the interactions of metals with ligands in water to calculate the speciation (based on hardness, salinity, and presence of other metals) and the concentration of ionic species producing toxicity. The BLM chemically and mathematically models the organism’s target site as ligand(s) competing with nonbiotic ligands, based on the concept that toxicity occurs when a metal-(biotic ligand) complex reaches a critical concentration.

 Note 1: The BLM is a development of the free ion activity model (FIAM) for calculating free metal ions in relation to water-born ligands and the Windermere humic aqueous model (WHAM) for calculating metal speciation in relation to organic species in water.

 Note 2: For fish, the biotic ligand for metal ions is either known or suspected to be the ion channel proteins in the gill surface that regulate the ionic composition of the blood. For other organisms, it is hypothesized that a biotic ligand exists and that mortality can be modeled in a similar way.

 Note 3: The model is a generalization of the FIAM. The difference between the BLM and the FIAM is the consideration of competitive binding at the biotic ligand, which models the protective effects of other metal cations, and the direct influence of pH [7].

biotic score
Weighted measurement of organisms present—the weighted part is determined by each group’s pollution tolerance or intolerance. As pollution increases in a stream, the biotic score value tends to increase.

biotope
Habitat shared by many species, most often an area that is uniform in environmental conditions and in its distribution of animal and plant life.

biotransformation
bioconversion
Chemical conversion of a substance that is mediated by living organisms or enzyme preparations derived therefrom.
[1]

bioturbation
Group of processes whereby organisms affect the structure of sediment.

 Note: Bioturbation consists of two processes, particle mixing and irrigation, mainly executed by infaunal organisms but also by epifaunal organisms and bottom-feeding fish.

biphasic dose–effect model
1. Model of adverse effect vs. dose relationship that, owing to hormesis, dips down from the control level before increasing with the dose; individuals exposed to low, but nontoxic concentrations are healthier than individuals not exposed to the chemical.
Note: Biphasic dose–effect curves occur for any nutrient. Hormesis is a phenomenon associated with compounds that have no nutrient properties.

2. Model of adverse effect vs. dose relationship that changes slope owing to a change in the mechanism of toxic action.

Note: This may, e.g., be due to saturation of a transport or metabolic system.

birth rate
1. (in demography) Number of live births in a defined administrative jurisdiction in a calendar year divided by a midyear population of the jurisdiction, with the customary multiplier of 1 000 to produce a whole number rather than a decimal or a fraction. [8]

Note: An alternative statistic is total fertility rate, the average number of children born to each woman over the course of her life. In general, the total fertility rate is a better indicator of fertility rates because, unlike the crude birth rate, it is not affected by the age distribution of the population.

2. (in ecology) Number of births, B, in a population of a defined size, N, during a specified time interval Δt. The rate is calculated from the formula

$$B = \frac{\Delta N}{\Delta t}$$

where ΔN is the change in the number of births in a limited time period Δt.

See also per capita birth rate.

body burden
Total amount of a substance present in an organism.

boomerang effect
Delayed damage from earlier environmental contamination.

Note: Sometimes stated as “what you throw away can come back to hurt you”.

borderline metal ions
Metal ions intermediate in properties between class a and class b metal ions.

bottom-up ecotoxicological study
Approach to investigating ecotoxicological effects that starts with a determination of the presence and nature of any adverse effects via responses at the suborganismal (cellular and biochemical) levels of organization rather than via the community and (or) ecosystem levels of organization.

See also top-down ecotoxicological study.

After [5]

Brillouin index, H_B
Quantitative value for community species diversity calculated as

$$H_B = (\ln N! - \sum \ln n_i!)/N$$

where N is the total number of individuals and n_i is the number of individuals in the ith species.
Note 1: Evenness for the Brillouin index is estimated as

\[E = \frac{H_B}{H_{B_{\text{max}}}} \]

where \(H_{B_{\text{max}}} \) is the maximum possible Brillouin diversity which occurs when all species are equally abundant.

Note 2: When a subsample is taken from a given area, the Brillouin index provides a better estimate of diversity than the Shannon–Wiener index for samples of the same size. It also corresponds to situations of sampling without replacement, whereas the Shannon–Wiener index is appropriate for sampling with replacement.

See also diversity index.

broodstock
Adult fish producing either eggs or sperm.

calcinosis
Any pathological condition characterized by the deposition of calcium salts in tissues.

calcium sink
Tissue such as arthropod cuticle, bivalve shell, or vertebrate bone that renders calcium or elements with similar biological behavior (such as lead or cadmium) less bioavailable during trophic interactions, thus providing a mechanism for trophic dilution.

carrying capacity, \(K \)
Maximum population size expressed as total number of individuals, biomass, or population density that a given unit of habitat is capable of sustaining.

catadromous
Describing a species exhibiting catadromy.

catatadromy
Life-history pattern that is characterized by egg incubation and early juvenile development in seawater, migration to freshwater for adult development, and return to seawater for spawning.

Note: Obligatory catadromy is the term applied where migration to freshwater is required for survival.

See anadromy.

catagenesis
Long-term geochemical alteration to organic matter, involving high temperatures and pressures deep below the surface of the Earth.

catchment area
See drainage basin.
cetaceans
Whales, dolphins, and porpoises, in the order Cetacea.

Chapman mechanism
Series of reactions by which ozone is formed in the stratosphere.

chemical oxygen demand (COD)
Measure of the amount of oxygen, divided by the volume of the system, required to oxidize the organic (and inorganic) matter in waste-water using a chemically oxidizing agent. In practice, it is usually expressed in milligrams O₂ per litre.
[1]

chemical time bomb
Substance or substances in a component of the environment which are not currently bioavailable but which may become bioavailable at an unknown time in the future with harmful consequences.

chemisorption
Sorption which results from chemical bond formation (strong interaction) between the sorbent and the sorbate in a monolayer on a surface or internal to an absorbent.
After [3]
See also sorption.

chloride cell
Specialized cell with a role in ion regulation, characterized by large numbers of mitochondria, an extensive intracellular tubular network and a high concentration of Na⁺/K⁺ ATPase. This cell is found in salt-secreting glands like the rectal gland of elasmobranchs, the nasal gland of seabirds, and the gills of both seawater and freshwater fish, mainly on the primary lamellae but also on the secondary lamellae.

chlorinity
Proportion by mass of dissolved chloride ions in water.

chlorofluorocarbon (CFC)
Carbon-based chemical containing chlorine and fluorine, responsible for ozone depletion in the stratosphere.

Note: Formerly commonly used as aerosol propellants and refrigeration coolants, but now prohibited in many countries.
See Montreal Protocol.

chronic effect
long-term effect
antonym: acute effect
Consequence that develops slowly and (or) has a long-lasting course: may be applied to an effect which develops rapidly and is long lasting.
[1]
chlorosis
Loss of green color in plants owing to the lack of production or the destruction of chlorophyll.

cladistics
Systematic classification of groups of organisms on the basis of shared characteristics thought to derive from a common ancestor. Also, the study of the branching of evolutionary lines of descent and the relationship between branches.
[3]

cladogram
- evolutionary tree
- phylogenetic tree
Dendrogram illustrating the supposed evolutionary relationships between clades; a diagram showing cladistic relationships.
[3]

Note: Cladograms are often based on such information as the number of differences in amino acids or nucleic acid bases in common proteins or genes, respectively. From estimated mutation rates, the evolutionary time can be estimated. Accordingly, cladograms have two components, branching order (showing group relationships) and branch length (showing extent of evolution).

class a metal ion
Metal ion that combines preferentially with ligands containing ligating atoms that are the lightest (smallest atomic number) of their periodic group.
See also borderline metal ion, class b metal ion, hard acid.
[3]

class b metal ion
Metal ion that combines preferentially with ligands containing ligating atoms other than the lightest (smallest atomic number) of their periodic group.
See also borderline metal ion, class a metal ion, hard acid.
[3]

clearance (general) \((c_o/c_i)(\Delta V/\Delta t)\)
Product of the concentration \(c_o\) of a component in an output system and the volume flow rate of the output system divided by the concentration \(c_i\) of this component in the input system.

Note: The term “mean volume rate” is recommended for this quantity.
[1]

clearance (in physiology and toxicology)
1. Volume of blood or plasma or mass of an organ effectively cleared of a substance by elimination (metabolism and excretion) divided by time of elimination.

Note: Total clearance is the sum of the clearances of each eliminating organ or tissue for that component.
2. (in pulmonary toxicology) Volume or mass of lung cleared divided by time of elimination; used qualitatively to describe removal of any inhaled substance that deposits on the lining surface of the lung.

3. (in renal toxicology) Quantification of the removal of a substance by the kidneys by the processes of filtration and secretion; clearance is calculated by relating the rate of renal excretion to the plasma concentration.

[1]

climax community
Community of plants and animals in a steady state due to ecological succession resulting in a composition of the community best adapted to average conditions in the area. The term is sometimes applied to soil development.

cold condensation theory
Theory that pollutants with high vapor pressure, e.g., mercury or persistent organic pollutants (POPs), in the air will condense onto soil, water, and biota at cool temperatures. Consequently, the ratios for POP concentrations in the air and on condensed phases decrease as one moves from warmer to cooler climates.

cometabolism
Microbial transformation of a compound (that is normally unable to support cell replication) in the requisite presence of a transformable cosubstrate that supports cell replication.

Note: The mechanisms of cometabolism considered likely in most cases involve an enzyme or enzymes that change the substrate to a product or products not further transformed by other enzymes (dead-end metabolites).

See also cooxidation, metabolism, secondary substrate metabolism.

[9]

community
Assembly of populations of different species of living organisms, usually interdependent on and interacting with each other, within a specified location in space and time.

See ecosystem.

community conditioning hypothesis
Hypothesis that ecological communities retain information about events in their history and will not return to their original state after perturbation.

Note: This hypothesis was derived from the concept of nonequilibrium community ecology and was developed as a framework for understanding the persistence of dose-related responses in multispecies toxicity tests.

community stability
Tendency of a community to return to its original state after a disturbance (competition, temporarily changing environment, etc.).
community resilience
capability of a community to return to its former state after perturbation.

Note: A community with high resilience will return to its original state faster than one with low resilience.

community resistance
ability of a community to avoid displacement from its present state by a disturbance.

community structure
species present in a community and their relative abundances.

compartment
1. Conceptualized part of the body (organs, tissues, cells, or fluids) considered as an independent system for purposes of modeling and assessment of distribution and clearance of a substance.
 [1]
2. Part of an ecosystem considered as an independent system for purposes of assessment of uptake, distribution, and dissipation of a substance.

competition (in ecology)
genral struggle for existence in which living organisms in a niche compete for the same limited resources.
see intraspecific competition, interspecific competition.

competitive exclusion
outcompetition from a niche of one species by another that uses the available resources of the niche more efficiently, eventually resulting in the exclusion of the outcompeted species.

complimentary niches
niches where coexisting species occupy a similar position along one niche dimension, e.g., altitude, but differ along another, e.g., diet.
see niche.

concentration factor (CF), \(C_f \)
quantitative expression of the concentration of substance \(n \) \((C_n) \) at different trophic levels divided by the concentration in the ultimate or lowest defined source, e.g., relative to the water concentration \((C_{water}) \)

\[
C_f = \frac{C_n}{C_{water}}
\]

concentration–response curve
exposure–response curve
graph of the relation between exposure concentration and the proportion of individuals in a population responding with a defined effect.
[1]
concept of strategy
See principle of allocation.

conceptual model (in ecological risk assessment)
Linkage and interrelationship of assessment endpoint(s) and stressors.

Note 1: Establishing this includes evaluation of potential exposure pathways, effects, and ecological receptors.

Note 2: Conceptual models include hypotheses of risk and a diagram of the conceptual model.

conceptual model diagram (in ecological risk assessment)
Figure showing pathways of exposure of organisms and illustrating areas of uncertainty or concern.

conceptual site model (CSM)
Integration of information on contaminants of potential concern (COPCs), ecological resources, evaluated exposure routes, fate and transport mechanisms, evaluated COPC toxicity, identified assessment endpoints, and risk questions and hypotheses, into a description of all that is known and (or) expected about a contaminated site.

condition (in ecology)
State of health determining potential for reproduction and growth.

Note: Mainly used in fish, mussel, and oyster ecology.

condition factor
Parameter used to describe growth in fish. It reflects real growth and nutritional status better than simple measurement of body mass.
The condition factor, K, is calculated from the following equation:

$$K = \frac{m}{l^3}$$

with mass, m and length l of the fish. The usual units are g cm$^{-3}$.

condition index
Any quantitative measure of the condition in relation to a defined baseline.

Note: In mussels, various shell indexes (volume/length, mass/length), glycogen concentration (w/bw), or relative organ mass are used.

congeners
1. (in chemistry) One of two or more substances related to each other by origin, structure, or function.
2. (in ecology) One of two or more species within the same genus.

Note: Congeners in the same ecoregion can compete with one another leading to adaptations (microevolution) mitigating pressure on populations.

3. (in genetics) One of two or more organisms that have almost identical genomes.

Note: Recombinant congenic mice strains are constructed to study various diseases.
conservation biology
Science applied to the conservation of genes, populations, species, and ecosystems.

Note: This science is concerned with the phenomena that affect the maintenance, loss, and restoration of biological diversity.

conservation ecology
Science of analyzing and protecting the Earth’s biological diversity.

Note: Conservation ecology is based on the biological, physical, and social sciences, economics, and the practice of natural-resource management. It concentrates on population dynamics issues associated with the small population sizes of rare species (e.g., minimum viable populations).

contaminant
1. Minor impurity present in a substance.
2. Extraneous material inadvertently added to a sample prior to or during chemical or biological analysis.
3. In some contexts, as in relation to gas cleaning equipment, used as a synonym for “pollutant”, especially on a small scale.
4. Unintended component in food that may pose a hazard to the consumer.
5. Any undesirable solid, liquid, or gaseous matter occurring, as a result of human activities, in a solid, liquid, or gaseous environmental medium, even without adverse effects being observed.
See pollutant.
After [1]

contamination
1. Presence of a contaminant.
2. Process whereby a contaminant reaches the environmental medium or sample affected.

continuous effect
Change that can be measured on a continuum from zero (or even a negative value) to positive values such as growth and reproduction.
See quantal effect.

continuous flow test
See flow-through test.

control
Treatment in a toxicity test that duplicates all the conditions of the exposure treatments but contains no test material, in order to determine the absence of toxicity under basic test conditions (e.g., health of test organisms, quality of dilution water).

convection (as applied to air and water motion)
Predominantly vertical motion of air or of water, induced by the expansion of the air or of water heated by the Earth’s surface, or by human activity, and its resulting buoyancy.
[1]
cooxidation
Cometabolism whereby growing microorganisms oxidize a compound without using either carbon or energy derived from the oxidation of that compound.

copepod
Minute marine or freshwater crustacean, usually having six pairs of limbs on the thorax; some are abundant in plankton and others are parasitic on fish, marine mammals, and macro-invertebrates.

corrosion
Process causing a surface-destructive effect on contact; in *toxicology*, this normally means causing visible destruction of the skin, eyes, or the lining of the respiratory tract or the gastrointestinal tract.

After [1]

corrosive
1. n. Substance having the capability or tendency to cause slow destruction.
2. adj. Gradually destructive; steadily harmful.

cost–benefit analysis (CBA)
Procedure for determining the relationship of the expected benefits of a proposed action to the expected costs in order to decide whether the action provides the best option for the investment of limited resources.

Compare *cost-effectiveness analysis*.

cost-effectiveness analysis
Procedure for determining whether the expected beneficial effects of a defined course of action justify the cost when selecting among competing options for the use of limited resources.

Note: Mainly used for comparing the relative value of various clinical strategies.

Compare *cost–benefit analysis*.

cotolerance
See *cross-resistance*.

cough (in fish)
gill purge
Abrupt, periodic reversal of water flow over the gills that dislodges and eliminates excess mucus from the gills’ surfaces.

critical body residue (CBR)
Whole-body concentration of a chemical that is associated with a given adverse biological response.

Note: This assumes each organism is a single compartment, rather than multiple compartments as in reality. It has utility as a first approximation of *dose*.

After [5]
critical life-stage testing
Toxicity testing focused on the species life stage thought to be the most sensitive to the toxicant, such as newly hatched individuals.

criterion (for effect)
See endpoint.

cross-resistance
Condition in which enhanced tolerance to one toxicant also enhances tolerance to another.

culture
1. n. Stock of healthy cells, tissue, microorganisms, or plants raised under well-defined and controlled conditions.
2. v. To maintain a stock of healthy organisms under well-defined and controlled conditions.

cumulative dose
Total dose resulting from repeated exposures or continuous exposure over a defined time to a substance or to radiation.

cumulative exposure
Total exposure resulting from repeated and continuous exposure over a defined time to a substance or to radiation.

cytochrome P450 (CYP)
Member of a superfamily of heme-containing monooxygenases involved in xenobiotic metabolism, cholesterol biosynthesis, and steroidogenesis, in eukaryotic organisms found mainly in the endoplasmic reticulum and inner mitochondrial membrane of cells.

Note: “P450” refers to the observation that a solution of this enzyme exposed to carbon monoxide strongly absorbs light at a wavelength of 450 nm compared with the unexposed solution (a difference spectrum caused by a thiolate in the axial position of the heme opposite to the carbon monoxide ligand).

[1]

damage
See harm.

Daphnia
Small, mostly planktonic, crustaceans, between 0.2 and 5 mm in length.

Note 1: Daphnia are members of the order Cladocera, and are one of the several small aquatic crustaceans commonly called water fleas because of their saltatory swimming style (although fleas are insects and thus only very distantly related). Daphnia spp. live in various aquatic environments ranging from acidic swamps to freshwater lakes, ponds, streams, and rivers.
Note 2: Toxicity tests on Daphnia are required by most regulatory authorities. The results are often interpreted as applicable by extrapolation to the protection of all crustaceans.

Darwinian fitness
See fitness.

dead-end metabolite
Substance formed by a microbe’s metabolism of a substrate (most often during cometabolism) that cannot be further metabolized by that organism.

Note: Dead-end metabolites may be further metabolized by coexisting organisms.

death (in population ecology)
In assessing population ecology, death of an individual is loss of the ability to reproduce.

death (biological)
Irreversible cessation of all vital functions of an organism.

death rate
Number of deaths D in a closed population of size N during a specified time interval, Δt. The rate is calculated from the formula

$$D = -\frac{\Delta N}{\Delta t}$$

where ΔN is the change in number of deaths over a specified time period.
See also per capita death rate.

dechlorinated water
Chlorinated water (usually municipal drinking water) that has been treated to remove chlorine and chlorinated compounds from solution.

decomposer
Organism that breaks down dead matter or wastes of other organisms.

defoliants
Substance used for removal of leaves by its toxic action on living plants.
[1]

degradation
breakdown
decomposition
Process by which a substance is broken down to simpler structures through biological or abiotic mechanisms.
See biodegradation, mineralization.
demographic stochasticity
Variability in population growth rates arising from random differences among individuals in survival and reproduction within a season.

Note: Such variability is important only in populations that are fairly small.

demography
Study of populations, especially their age structure and growth rates.

denitrification
Reduction of nitrates to nitrites, nitrogen oxides, or dinitrogen (N$_2$) catalyzed by facultative aerobic soil bacteria under anaerobic conditions.

[1]

density dependence (in population biology)
Variation in characteristics of individuals or of a population produced by changes in the density of the population.

Note: Density dependence may be seen in mortality rate, birth rate, fitness, sensitivity to environmental toxins, transmission of pathogens, and parasites, etc.

deposit feeder
Animal that feeds on particles of matter in the soil or sediment, usually the top soil or sediment where it is filled with organic matter. Feeding takes place either by ingesting soil or sediment or by trapping particles as they fall.

Note: Examples of organisms that are deposit feeders are earthworms, terebellids, and fiddler crabs.

deposition
See atmospheric deposition, dry deposition, wet deposition.

depuration
Loss of a substance from an organism owing to elimination and degradation.

Note: The rate of depuration is expressed by its half life or the time needed to eliminate 50% of the substance in a noncontaminated medium. This term is often referred to as the depuration time (DT$_{50}$).

derived characteristic
Predicted property of a substance that is dependent upon, or is an approximation of, a fundamental property and the prevailing environmental conditions.

desiccant
Drying agent.
detergent
Cleaning or wetting agent which possesses both polar and nonpolar terminals or surfaces allowing interaction with nonpolar molecules and making them miscible with a polar solvent.
See also surfactant.

deterministic (in toxicology)
Term applied to effects, of which the extent varies with the dose and for which a threshold is believed to exist.
After [1]
See also stochastic.

deterministic analysis
Detailed study in which all population and environmental parameters are assumed to be constant and accurately specified.

deterministic model
Mathematical model that is fully specified and does not include a stochastic component.

detritus
Organic debris from decomposing plants and animals.

detrivorous
Describing an organism that survives by eating detritus.

developmental reference dose (RfD_d)
Reference dose determined for developmental consequences of a single, maternal exposure during development.

developmental stability
Potential of an organism to develop into a consistent phenotype in an environment.

diatom
Member of a major group of eukaryotic algae, among the most common types of phytoplankton. Unicellular, some form chains or simple colonies. Diatom cells are encased in a frustule, of widely diverse form, made of silica (hydrated silicon dioxide).

diffuse source
Release into the environment from multiple sources covering a wide area as opposed to point source.

diffusion
Spreading or scattering of a gaseous or liquid material. Eddy diffusion in the atmosphere is the process of transport of gases due to turbulent mixing in the presence of a composition gradient. Molecular diffusion is the net transport of molecules that results from their molecular motions alone in the absence of turbulent mixing; it occurs when the concentration gradient of a particular gas, liquid, or solid in a mixture differs locally from its equilibrium value. Eddy diffusion is the most important mixing process.
in the lower atmosphere, while molecular diffusion becomes significant at the lower pressures of the upper atmosphere.

[3]

diluent
See dilution water.

dilution “paradigm”
Belief that pollution is alleviated by dilution.

Note: Sometimes stated as “The solution to pollution is dilution.”

dilution water
diluent
Water used to dilute the test material in an aquatic toxicity test in order to prepare either different concentrations of a test chemical or different percentages of an effluent for the various test treatments.

Note: The water (negative) control in a test is prepared with dilution water only.

After [5]

direct ecological effect
Effect where a stressor acts immediately on an ecological component of interest and not through the consequences of effects on other components of the ecosystem.
See also indirect ecological effect.

directional asymmetry
Deviation within a population from a mean of zero for the difference between a trait measured from the right and left sides of bilaterally symmetrical individuals from that population.

Note: For example, measurement of the difference in muscle mass of left and right arms of humans would display directional asymmetry because most humans are right-handed and have larger right arms.

See also antisymmetry, fluctuating asymmetry.

direct photolysis
See photolysis.

direct toxicity
Toxicity that results from, and is readily attributable to, substances acting at the sites of toxic action in and (or) on the exposed organisms that are exhibiting the adverse biological response in question.
After [5]

discharge
Release of any waste into the environment from a point source.

Note: Usually applied to release of liquid waste into water but may be applied to release to air.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
See also effluent, emission.
[1]

discrimination ratio (or factor)
Ratio measuring the degree of isotopic discrimination, with a ratio of 1 indicating no discrimination.

Note: In the context of discrimination between elements such as cesium and potassium in a trophic exchange, a discrimination factor or ratio is expressed as $[\text{Cs}]_{\text{food}}/[\text{K}]_{\text{food}}$ divided by $[\text{Cs}]_{\text{body}}/[\text{K}]_{\text{body}}$.

See isotopic discrimination.

dispersant
Substance used to disperse liquid spills, e.g., oil spills in water.
See also surfactant.

dispersion (in environmental chemistry)
Spreading and resultant dilution of a pollutant in a fluid medium (e.g., air or water) due to diffusion or turbulence.
After [1]

dissolved organic carbon (DOC)
Amount concentration of carbon found dissolved in water samples from aquatic systems, measured as total elemental carbon.

Note 1: The “dissolved” fraction of organic carbon is an operational classification. Operationally, DOC is defined as the organic matter that is able to pass through a defined filter (filters generally range in size between 0.7 and 0.22 µm). Conversely, particulate organic carbon (POC) in water is that carbon that is too large and is filtered out of a sample.

Note 2: The DOC in marine and freshwater systems is part of the greatest cycled reservoir of organic matter on Earth and consists mostly of humic substances.

Note 3: DOC is important in the transport and bioavailability of pollutants in aquatic systems.

Note 4: Metals may form strong complexes with DOC, increasing metal solubility and concentration in water, while also reducing metal bioavailability.

See also dissolved organic matter (DOM).

dissolved oxygen content (DOC)
Amount concentration of oxygen dissolved in water at a particular temperature and pressure.

Note: This can be a limiting factor on the growth of aquatic populations.

dissolved organic matter (DOM)
Analogous to dissolved organic carbon, but refers to the entire organic pool dissolved in water.
distribution
1. Apportionment of a solute between two phases. The terms “partition” or “extraction” may also be used in this sense where appropriate.
[1]
2. Dispersal of a substance and its derivatives throughout the natural environment or throughout an organism.
[1]
3. Final location(s) of a substance within an organism after dispersal.
[1]
4. (in statistics) Set of numbers and their frequency of occurrence collected from measurements over a statistical population.

distribution constant
See partition ratio.

disturbance (in ecology)
Event that introduces, removes, or redistributes organisms, changing the colonization potential of a given environment.

diversity
Quality of being made of many different elements, forms, kinds, or individuals.

diversity index
Mathematical descriptor of species variation within a community.

Note: All diversity indices are based on the relative abundance of a species, i.e., the sum of all individuals of that species divided by the sum of all individuals in the community of interest.

See Brillouin index, Simpson’s diversity index, Shannon–Wiener diversity index.

Dobson unit
Unit describing the ozone content of the Earth’s atmosphere over a specified area of the Earth’s surface, in increments of the amount of pure ozone at standard temperature and pressure (0 °C, 1 atm), in a volume having the same area and a thickness of 0.01 mm.

Note 1: Atmospheric ozone content is usually measured by the absorption of UV radiation at the Earth’s surface.

Note 2: The Dobson unit is sometimes referred to in terms of numbers of molecules. One square centimeter of pure ozone with a thickness of 0.01 mm (volume 10⁻⁹ m³) contains 2.69 × 10¹⁶ molecules at standard temperature and pressure.

dose (of a substance)
Total amount of a substance administered to, taken up, or absorbed by an organism, organ, or tissue.
[1]
dose (of radiation)
Energy or amount of photons absorbed by an irradiated object during a specified exposure time divided by area or volume. [1]

dose–effect
Relation between dose and the magnitude of a measured biological change. [1]

dose–effect curve
Graph of the relation between dose and the magnitude of the biological change produced measured in appropriate units. [1]

dose–effect relationship
Association between dose and the resulting magnitude of a continuously graded change, either in an individual or in a population. [1]

dose–response curve
Graph of the relation between dose and the proportion of individuals in a population responding with a defined biological effect. [1]

dose–response relationship
Association between dose and the incidence of a defined biological effect in an exposed population usually expressed as percentage. [1]

doubling time
Estimated time required for a population of living organisms to double its size; it is estimated from the intrinsic rate of increase, r, as $(\ln 2)/r$.

drainage basin
catchment
catchment area
catchment basin

drainage area
river basin

water basin

watershed
Area of land where water from rain or snow melt drains downhill into a body of water, such as a river, lake, dam, estuary, wetland, sea, or ocean.

Note 1: A drainage basin includes the streams and rivers that convey the water as well as the land surfaces from which water drains into those channels, separated from adjacent basins by a drainage divide.
Note 2: A drainage basin acts like a funnel, collecting all the water within the area covered by the basin and channeling it into a waterway. Each drainage basin is separated topographically from adjacent basins by a ridge, hill, or mountain, which is known as a water divide.

dry deposition
Transfer of chemicals from the atmosphere to the Earth’s surface not involving precipitation (rain, snow, hail, etc.).
See also atmospheric deposition.

dynamic energy budget (DEB) theory
Theory that simple quantitative rules may be applied to define the organization of metabolism of individual organisms.

Note 1: “Dynamic” refers to changes in energy budgets in relation to individual life cycle. The theory includes stoichiometric constraints and mass balance equations, allometric relationships, organizational uncoupling of metabolic modules, strong and weak homeostasis, and partitionability of reserve kinetics.

Note 2: In relation to ecotoxicology, effects of toxicants on energy allocation have been modeled by Kooijman and Bedaux [11].

dynamically fragile community
Community that is stable for only a very limited range of environmental characteristics, e.g., a stable and predictable environment with respect to predator–prey ratios or disturbances caused by humans.

dynamically robust community
Community that is stable within a wide range of conditions, e.g., in very variable and unpredictable environments.

dynamic stability hypothesis
Hypothesis that long food chains are less stable than short food chains.

early life stage (ELS) test
Toxicity test using early life stages such as embryos or larvae based on the observation or assumption that the early life stage is the most sensitive part of the species life cycle.

ecogenetics
Study of the influence of hereditary factors on the response of individuals or populations to environmental factors.

Note: Examples of ecogenetic phenomena are the effects of cytochrome P450 (CYP) polymorphisms on cancer risk, and the mechanisms of development of pesticide resistance in insects and metal tolerance in plants.

After [1]
ecology
Branch of biology that studies the interactions between living organisms and all factors (including other organisms) in their environment. Such interactions encompass environmental factors that determine the distributions of living organisms.

[1]

ecological character
Sum of biological, physical, and chemical components of an ecosystem and their interactions that maintain the ecosystem and its products, functions, and attributes.

ecological energetics
Study of the flow of energy within an ecological system from the time the energy enters the living system until it is irretrievably lost from the system as heat.

Note: It is also referred to as production ecology, because ecologists use the word “production” to describe the process of energy input and storage in ecosystems.

ecological epidemiology
Application of epidemiological methods to determine the cause, incidence, prevalence, and distribution of adverse effects in nonhuman species inhabiting contaminated sites; it is frequently associated with retrospective ecological risk assessment.
See also retroactive risk assessment.

ecological imbalance
Change in any biological, physical, or chemical components of an ecosystem, or in their interactions, which result in change in ecological character and its functions and attributes.
See also species imbalance.

ecological magnification
See biomagnification.

ecological mortality
ecological death
Toxicant-related diminution of fitness of an individual functioning within an ecosystem that is of a magnitude sufficient to be equivalent to somatic death.

Note: This concept implies that an individual organism may be so incapacitated by an environmental change that, though still alive, its contribution to the ecosystem becomes negligible.

ecological parameter
Measurable variable whose value is a determinant of the characteristics of an ecosystem.

ecophysiology
Study of physiology and tolerance limits of species that enhances understanding of their distribution in relation to abiotic conditions.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
ecoregion
bioregion
1. Any of a number of regions into which a continent, country, etc., can be divided according to their distinct environmental conditions and habitat types.
[4]
2. Large area of land or water with a characteristic, geographically distinct assemblage of natural communities and species comprising a recurring pattern of ecosystems associated with characteristic combinations of soil and landform.

Note: The biodiversity of ecosystems in an ecoregion is often distinct from that of other ecoregions.

ecosphere
See biosphere.

ecosystem
Grouping of organisms (microorganisms, plants, animals) interacting together, with and through their physical and chemical environments, to form a functional entity within a defined environment.
[1]

ecotone
Area of gradual transition between two or more ecosystems.
See also edge effect.

ecotoxicology
Study of the toxic effects of chemical and physical agents on all living organisms, especially on populations and communities within defined ecosystems; it includes transfer pathways of these agents and their interactions with the environment.
[1]

ecotoxicologically (environmentally) relevant concentration (ERC)
Concentration of a pesticide (active ingredient, formulations, and relevant metabolites) that is likely to affect a determinable ecological characteristic of an exposed system.
After [12]

ectotherm
See poikilotherm.

edaphic
Pertaining to the soil.

eddy diffusion
See eddy dispersion.
eddy dispersion
eddy diffusion
1. Process by which substances are mixed in the atmosphere or in any fluid system due to eddy motion.

[3]
2. Irregularity in the diffusion of solute molecules which occurs in a porous chromatographic support.

Note: The phenomenon is due to the fact that (a) the path lengths of some solute molecules are either shorter or longer than those of most of the molecules, and (b) the rate of solvent flow varies in different regions of the porous support.

eddy motion
Movement in a current of water or air, that is contrary to the direction of the main current, especially in a circular motion, leading to irregularity in the motion of molecules.

dge effect
Influence of the closeness of contrasting environments on an ecosystem, seen at boundaries between natural habitats, especially forests, and disturbed or developed land.

Note 1: Edge effects lead to changes in species richness and population size at the boundary between two communities, most pronounced in small habitat fragments where they may extend throughout the patch.

Note 2: Ecotones often have species assemblages with high species richness (S) and high abundance of individuals relative to those of the adjacent communities.

effect time (ET)
Time taken for a substance to produce a precisely defined effect.

Note: ET_{50} is the median time it takes for a toxicant to produce a precisely defined effect in 50% of a population.

effective concentration (EC)
Concentration of a substance that causes a defined magnitude of response in a given system after a specified exposure time, e.g., concentration that affects x% of a test population after a given time (EC_x).

Note: EC_{50} is the median concentration that causes 50% of maximal response.

After [1]

effective dose (ED)
Dose of a substance that causes a defined magnitude of response in a given system after a specified exposure time; e.g., dose that affects x% of a test population after a given time (ED_x).

Note: ED_{50} is the median dose that causes 50% of maximal response.

effective half life (k_{eff})
Estimated half life in a compartment model that has numerous elimination mechanisms, each with an associated k. It is equal to $(\ln 2) / \sum k_i$.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
effects assessment
Component of *risk assessment* concerned with quantifying the manner in which the frequency and intensity of effects increase with increasing *exposure* to a contaminant or other source of stress (also known as *dose–response* assessment or *toxicity* assessment).

effluent
Complex waste material (e.g., liquid industrial discharge, solid, or gas) which may be released into the environment.

elasticity (community)
Ability of a *community* to return to its prestressed condition.

elutriate
Aqueous solution obtained after adding water to a solid substance (e.g., *sediment*, tailings, drilling mud, or dredging spoil), shaking the mixture, then centrifuging or filtering it or decanting the supernatant.

Note: An operational definition is water collected from vigorous shaking (15 to 30 min) of one part sediment with four parts water. This mixture is allowed to settle, and the liquid phase is centrifuged and may be filtered.

[12,13]

elutriate test
Test in which a nonbenthic *species*, such as *Daphnia magna*, is exposed to an elutriate produced by mixing test *sediment* with water and then centrifuging the mixture.

Note: The elutriate test was developed for evaluating the potential effects of disposing of dredged material in open water. Analyses of elutriate samples measure the water-soluble constituents potentially released from sediment to the water column during dredge disposal operations.

[13]

elutriation
Process of separating the lighter particles of a powder from the heavier ones by means of an upward directed stream of fluid (gas or liquid).

[3]

emergent properties
New properties emerging with upward steps in hierarchical systems, such as ecological *communities* or *ecosystems*, that cannot be predicted solely from our limited understanding of the system’s parts or components.

Note: Such properties arise during the self-organization of complex systems and are the product of the evolution of these systems.
emission
discharge
effluent
release
Release of a substance from a source, including discharges to the wider environment.
[1]

emission standard
Quantitative limit on the emission or discharge of a substance from a source, usually expressed in terms of a time-weighted average concentration or a ceiling value.
[1]

emulsifier
Chemical substance that aids the fine mixing (in the form of small droplets) with water of an otherwise hydrophobic substance.
See also dispersant.
[1]

endemic
Pertaining to a species found in a discrete geographical unit, such as an island, habitat type, or other defined area or zone.

endemism
Ecological state of being unique to a place.

Note: There are two subcategories of endemism—paleoendemism and neoendemism. Paleoendemism refers to a species that was formerly widespread but is now restricted to a smaller area. Neoendemism refers to a species that has recently arisen, e.g., by hybridization (see hybrid) and is now classified as a separate species. This is a common process in plants especially those that exhibit polyploidy.

endocrine disrupter
docrine modifier
Exogenous chemical that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, its progeny, or (sub) populations.
[1]

endogenous
antonym: exogenous
Produced within or caused by factors within an organism.
[1]

endotherm
“Warm-blooded organism” that regulates its body temperature to be (almost) constant.
endpoint (of toxicity)
Objective of measurement of a toxicity test.

Note: Endpoints vary with the level of biological organization being examined and may include changes in biochemical markers or enzyme activities, mortality or survival, growth, reproduction, primary production, and changes in structure, abundance, and function in a community. Endpoints are used as criteria for toxicity.

endpoint assessment
Quantitative or quantifiable expression of the environmental value considered to be at risk in a risk analysis.

Note: Examples include a 25% or greater reduction in gamefish biomass or local extinction of an avian *species*.

enrichment factor (EFcrust), anthropogenic enrichment factor
Measure of anthropogenic enrichment in defined environmental samples of an element above natural levels. EFcrust, denoted more correctly as $E_f^{(\text{crust})}$, is an element’s concentration (C_{element}) measured in samples divided by the concentration normally expected in the Earth’s crust:

$$E_f^{(\text{crust})} = \frac{C_{\text{element}}}{C_{\text{aluminum}}^{\text{sample}}} \div \frac{C_{\text{element}}}{C_{\text{aluminum}}^{\text{crust}}}$$

In this equation, both air and crustal concentrations are normalized with respect to aluminum concentrations.

Note: Alternatively, normalization with respect to iron may be used. Recent studies have shown that iron may be a better predictor than aluminum for background trace metal levels.

[16]

environmental assessment (EA)
Short, preliminary assessment of potential environmental harm used to determine if a full *environmental impact statement* (EIS) is required.

environmental availability
Portion of the total amount of a substance present in the environment that is involved in a particular process and is subject to physicochemical and biological modifying influences.

See also *environmental bioavailability*.

environmental bioavailability
Ratio of uptake *clearance* to the rate at which an organism encounters a given contaminant in an environmental medium (e.g., *soil*, *sediment*, water, food) being processed by the organism.

Note: This is a measure of an organism’s extraction efficiency, via respiratory, dietary, and surface absorption processes, from the environmentally available (*bioaccessible*) portion of a material.

See also *bioaccessibility*.
environmental epidemiology
Subdiscipline of human epidemiology concerned with diseases caused by chemical or physical agents in the environment.

environmental fate
Destiny of a chemical or biological pollutant after release into the natural environment.

environmental impact assessment (EIA)
Appraisal of the possible environmental consequences of a past, ongoing, or planned action, resulting in the production of an environmental impact statement or “finding of no significant impact” (FONSI).

environmental impact statement (EIS)
Report resulting from an environmental impact assessment.

environmental monitoring
Continuous or repeated measurement of agents in the environment to evaluate environmental exposure and possible damage by comparison with appropriate reference values based on knowledge of the probable relationship between ambient exposure and resultant adverse effects.

Note: Measurements of substance, and (or) biological indicators, and (or) biomarkers may be repeated daily, weekly, monthly, or quarterly. Such measurements are recorded systematically and assessed in relation to location and time for any change in order to determine its possible significance.

After [1]

environmental quality objective (EQO)
Overall state to be aimed for in a particular aspect of the natural environment, for example, “water in an estuary such that shellfish populations survive in good health”.

Note: Unlike an environmental quality standard, the EQO is usually expressed in qualitative and not quantitative terms.

[1]

environmental quality standard (EQS)
ambient standard
Amount concentration or mass concentration of a substance that should not be exceeded in an environmental system, often expressed as a time-weighted average measurement over a defined period. See limit value.

[1]
environmental risk analysis
Determination of the probability of adverse effects on humans and other biota resulting from an environmental hazard (a chemical, physical, or biological agent occurring in or mediated by the environment).

environmental risk assessment
Estimate of the probability that harm will result from a defined exposure to a substance in an environmental medium. The estimate is valid only for a given species and set of conditions. [1]

environmental security
United Nations concept, defined as the relative stability of Earth’s natural ecosystems against human activity, most notably
• global climate change caused by human release of greenhouse gas;
• deforestation caused by so-called “clearing” of lands; or
• soil depletion and desertification caused by intensive monoculture techniques.

environmental transformation
Chemical transformation of a substance resulting from interactions in the environment.

environmentally relevant concentration
See ecotoxicologically relevant concentration.

environmental transport
Movement of contaminants from their point of release through the various compartments to locations where exposure is assumed to occur.

enzootic
Present in a community or among a group of animals; term applied to a disease prevailing continually in a region.

epibenthic
Living on the bed of an aquatic system, normally on sediment.

epifauna
Animals that live on the surface of soil or of the bed of an aquatic system, normally on sediment. See infauna.

epigene/sis n., -tic adj. (in biology)
1. Phenotypic change in an organism brought about by alteration in the expression of genetic information without any change in the DNA genomic sequence.

Note: Common examples include changes in nucleotide base methylation and changes in histone acetylation. Changes of this type may become heritable.

After [1]

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
2. Of, relating to, or produced by the chain of developmental processes in epigenesis that lead from genotype to phenotype after the initial action of the genes.

epigenetic (in geology)
Describing a deposit of later origin than the rocks among which it occurs.

episodic
Discontinuous.

epizootic
Outbreak of disease in a population or in a large number of individuals of a species.

equilibrium
State of a system in which the macroscopic properties of the system become uniform and independent of time. If the temperature is uniform throughout the system, a state of thermal equilibrium has been reached; if the pressure is uniform, a state of hydrostatic equilibrium has been reached; and if the chemical potential of each component is uniform, a state of chemical equilibrium has been reached. If all these quantities become uniform, the system is said to be in a state of complete thermodynamic equilibrium.

Note 1: Complete thermodynamic equilibrium can be expressed in many ways, depending on which variables are of interest. For solubility purposes, the important variables are T, p and the chemical potentials μ_i of the C components. Equilibrium conditions involving these variables may be obtained by the condition that the variation of the Gibbs energy, expressed in terms of T, p and the amount of substance n_i of the C components, is zero, $\delta G(T, p, n_i) = 0$, i.e., the Gibbs energy is a minimum. If the variation is negative, an irreversible change of the system can occur.

Note 2: Solubility equilibrium is an example of a state of complete thermodynamic equilibrium. For example, a saturated solution of a solid in a liquid at a fixed temperature and pressure is in a state of complete thermodynamic equilibrium. If the system is subjected to a small increase in temperature, a small portion of solid will dissolve to restore the equilibrium (if the solubility increases with temperature), while if there is a small decrease in temperature, a small portion of solid will precipitate. This is the basis for determining accurate values of solubility by approaching the equilibrium solubility from both supersaturation and undersaturation directions.

Modified and extended from [1]

equilibrium partitioning (EqP)
Tendency for a substance to achieve the same fugacity (chemical activity) in different compartments of a complex system.

equilibrium partitioning (EqP) approach
Approach to estimating the fate of chemicals in the aquatic environment that is based on equilibrium partitioning.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
Note: The EqP approach is often exploited (primarily for organics), for interpretation and extrapolation purposes, by normalizing chemical concentrations based on the lipid content of the aquatic organisms and the organic carbon content of the sediments. These normalized *biota-sediment accumulation factor* (BSAF) values are considered to be independent of particular sediments and species.

After [5]

essential element
See *essential nutrient*.

essential metal
See *essential nutrient*.

essential nutrient
Substance that is absolutely required for the normal growth and development of a defined organism throughout a complete life cycle.

Note 1: According to criteria of essentiality suggested by Arnon and Stout, a nutrient can be called essential if: (i) its deficiency makes it impossible for an organism to complete its life cycle; (ii) its deficiency is specific to the element in question and can be corrected only by supplying this element; and (iii) the nutrient is directly involved in the organism’s nutrition.

Note 2: It has been suggested that an element should be considered essential if its addition enhances growth or if it can substitute for one of the elements that satisfy the criteria of Arnon and Stout. It has also been suggested that three other elements, which do not satisfy the criteria for many plant species but contribute indirectly to their survival, should be classified as essential. These elements are nickel (urea transformations), cobalt (N₂ fixation), and silicon.

Note 3: Related terms are “essential element” and “essential metal”, which may be given the same definition, simply by substituting “element” or “metal” for nutrient.

Note 4: The term is often used misleadingly since it is meaningless unless accompanied by a statement of which organisms show a requirement for the nutrient.

[16]

estimated environmental concentration (EEC)
See *predicted environmental concentration*.

estuarine
Belonging to an estuary.

estuary
1. (general) Tidal opening, an inlet, or creek through which the tide enters; an arm of the sea indenting the land. Rare in modern use.
2. (specific) Tidal mouth of a great river, where the tide meets the current of freshwater.

[4]

Note 1: An estuary is a semi-enclosed coastal body of water with a free connection to the open sea made up of brackish water, typically the tidal mouth of rivers, often associated with sedimentation of material from terrestrial runoff.

Note 2: An estuary is often associated with a high rate of biological productivity.

etiologic(al) agent
Factor contributing to the cause of a disease.

Euler–Lotka equation
Equation used to estimate the intrinsic rate of increase from life-table data.

eutrophic
1. Describing an environment having a high concentration of nutrients.
 Note: The term is usually used to describe nutrient-rich bodies of water or soil having a high or excessive rate of biological production.

See also oligotrophic.
2. In medicine, tending to promote nutrition.
 After [1]

eutrophication
Process producing a high concentration of nutrient salts and a high or excessive rate of biological production in water.

Note: Usually involves depletion of the oxygen content caused by decay of organic matter resulting from high primary production as a result of enhanced input of nutrients.

[1]

eutrophy
1. State of being eutrophic.
 See also oligotrophy.
2. (in medicine) Good nutrition.

evolution (in biology)
1. Transformation of animals, plants, and other living organisms into different forms by the accumulation of changes over successive generations.
2. Transmutation of species.
3. Origination or transformation of an organism, organ, physiological process, biological molecule, etc., by a series of changes.

Note: The theory of evolution (in general) is the proposition that all living organisms have undergone a process of alteration and diversification from simple primordial forms during the Earth’s history; (in particular) it is a scientific theory proposing a mechanism for this process, now especially that based on Darwin’s theory of the natural selection of genetically inherited and adaptive variation (see neo-Darwinism).

After [4]
evolutionary tree
See cladogram.

evolutionary adaptation
See genetic adaptation.

exchange diffusion
Diffusion across a membrane by means of a carrier molecule that requires no energy and involves the exchange of two ions across the membrane.

exotherm
See poikilotherm.

expected environmental concentration (EEC)
See predicted environmental concentration.

expected life span
Average length of time an organism can be expected to survive, or a substance can be expected to persist.

experimental ecosystem
Manmade construction intended to simulate a natural environment. See mesocosm, microcosm, limnocorral, littoral enclosure.

exploitation competition
Interspecies competition in which species compete for some limiting resource such as food.

exponential decay
Variation of a quantity according to the law
\[A = A_0 e^{-\lambda t} \]
where \(A \) and \(A_0 \) are the values of the quantity being considered at times \(t \) and zero respectively, and \(\lambda = \ln 2/t_{1/2} \), where \(t_{1/2} \) is the half life.

Note: The mathematical relationship is of the same form as that for exponential decay. See growth.

exposure
1. Concentration, amount, or intensity of a particular physical or chemical agent or environmental agent that reaches the target population, organism, organ, tissue, or cell, usually expressed in nu-
1. Numerical terms of concentration, duration, and frequency (for chemical agents and microorganisms) or intensity (for physical agents).
2. Process by which a substance becomes available for absorption by the target population, organism, organ, tissue, or cell, by any route.
3. For X- or γ-radiation in air, the sum of the electrical charges of all the ions of one sign produced when all electrons liberated by photons in a suitably small element of volume of air completely stopped, divided by the mass of the air in the volume element.

exposure assessment
Process of measuring or estimating concentration (or intensity), duration, and frequency of exposures to an agent present in the environment or, if estimating hypothetical exposures, that might arise from the release of a substance, or radionuclide, into the environment.

exposure characterization (in ecological risk assessment)
Description of the presence and characteristics of contact between the contaminant and the ecological entity of concern, and a summary of this information in an exposure profile.

exposure pathway
Route by which an individual is exposed to a contaminant, including the source and point of contact.

exposure profile (in ecology)
Outline of the magnitude and spatio-temporal pattern of exposure developed during the process of ecological risk assessment.

exposure scenario
Model of the likely exposure of selected populations following release of a substance into a natural environment.

extinction probability
1. Probability that a population will eventually become extinct.
2. Probability that a population will become extinct within a specified interval of time.

Note: Very small populations are likely to go extinct just by chance due to demographic stochasticity.

extrapolation
Calculation, based on quantitative observations in exposed test species or in vitro test systems, of predicted dose–effect and dose–response relationships for a substance in the same species at other doses or in humans and other species at similar doses.

Note 1: The term may be applied to predictions of such relationships in susceptible groups from knowledge of a group used for testing.
Note 2: The term may also be used for qualitative information applied to species or conditions that are different from the ones in which the original investigations were carried out.

After [1]

extrapolation factor
Quantity used in effect and exposure assessments to adjust estimated exposures or concentrations/doses for uncertainties, to make corrections in the data, or to improve safety.

facilitated diffusion
Passive diffusion down a gradient, not requiring energy, but occurring at a rate faster than expected by simple diffusion alone.

Note: Facilitated diffusion may involve a membrane channel or a carrier molecule, often a protein. In the latter case, it may be referred to as facilitated transport. Both processes exhibit ligand specificity and saturation kinetics.

facilitated transport
See facilitated diffusion.

fate
Disposition of a material in various environmental compartments (e.g., soil or sediment, water, air, biota) as a result of transport, partitioning, transformation, and degradation.

feasibility study (FS)
Part of a remedial investigation that compares the various options available for remediation and identifies those that are practicable.

fecundation
Impregnation
Process of fertilization.

fecundity
1. Ability to produce offspring within a given period of time.
2. Quantity of reproductive output.

Note 1: The potential reproductive capacity of an organism or population may be measured by the number of gametes (eggs), seed set, or asexual propagules.

Note 2: Fecundity is controlled by both genetic and environmental factors, and is the major determinant of fitness.

After [1]

fecundity selection
Component of the life cycle of an individual in which natural selection can occur, involving the production of more offspring by matings of certain genotype pairs than are produced by other genotype pairs.
fertilization effect
Enhanced growth of plants as a result of exposure to low levels of pollutants such as nitrogen and sulfur oxides in acid precipitation.

fertilizer
Substance applied to soil or hydroponic systems for improving the root nutrition of plants with the aim of increasing crop yields and (or) controlling production.

FETAX
Assay for teratogenicity using embryos of the frog, *Xenopus laevis*. Derived from the first letters of “frog embryo teratogenesis assay Xenopus”.

filter feeder
See suspension feeder.

final acute value (FAV)
Estimate of the concentration of a substance corresponding to a cumulative probability of 0.05 in the acute toxicity values for all species for which acceptable acute tests have been conducted on the material.

After [5]

final chronic value (FCV)
Estimate of the concentration of a substance corresponding to a cumulative probability of 0.05 in the chronic toxicity values for all genera for which acceptable chronic tests have been conducted on the material.

Note: The FCV can also be calculated by dividing the final acute value (FAV) by the final acute-to-chronic toxicity ratio (ACR).

After [5]

finding of no significant impact (FONSI)
Statement of no significant impact of a major federal action concluded after an environmental assessment (EA).

finite rate of increase
Rate of increase of population size measured over set intervals, such as between age classes of a life table or generations of a population with nonoverlapping generations, e.g., an annual plant.

fish acute toxicity syndromes (FATS)
Behavioral, physiological, and biochemical responses of fish used to classify chemicals by mode of action.
[5]

fitness (in ecology)
Capability of an individual to reproduce successfully, i.e., to transfer genes to the next generation.
Note 1: If differences in individual genotypes affect fitness, then the frequencies of genotypes increasing fitness will increase over generations due to natural selection.

Note 2: Darwinian fitness is the lifetime reproductive success of an organism or genotype, indexed by the average number of offspring that it produces, relative to other organisms or genotypes, and hence the relative number of copies of its genes that it passes on to future generations.

Note 3: Absolute fitness \(W_{\text{abs}} \) (of a genotype) is the ratio between the number of individuals with that genotype after selection to those before selection, calculated for a single generation from absolute numbers or from frequencies.
\[
W_{\text{abs}} = \frac{N_{\text{after}}}{N_{\text{before}}}
\]
If \(W_{\text{abs}} > 1.0 \), the genotype frequency increases. If \(W_{\text{abs}} < 1.0 \), its frequency decreases.

Note 4: Relative fitness is the fitness of individuals with a genotype (a) relative to fitness of individuals with competing genotypes (b, etc).
\[
W_{\text{rel}}(a) = \frac{W_{\text{abs}}(a)}{W_{\text{abs}}(b)}
\]
Relative fitness can therefore take any non-negative value including 0.

Note 5: Inclusive fitness is the degree of adaptation of an organism to its environment, estimated from the number of genes belonging to its genotype that are passed on to the next generation, relative to those of other genotypes, counting both genes that it passes on directly and those that it shares with close relatives and passed on by them.

[18]

fitness advantage
Increased relative fitness of a resistant genotype in a polluted environment compared to a nonresistant genotype.

fitness cost
Reduced relative fitness of a resistant genotype in an unpolluted environment compared to a nonresistant genotype.
See fitness.

flocculation
Formation of a light, loose precipitate (i.e., a floc) from a solution.

Flory–Huggins theory
Thermodynamic theory of polymer solutions in which the thermodynamic quantities of the solution are derived from entropy of mixing and a reduced Gibbs energy parameter.

Note: In environmental toxicology, the theory predicts nonideal behavior resulting in a nonlinear relationship between \(K_{\text{ow}} \) and lipophilicity for very lipophilic compounds. This explains the nonlinear relationship between \(K_{\text{ow}} \) and bioconcentration factor (BCF).

flow-through system
Exposure system for aquatic toxicity tests in which the test material solutions and control water flow into and out of test chambers on a once-through basis either intermittently or continuously.

[4]

flow-through test
Aquatic toxicity test performed in a flow-through system.

fluctuating asymmetry
Deviation from perfect bilateral symmetry for a population of a bilaterally symmetrical species that is thought to reflect developmental instability.

Note: A trait is measured from the right and left sides of each individual, and the variance in the difference (right–left) for the population is a measure of fluctuating asymmetry.

See also antisymmetry, directional asymmetry.

fluid feeder
Organism that feeds on the fluids of other animals or of plants.

Note: Examples of fluid feeders include: aphids, ticks, mosquitoes, leeches, and hummingbirds.

food chain
Hierarchical sequence of transfer of substances from prey organism to predator organism.

Note: Interconnected food chains combine to form a food web in which most organisms consume or are consumed by more than one other type of organism.

food-mass feeder
Animal that feeds on the body parts of other animals.

Note: Examples of food-mass feeders are carnivores (feed on meat), piscivores (feed on fish), insectivores (feed on insects), ophiophagous species (feed on snakes).

fossil
Mineralized or otherwise preserved remnant or trace (such as a footprint) of an animal, plant, and other organism.

free ion activity model (FIAM)
Model for acute metal toxicity to aquatic organisms based on the idea that toxicity occurs when the concentration of the free metal cation in solution reaches a certain level. This model has been developed into the biotic ligand model.

Freundlich adsorption isotherm
Empirical equation that describes the adsorption of a contaminant to soil. The equation is

\[\frac{x}{m} = (K_f C_e) \exp(1/n) \]
where \(x/m \) is the mass ratio of concentrations of adsorbed substance at equilibrium divided by the concentration of the contaminant in soil, \(C_e \) is the contaminant concentration in the aqueous phase at equilibrium, \(K_f \) is the equilibrium constant (the Freundlich adsorption constant), and \(ln \) is a contaminant-specific exponent.

fugacity, \(f, \tilde{p} \)
1. Of a substance \(B \), \(f_B \) or \(\tilde{p}_B \) in a gaseous mixture is defined by
 \[
 f_B = \lambda_B \lim_{p \to 0} \left(p_B / \lambda_B \right)
 \]
 where \(p_B \) is the partial pressure of \(B \) and \(\lambda_B \) its absolute activity. [3]
2. The tendency for a substance to equilibrate across a phase boundary, and thus analogous to the chemical potential.

fulvic acid
Humic substance that is soluble at all pHs.

Note: Most of the humic substance in natural water is fulvic acid. [5]

functional redundancy
Apparentely unaltered maintenance of *community* function despite changes in structure.

functional response
Change in some predator function, such as prey consumption rate, in response to changes in prey density.

fundamental niche
Environmental conditions under which a *species* can thrive.
See *Hutchinsonian niche, niche*.

Gaia hypothesis
Hypothesis proposed by James Lovelock that the Earth’s temperature, albedo, and surface chemistry are homeostatically regulated by the sum of all the biota of the Earth.

gametic selection
Natural selection resulting from differential success of gametes produced by heterozygotes.

gastrointestinal excretion
Excretion through the intestinal mucosa by active or passive processes.

Note 1: This may involve loss by normal cell sloughing of the intestine wall.

Note 2: Some chemical *species* of metallic elements such as cadmium and mercury can experience significant levels of gastrointestinal excretion.

general adaptation syndrome (GAS)
Specific syndrome associated with Selyean stress composed of three phases: the alarm reaction, adaptation or resistance, and exhaustion; adaptation in all phases of the GAS results in restoration of homeostasis or reduced deviation from homeostasis.
See also *Selyean stress*.

generation time
Average length of time between the birth of parents and the birth of offspring.

genetic adaptation
Result of random genetic variation due to mutation and (or) to changes in allele frequencies, causing variation in the survival and reproductive success of individuals and hence of groups of organisms, with the consequence that those best adjusted to their environment flourish.

Note: This process underlies the concept of *natural selection* leading to Darwinian evolution.

genetic drift
Evolutionary process of change in the allele frequencies in a *population* due to random changes in the frequency by which different alleles are transferred to the next generation.

Note: In small populations, genetic drift may result in extinction of some alleles leading to evolutionary change over time.

genetic equilibrium
See *Hardy–Weinberg equilibrium*.

genetic hitchhiking
Situation in which a scored locus is acting only as a marker for a closely linked gene that is actually responsible for the difference in tolerance among *genotypes*. More generally, it is the condition “in which a given allele changes in frequency as a result of linkage or gametic phase disequilibrium with another selected locus”.

[19].

genetic risk
Risk to the progeny of an exposed individual of an adverse effect associated with heritable genetic damage, e.g., damage to germ cells leading to a nonviable fetus or an offspring with a birth defect.

genotype n.
1. Type-species of a genus.
2. Genetic constitution of an organism, especially as distinguished from its *phenotype*.
3. All of the genes present in an organism or *species*.
4. Specific alleles present at a given locus.

genotype v.
Establish the genotype.
genus, pl. -era
Low-level taxonomic rank used in the classification of living and fossil organisms.

Note: Like almost all other taxonomic units, genera may sometimes be divided into subgenera, singular: subgenus. The largest main taxonomic unit below the genus is the species.

geographic information system (GIS)
Computerized system to handle spatial data at a reasonable cost; most allow one to archive, organize, integrate, statistically analyze, and display many kinds of spatial information using a common coordinate system.

gill purge
See cough.

global distillation
Process by which persistent and relatively volatile organochlorine compounds are distilled from warmer regions of use to cooler regions of the globe.

global fractionation
Process by which some persistent organic pollutants (POPs) move more rapidly than others toward the polar regions. Because POPs differ in their individual rates of degradation, vapor pressure, and lipophilicity, a fractionation occurs. The net result is a redistribution of the different POPs from the equator or site of origin toward the cold polar regions of the Earth.

global warming
Heating up of the Earth’s climate thought to result from the increased atmospheric carbon dioxide (CO₂) concentrations from fossil fuel burning, release of other greenhouse gases, and the worldwide destruction of forests.
See greenhouse effect.

good laboratory practice (GLP) principles
Fundamental rules incorporated in Organization for Economic Cooperation and Development (OECD) guidelines and national regulations concerned with the process of effective organization and the conditions under which laboratory studies are properly planned, performed, monitored, recorded, and reported.
[1]

graded effect
antonyms: all-or-none effect, quantal effect, stochastic effect
Consequence that can be measured on a graded scale of intensity or severity and its magnitude related directly to the dose or concentration of the substance producing it.
[1]
grasshopper effect
Global distillation of persistent organic pollutants (POPs) involving seasonal cycling of temperatures such that movement toward the higher latitudes occurs in annual pulses.

greenhouse effect
The net warming of the Earth resulting from increasing atmospheric concentrations of carbon dioxide (CO₂), water vapor, and other greenhouse gases.

Note: Gases and vapors such as CO₂ and water vapor are relatively transparent to light but absorb long-wave, infrared radiation radiating back from the Earth’s surface. The net balance for sunlight influx, infrared radiation absorption by greenhouse gases, and infrared efflux from the Earth’s surface determines the steady-state temperature of the Earth.

greenhouse gases
Atmospheric gases that are relatively transparent to sunlight entering the atmosphere but absorb infrared radiation generated at the Earth’s surface. They include water vapor, carbon dioxide (CO₂), methane, dinitrogen oxide (nitrous oxide), chlorofluorocarbons (CFCs), chloroethane (methylchloroform), carbon tetrachloride, and the fire retardant, halon. Ozone in the troposphere can also act as a greenhouse gas.

growth
Increase in size.
See also exponential growth, intrinsic rate of growth, logistic growth.

growth dilution
Decrease in contaminant concentration in a growing organism because the amount of tissue in which the contaminant is distributed is increasing.

guild (ecological)
Group of functionally similar species whose members interact strongly with one another but weakly with the remainder of the community.

[20]

Haber–Weiss reaction
The Haber–Weiss cycle consists of the following two reactions:
1. \(\text{H}_2\text{O}_2 + \text{OH}^* \rightarrow \text{H}_2\text{O} + \text{O}_2^- + \text{H}^+ \)
2. \(\text{H}_2\text{O}_2 + \text{O}_2^- \rightarrow \text{O}_2 + \text{OH}^- + \text{OH}^* \)

The second reaction achieved notoriety as a possible source of hydroxyl radicals. However, it has a negligible rate constant. It is believed that iron(III) complexes can catalyze this reaction: first, Fe^{III} is reduced by superoxide, followed by oxidation by dihydrogen peroxide.

Note: This reaction may be important as a source of oxidative stress in cells and tissues.

[3]
habitat

1. Spatial area (geographical area) where a particular *species population* lives, large enough to comprise a breeding population.

 Note: A microhabitat or microenvironment is the immediate surroundings and other physical factors of an individual plant or animal within its *habitat*.

2. Physical conditions that surround a species, or species population, or assemblage of species, or community.

half life, \(t_{1/2} \)

Half time

Time required for the *concentration* of a reactant in a given reaction to reach a value that is the arithmetic mean of its initial and final (equilibrium) values. For a reactant that is entirely consumed, it is the time taken for the reactant concentration to fall to one-half of its initial value.

Note: The half life of a reaction has meaning only in special cases:

1. For a first-order reaction, the half life of the reactant may be called the half life of the reaction.
2. For a reaction involving more than one reactant, with the *concentrations* of the reactants in their stoichiometric ratios, the half life of each reactant is the same, and may be called the half life of the reaction. If the concentrations of reactants are not in their stoichiometric ratios, there are different half lives for different reactants, and one cannot speak of the half life of the reaction.

See also *biological half life, elimination half life.*

[1]

hard acid

Lewis acid with an acceptor center of low polarizability.

Note: Other things being approximately equal, complexes of hard acids and bases or soft acids and bases have an added stabilization (sometimes called the “HSAB” rule). For example, the hard O- (or N-) bases are preferred to their S- (or P-) analogs by hard acids. Conversely, a soft acid possesses an acceptor center of high polarizability and exhibits the reverse preference for coordination of a soft base. These preferences are not defined in a quantitative sense.

See also *class a metal ion, class b metal ion.*

[3]

hardness

Concentration of all metallic cations, except those of the alkali metals, present in water.

Note: In general, the concentration of calcium and magnesium ions in water, frequently expressed as mg l\(^{-1}\) calcium carbonate or equivalent, is used as a measure of hardness.

hard water

Water that contains mineral salts of divalent cations, commonly calcium and magnesium and sometimes iron(II) (ferrous) ions, principally as hydrogen carbonates, chlorides, and sulfates.
Note: Hardness caused by calcium hydrogencarbonate is known as temporary, because boiling converts the hydrogencarbonate to calcium carbonate (CaCO$_3$), which has a very low solubility; hardness from the other salts is called permanent.

Hardy–Weinberg equilibrium (genetic equilibrium)
State of a population if the frequencies of different alleles of all genes in the genome remain constant between generations.

Note 1: The Hardy–Weinberg equilibrium requires the following conditions: (1) the population is large (“infinite”), (2) mating is random, (3) there is no selection, (4) the net mutation rate is zero, and (5) there is no migration.

Note 2: The Hardy–Weinberg equilibrium is a very rare situation in natural populations. Deviation from the Hardy–Weinberg equilibrium is the basis for microevolution.

harm
Adverse effect to an ecosystem, community, population, species, individual organism, organ, tissue, or cell.
After [1]

hazard
Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. See also risk.
[1]

hazard assessment
Determination of factors controlling the likely effects of a hazard such as the dose–effect and dose–response relationships, variations in target susceptibility, bioaccumulation potential, persistence, and mechanism of toxicity.
[1]

hazard evaluation
Identification and assessment of the potential adverse effects that could result from manufacture, use, and disposal of a material in a specified quantity and manner.

hazard identification
Determination of substances of concern, their adverse effects, target populations, and conditions of exposure, taking into account toxicity data and knowledge of effects on human health, other organisms, and their environment.
[1]

hazard index (HI)
Sum of the hazard quotients for substances that affect the same target organ or organ system.

Note: Ideally, hazard quotients should be combined for pollutants that cause adverse effects by the same mechanism. Aggregate exposures below an HI of 1.0 are unlikely to result

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
in adverse health effects over a lifetime of exposure. An HI greater than 1.0 does not necessarily suggest a likelihood of adverse effects. The HI cannot be translated to a probability that adverse effects will occur, and is not likely to be proportional to risk.

[1]

hazard quotient (HQ)
Ratio of *toxicant exposure* (estimated or measured) to a reference value regarded as corresponding to a threshold of *toxicity*; often this is determined as the *predicted environmental concentration* (PEC) divided by the *predicted no-effect concentration* (PNEC).

Note: If the hazard quotient exceeds unity, the toxicant may produce an adverse effect, but normally this will require an HQ of several times unity; an HQ of less than one indicates that no adverse effects are likely over a lifetime of exposure.

After [1]

hazardous concentration (HC _p, HCS)
Concentration of a substance producing a defined effect on <i>p</i> % (usually 5 %) of *species* of concern, derived by means of a statistical extrapolation procedure.
See also *species sensitivity distribution*.[21]

heat shock proteins (HSPs)
Group of proteins transcriptionally activated by hyperthermia, mainly acting as chaperones.
See *stress proteins*.

heavy metal
Term used commonly but erroneously when referring to metal *toxicity*.

Note: The term is deprecated as it has no generally agreed meaning and sometimes is even applied to nonmetals. It is a source of confusion to be avoided. The term “metal” is often adequate.

After [1]

Henry’s law
Fugacity (\(f_B\)) of a *solute* (B) in a *solution* is directly proportional to the activity (\(a_B\)) of the solute

\[
f_B = a_{x,B} p^{\theta} K_{x,B} = \gamma_{x,B} x_B^{k_H,B}
\]

where \(K_{x,B}\) is the solubility coefficient for infinite dilution, i.e., for pure solvent, \(\gamma_{x,B}\) is the activity coefficient (referenced to Henry’s law, mole fraction basis), \(x_B\) is the equilibrium mole fraction of dissolved gas, and \(k_{H,B}\) is the *Henry’s law constant*.

Note 1: Obsolete terminology (rational activity, chemical activity) from [3] has been updated.

Note 2: While the above definition is based on the 1984 Recommendations in the “Gold Book” [3], Henry’s law is more frequently stated as the vapor pressure of a dissolved substance is proportional to its mole fraction in an ideal solution, with the above equation related directly to the definition of Henry’s law constant.
Note 3: Henry’s law is used often as a limiting law for converting solubility data from the experimental pressure to standard partial pressure, provided the mole fraction of the gas in the liquid is small and the difference in pressures is small.

After [22,23].

Henry’s law constant, \(k_H \)
Henry coefficient
Henry’s law coefficient
Henry constant
For a gas B, where \(f_B \) is the fugacity of B

\[
k_{H,B} = \lim_{x_B \to 0} \left(\frac{f_B}{x_B} \right) = \left(\frac{\partial f_B}{\partial x_B} \right)_{x_B=0}
\]

where \(f_B \) is the fugacity of B.

Note 1: Henry’s law is sometimes expressed in terms of molalities or concentration and then the corresponding units of Henry’s law constant are Pa kg mol\(^{-1}\) or Pa m\(^3\) mol\(^{-1}\), respectively.

Note 2: Henry’s law constant is sometimes given as the reciprocal of the forms defined above, so its exact definition must always be given. It is recommended to use the definition above, and to refer to its reciprocal as a solubility constant.

See Henry’s law.

[22,23].

hermaphrodite
Organism having both male and female characteristics.

Note: If such an organism produces both sperm and eggs, it can function both as male and female in sexual reproduction.

heterosis
See heterozygote advantage.

heterotherm n., -al, -ic adj.
Animal that partially regulates body temperature, sometimes maintaining its body temperature at a certain level, e.g., when active, but at other times allowing it to fluctuate with the environment.

heterotroph
Organism obtaining organic food by eating other organisms or their excreta.

Note: Animals, fungi, and most bacteria are heterotrophs.

heterotrophic succession
Temporal sequential appearance of different heterotrophic species at a location, most often decomposer organisms.
See succession.
heterozygote advantage
heterosis
Greater *Darwinian fitness* (reproductive output) from heterozygous than from homozygous individuals of a species. This tends to preserve variation in the *population* gene pool.

homeostasis
Totality of processes occurring in an open system or a closed system, especially a living organism, enabling it to regulate its internal environment to maintain stable, constant conditions or the outcome of these processes.

hor/eme/sis n., -tic adj.
Unexpected and unexplained but favorable biological response to low-level *exposure* to a substance or physical agent generally considered to be harmful.

humic substances
Nonvolatile organic anionic polyelectrolytes, of biological origin, in the molecular mass range 500–5000, which have complex structures and are variable in composition.

Note: Humic substances occur naturally as deposits on *sediment* and *soil* particles and constitute 30–50 % of the *dissolved organic carbon* (DOC) in natural waters. Humic substances are classified according to solubility and may contain humic acid, *fulvic acid*, and humin.

After [4]

Hutchinsonian niche
Intersection of ranges of tolerances for sets of resources utilized by organisms, represented mathematically by a multidimensional hypervolume whose dimensions correspond to environmental variables. Any *species* is considered unimodally distributed, i.e., confined to a *habitat* in the *niche*.

Note 1: This niche concept is quantifiable and therefore particularly useful to ecologists. Hutchinson’s niche is the most accepted concept of the niche in use today. In practice, it is impossible to identify and quantify all the resources utilized by an organism. Thus, typically the limiting factors receive most attention.

Note 2: Two aspects of the niche can be visualized: A *realized niche* for a species is the sum of niche dimensions unique to that particular species. A *fundamental niche* is the total sum of the species niche dimensions including parts shared with other species and parts unshared.

See *niche*.

hybrid
1. Result of interbreeding between two animals or plants of different *taxa*.

Note: Hybrids between different *species* within the same *genus* are sometimes known as inter-specific hybrids or crosses. Hybrids between different subspecies within a species are known as intra-specific hybrids. Hybrids between different *genera* are sometimes known as intergeneric hybrids.

2. Cross-breed between *populations*, breeds, or cultivars within a single species.

Note: Hybridization is often used in plant and animal breeding to obtain desirable characteristics not found or inconsistently present in the parent individuals or populations [24].

hybridization (in genetics)
Process of combining different varieties or species of organisms to create a hybrid.

hydrosphere
Water above, on, or in the Earth’s crust, including oceans, seas, lakes, groundwater, and atmospheric moisture.

hypoxemia
Deficient oxygenation of the blood.

[1]

hypoxia
1. Abnormally low dioxygen content or tension.
2. Deficiency of dioxygen in the inspired air, in blood, or in tissues.
See **anoxia**.

[1]

hypoxic
Dioxygen-deficient.

[1]

impermeable
Of a membrane, not allowing a given substance to pass through. When applied to nonbiological membranes with no qualification, the term normally refers to passage of water.

imposex
Pseudo-hermaphroditic condition in female gastropods (snails) manifested by the development (imposition) of male characteristics such as a penis or vas deferens.

Note: Quantitation of imposex in the dog whelk (*Nucella lapillus*) is used to monitor pollution by the antifouling agent tributyl tin oxide (TBTO) in marine environments.

incidence
Number of occurrences of a defined effect, or number of organisms showing the defined effect, during a given period in a specific population, usually expressed as a rate.

Note: When expressed as a rate, it is the number of affected organisms divided by the average number of organisms in the specified population during a defined period, or alternatively divided by the estimated number of organisms at the midpoint of that period.
incipient LC$_{50}$
Concentration of a chemical which is lethal to 50 % of the test organisms as a result of exposure for periods long enough for acute lethal action to cease; in other words, the concentration below which 50 % of individuals will have a normal lifespan despite the previous exposure to a toxicant.
See also median lethal concentration.
After [5]

inclusive fitness
See fitness.

incremental unit risk estimate
For an air pollutant, the additional lifetime cancer risk occurring in a hypothetical population in which all individuals are exposed continuously from birth throughout their lifetimes to a concentration of 1 µg m$^{-3}$ of the pollutant in the air they breathe.
[1]

independent joint action
Production of an effect by each toxicant in a given exposure that is independent of the others and occurs by a different mode of action.

index of biological integrity
Composite index combining 12 qualities of fish communities of warm-water, low-gradient streams to determine the level of stream degradation. This index has been modified and widely used in the United States [25].

indicator
1. In biology, an organism, species, or community whose presence shows the presence of defined environmental conditions.

 Note 1: Abundance, yield, and age/weight ratios are indicators of population production.

 Note 2: A low cholinesterase level is an indicator of exposure to cholinesterase-inhibiting pesticides.

2. In chemistry, a substance that shows a visible change, usually of color, at a defined point in a chemical reaction.
3. A device that indicates the result of a measurement, e.g., a pressure gauge or a moveable scale.

indicator species
Species whose presence shows the occurrence of defined environmental conditions.

indigenous
Native to a given region or ecosystem.

 Note 1: The term is applied to a native species to distinguish it from species introduced as a result of human activity.
Note 2: “Indigenous” is not synonymous with “endemic”. In ecology, endemic means exclusively native to the biota of a specific place, whereas an indigenous species may occur in two or more different habitats.

indirect ecological effect
1. Effect resulting from imposed biotic or abiotic factors which alter ecosystem properties that in turn favor or disfavor an ecological component of importance (e.g., a species) and thus indirectly lead to improved or reduced fitness of that species.
2. Result of imposed biotic or abiotic factors allowing indigenous or new species to dominate, thereby affecting ecosystem composition.

indirect photolysis
Degradation of a contaminant through interaction with other molecules in solution that have absorbed light energy. This can occur through energy transfer or by chemical reaction with short-lived reactive species.

Note: Dissolved humic and fulvic acids are good examples of photoactive compounds that can increase the degradation of contaminants through indirect photolysis.

indirect toxicity
Adverse effects that result from agent(s) acting on and producing changes in the chemical, physical, and (or) biological environment external to the organisms under study (e.g., decrease in food for predatory species due to direct toxicity from a chemical to prey may produce adverse effects in the predator species due to starvation rather than inducing any direct chemical toxicity in predator organisms).

[5]

individual
One whole organism.

Note: Individuals have size, shape, and health or condition. They grow, reproduce, and die over time.

individual effective dose (IED)
Concept forming the basis for most dose–response models, which holds that there exists a smallest dose needed to kill any particular individual. The IED is a characteristic of an individual.

industrial ecology
Study of the flows of materials and energy in the industrial environment and the effects of these flows on natural systems.

industrial melanism
Gradual increase to predominance of melanic forms in populations from industrialized regions.

inertia (of a community)
Community’s ability to resist change.
infauna
Animals living in the sediment of aquatic systems but not on the surface.
See also *epifauna*.

inhibitory concentration (IC)
inhibition concentration
Concentration of a substance that causes a defined inhibition of a given system.

Note: IC_{50} is the median concentration that causes 50 % inhibition in a nonlethal biological measurement of the test organisms, such as reproduction or growth.

After [1]

inhibitory dose (ID)
inhibition dose
Dose of a substance that causes a defined inhibition of a given system.

Note: ID_{50} is the median dose that causes 50 % inhibition.

[1]

inhibitory time (IT)
See *median inhibitory time*.

initiating event
Specific action that results in a risk being incurred.

integrated risk information system (IRIS)
USEPA database containing *reference doses*, slope factors, and drinking-water health advisories (one-day, ten-day, longer-term, and lifetime advisories), and associated information.

interference competition
Interspecies competition in which one *species* interferes with another, as might occur with territoriality or aggressive behavior.

internal dose
See *absorbed dose (of a substance)*.

interspecies competition
Interference with or inhibition of one *species* by another.

interspecific competition
Competition by different species for the same (limited) resources.

interspecific interaction
Relations between different *species* in a *community*.
interstitial water
Water in sediment or soil that surrounds the solid particles. The amount of interstitial water is calculated and expressed as the percentage ratio of the mass of water in the sediment to the mass of the wet sediment.

intraspecific competition
Competition by individuals of the same species (population) for the same (limited) resources.

intrinsic rate of growth, \(r \)
\[r = (\text{natality} + \text{immigration}) - (\text{mortality} + \text{emigration}) \]
See growth.

intrinsic (Malthusian) rate of increase
Rate of increase in the size of a population growing under no constraints.
See Malthusian theory.

isobole approach
Approach used to visualize or quantify joint action of chemical mixtures by plotting a graph (isobologram) of equally effective dose pairs (isoboles) for a single effect level. A particular effect level is selected, such as 50 % of the maximum, and doses of drugs A and B (each alone) that give this effect are plotted as axial points in a Cartesian plot. The straight line connecting A and B is the locus of points (dose pairs) that will produce this effect in a simply additive combination. This line of additivity allows a comparison with the actual dose pair that produces this effect level experimentally.
[26]

isotope effect
Effect on the rate or equilibrium constant of two reactions that differ only in the isotopic composition of one or more of their otherwise chemically identical components. It is referred to as a kinetic isotope effect or a thermodynamic (or equilibrium) isotope effect.
[3]

isotopic discrimination
The differential behavior of isotopes occurring if the rate or extent of participation in some biological or chemical process depends significantly on the mass of the isotope. Also called the isotope effect.

iteroparous species
Species that reproduces more than once.

Kamofsky’s law
Any agent will be teratogenic if it is present at concentrations or intensities producing cell toxicity.

Kaplan–Meier method
See product-limit method.
keystone habitat
High-quality *habitat* patch essential to maintaining the vitality of the *metapopulation*.

keystone species
Species, usually a top predator, that influences the ecological *community* by its activity or role, not its numerical dominance.

k-strategy
Equilibrium strategy for *species* involving effective interactions with each other in the *community*, allowing coexistence of many species. Equilibrium species are more effective competitors than opportunist species.

larva
Recently hatched insect, fish, or other organism that has different physical characteristics than those seen in the adult, requiring metamorphosis to reach the adult body structure.

law of frequency
According to this “law”, there are comparatively many rare (low abundance) *species*, and possibly comparatively many common (high abundance) species, but relatively few in the middle (of medium abundance).

Note: Thus, if one collects data on species presence/absence in a set of quadrants, one tends to find a J-shaped pattern in the distribution of species frequencies.

[27]

leach
With reference to a soluble chemical or mineral, drain away from *soil*, ash, or similar material by the action of percolating liquid, especially rainwater.

[4]

leachate
Water or waste-water that has percolated through a column of *soil* or *solid waste* in the environment, carrying with it substances dissolved from the soil or waste.

lentic
Related to standing water *riparian*-wetland areas such as lakes, ponds, seeps, bogs, and meadows.

lentic water
Nonflowing or still inland water; e.g., lakes, ponds.

Leslie matrix
Square matrix used in *population* biology to predict population growth. The top row of the matrix is the fecundity for each age class of mothers, and a subdiagonal is constructed from the number of individuals surviving from age class *x* to *x* + 1. Multiplied by the population vector of the number of female offspring in each age class *x* at time *t*, it predicts the age distribution of the population at the next time step *t* + 1, corresponding to the age class interval *x* + 1.
lethal
Deadly; fatal; causing death.
[1]

lethal body burden (LBB)
Total body uptake of a substance that is associated with mortality in short-term exposures.
[5]

lethal concentration (LC)
Concentration of a substance in an environmental medium that causes death following a certain period of exposure.

Note: LC_{50} is the median concentration that causes death in 50% of the test population.
[1]

lethal dose (LD)
Amount of a substance or physical agent (e.g., radiation) that causes death when taken into the body.

Note: LD_{50} is the median dose that causes death in 50% of the test population.
[1]

lethal time (LT)
Time taken for a defined percentage, usually 50%, of a test population to die.

Note: The median lethal time (MLT) for 50% of the test population is referred to as the MLT_{50}.

See also effect time, median inhibitory time.

lethality
Ability to cause death.

leucism
Condition characterized by reduced pigmentation in animals. Unlike albinism, it is caused by a reduction in any type of pigment, not just melanin.

Note: Leucism is a general term for the phenotype resulting from defects in pigment cell differentiation and (or) migration from the neural crest to skin, hair, or feathers during development. This results in either the entire surface (if all pigment cells fail to develop) or patches of body surface (if only a subset are defective) having a lack of cells capable of making pigment.

See also albinism.

Liebig’s law of the minimum
Observation that a population’s size (number of individuals or biomass) is limited by some essential factor in the environment that is scarce relative to the amount of other essential factors, e.g., phosphorus-limited algal growth in a lake.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
life cycle
Series of stages, from a given point in one generation to the same point in next generation, e.g., egg-larva-adult-egg (hyphenated when used as an adjective, e.g., life-cycle strategy).
See also life-cycle study, life history.

life-cycle study
Comprehensive study to determine the impact of a substance or mixture on the survival, growth, reproduction, development, or other important qualities at all stages of a species life cycle.

life history
Description of life-cycle events through which an organism passes, with particular reference to those events that influence survival and reproduction.

life table (in actuarial science)
Statistical table that follows a hypothetical cohort of 100 000 persons born at the same time as they progress through successive ages, with the cohort reduced from one age to the next according to a set of death rates by age until all persons eventually die.

Note 1: In ecology, fertility for each age class is normally included in the tables.

Note 2: The life table is used mainly to indicate expectation of life at various ages. However, it also provides information on numbers of individuals who survive to various ages, median age at death, age-specific death rates, and the probability of dying at certain ages.

life-table response experiment (LTRE)
Retrospective comparison of two or more populations in which the response variable is a life table or a complete set of stage-specific vital rates.

limit test
Acute toxicity test in which, if no ill effects occur at a preselected maximum dose, no further testing at greater exposure levels is required.

limit value (LV)
Limit concentration at or below which Member States of the European Community must set their environmental quality standard and emission standard for a particular substance according to Community Directives.

limited life-span paradigm
Model based on the assumption that the maximum life span of an individual organism is an inherent, genetically defined property of that organism.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
limnocorral
Artificial enclosures placed in the pelagic region of ponds, lakes, or marine environments. These systems vary in size from as little as 2 l to over 2.5×10^6 l; however, most of these systems have a volume between 1000 and 10^4 l.

Note: These systems may or may not be in contact with the profundal region. Fish are generally excluded from these test systems.

limnology
Study incorporating the study of all aspects of inland freshwater habitats including lakes, ponds, rivers, streams, swamps, wetlands, groundwaters, and reservoirs that make up inland water systems

linear free energy relationship (LFER)
An empirical relationship in which numerical parameters are associated with small perturbations in a parent molecule and are subsequently correlated with the change in the Gibbs energy of a certain reaction of the parent molecule vs. the perturbed molecules.

Note: A classical example is the well-known Hammett equation, in which sigma (σ) values are constructed for specific substituents on a benzoic acid parent molecule. The linear correlation is then between the (summed) sigma values for a set of compounds and the pK_a (free energy of acid dissociation) of those compounds.

linear solvation energy relationship (LSER)
Class of quantitative structure–activity relationships based on molecular volume, ability to form hydrogen bonds, and polarity or ability to become polarized.

Litchfield method
Simple, semigraphical method for analyzing survival time data and estimating LT_{50} values.

Litchfield–Wilcoxon method
Semigraphical method for estimating a median lethal concentration (LC_{50}), median lethal dose (LD_{50}), or median effective concentration (EC_{50}). Although very easy to perform, it is the most subjective method for such estimations because it involves fitting a line to data by eye.

littoral
1. Belonging to the shore of a lake, river, pond, or especially the sea.
2. Intertidal zone, sometimes referring specifically to the shallow well-lit region along the shore.

littoral enclosures
Isolated shore regions of freshwater ponds separated from the main body of water by plastic dividers used for ecotoxicological testing. These test systems generally have a volume of 1000 to 5×10^4 l and a maximum depth of 2 m.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
loading
Ratio of animal biomass to the volume of test solution in an *exposure* chamber.

logistic curve
Function, often applied to growth curves, fitting the general equation

\[y = \frac{k}{1 + e^{a+bt}} \]

where \(t \) represents time, \(y \) the body weight or population size, \(k \) the rate of growth, and \(a \) and \(b > 0 \) are constants. In the logistic equation the percentage rate of increase decreases linearly as size increases. The resulting curve continually rises, slowly at first, more rapidly in the middle phase, and slowly again near the end of growth.

logistic growth
Growth of a population under environmental constraints that set a maximum population size, giving an S-shaped curve.
See *carrying capacity, growth*.

logit
Natural logarithm of the quotient of a probability, \(P \), and its complement, i.e., \(\ln \frac{P}{1-P} \).

logit transformation (in toxicology)
In competitive binding assays, the logit-log dose relationship, in which the response is defined by

\[R = \text{logit}(y) = \ln \left[\frac{y}{1-y} \right] \]

where \(y = b/b_0 \) with \(b \) = fraction of tracer bound and \(b_0 \) = value of \(b \) with no unlabelled ligand in the system.

Note: Logit-transformed assay data frequently yield straight-line dose–response data, amenable to statistical analysis. More generally in toxicology, the transformation is applied to dose–response data where \(b_0 \) denotes the maximum response in the absence of a toxic substance.

After [1]

log-normal distribution
Distribution function \(F(y) \), in which the logarithm of a quantity is normally distributed, i.e.,

\[F(y) = f_{\text{Gauss}}(\ln y) \]

where \(f_{\text{gauss}}(x) \) is a Gaussian (or normal) distribution.

[4]

log-normal transformation
Transformation of data with a logarithmic function that results in a normal distribution.

[3]

Lorax incongruity
Delusion of selfless motivation in environmental stewardship or advocacy. The Lorax is a character in a popular children’s book by Dr. Seuss who “speaks for the trees, for the trees have no tongues”.

lordosis
Extreme and abnormal forward curvature of the spine.
See also scoliosis.

loss of life expectancy (LLE)
Calculated estimate of loss in lifetime associated with a risk factor; it is estimated as the simple difference between life expectancy without the risk factor and life expectancy with the risk factor.

lotic
Related to flowing continental waters, such as rivers and streams.

lotic mesocosms or microcosms
Streams of various sizes used to evaluate the effects of substances. Unlike lentic systems, no standardized design has been developed for flowing-water test systems.

[5]

lotic water
Flowing continental waters, such as rivers and streams.

lowest effective dose (LED)
Lowest dose of a chemical inducing a specified effect in a specified fraction of exposed individuals.

[1]

lowest lethal concentration found
See minimum lethal concentration.

[1]

lowest-observed-adverse-effect level (LOAEL)
Lowest concentration or amount of a substance (dose), found by experiment or observation, which causes an adverse effect on morphology, functional capacity, growth, development, or life span of a target organism distinguishable from normal (control) organisms of the same species and strain under defined conditions of exposure.

[1]

lowest-observed-effect concentration (LOEC)
Lowest concentration of a material used in an aquatic toxicity test that has a statistically significant adverse effect on the exposed population of test organisms compared with controls.

Note: When derived from a life cycle or partial life cycle test, it is numerically the same as the upper limit of the maximum acceptable toxicant concentration (MATC). Also called lowest-observed-adverse-effect level (LOAEL).

lowest-observed-effect level (LOEL)
Lowest concentration or amount of a substance (dose), found by experiment or observation, that causes any alteration in morphology, functional capacity, growth, development, or life span of target organisms
distinguishable from normal (control) organisms of the same species and strain under the same defined conditions of exposure.

[1] See also lowest-observed-effect concentration.

lx life table or schedule
Life table that summarizes mortality data for populations.

Note: “lx” is the number of individuals in a cohort alive at age or stage class, x.

lxmx life table
Life table that summarizes both mortality and natality data for populations.

Note: “lx” is the actual number or the proportion (as a decimal or percentage) of survivors at the beginning of age interval x. Since several samples are often averaged together, the lx values may not always be whole numbers. “mx” is the number of female births to each age group of “mothers”; the number of eggs or young which are female (in a species with a 1:1 sex ratio, this = mx/2 where mx = total eggs or young produced per female at age x). Since, for most organisms, one male can fertilize a number of females, the size of the population is more dependent on the number of females present, and the calculations are usually done using only females.

lysimeter
Laboratory column of selected representative soil or a protected monolith of undisturbed field soil with facilities for sampling and monitoring the movement of water and chemicals.

[1]

MacArthur–Wilson model
Model of island colonization giving the mathematical relationship

\[
S(t) = S_{EQ}(1 - e^{-Gt})
\]

where S(t) is the number of species present at time t, \(S_{EQ}\) is the equilibrium number of species for the island, and \(G\) is the rate constant for colonization of the island.

macrosom
Large multi-species test system.
See also mesocosm, microcosm.

macronutrient
Imprecise term referring to a nutrient required for survival, or present in biological fluids or compartments at a level easily measured by existing analytical techniques.

macrophyte
Aquatic plant large enough to be seen easily with the naked eye (as distinct from phytoplankton and small algae).

Note: The term “aquatic macrophyte” has no taxonomic significance.
male-mediated toxicity
Disease or birth defects produced by a father’s exposure to a physical or chemical agent.

Malthusian theory
Model, developed by Thomas R. Malthus (1766–1834), implying that, unchecked by environmental or social constraints, human populations would double every 25 years, regardless of the initial population size. Thus, if X_i denotes the population size during time period i and r the population growth rate, the Malthusian population model gives the relationship

$$X(i + 1) = (1 + r)X_i$$

See intrinsic (Malthusian) rate of increase.

mass balance equation
Equation that expresses the total mass of a chemical in terms of all the various forms and concentrations in different environmental compartments (including biota) in which it occurs.

maturity index
Index for pollution based on the proportions of species in a soil nematode community that fall into various categories ranging from colonizers (r-strategists) to persisters (k-strategists).

maulstick incongruity
Assignment of ecological or biological significance of a contaminant’s effect based primarily on statements of statistical significance but contrary to biological probability.

maximum acceptable toxicant concentration (MATC) (in ecology)
Geometric mean of the lowest exposure concentration that causes a statistically significant adverse effect (lowest-observed-effect concentration, LOEC) and the highest exposure concentration where no effect is observed (no-observed-effect concentration, NOEC) in a life-cycle (full chronic) or partial life-cycle (partial chronic) test.

Note: Calculation of an MATC requires quantitative life-cycle toxicity data on the effects of a material on survival, growth, and reproduction.

maximum allowable (admissible, acceptable) concentration (MAC)
Regulatory value defining the concentration that if inhaled daily (in the case of work people for 8 h with a working week of 40 h, in the case of the general population 24 h) does not, in the present state of knowledge, appear capable of causing appreciable harm, however long delayed during the working life or during subsequent life or in subsequent generations.

maximum likelihood estimation (MLE)
Parametric method used to fit dose- or concentration-effect data to the log-normal, log-logistic, or other models. Probit and logit approaches are most often applied with MLE methods.
mean absorption time (MAT)
Mean time required for absorption of a drug or contaminant calculated as the difference in **mean residence time** (MRT) of the material introduced by the (noninstantaneous) route of interest and the MRT for the same material injected intravenously.

mean generation time, T_c
Average time interval required for a bacterial cell to divide or for the *population* to double under a defined set of conditions.

mean residence time (in pharmaco- and toxicokinetics) (MRT)
Average time a substance remains in an animal body or an organ after rapid intravenous injection.

Note 1: Like clearance, its value is independent of *dose* in most cases.

Note 2: After an intravenous bolus

\[t_r = A_m / A \]

where t_r is the MRT, A is the area under the plasma concentration-time curve, and A_m is the area under the moment curve.

Note 3: For a drug with one-compartment distribution characteristics, MRT equals the reciprocal of the elimination rate constant.

After [1,3]

measurement endpoint (in ecological risk assessment)
Measurable response to a stressor (e.g., fledglings produced per nest each year) that is related to the valued qualities of the assessment endpoint (e.g., reproductive success of bald eagles).

median effective concentration (EC$_{50}$)
Statistically derived median concentration of a substance in an environmental medium expected to produce a certain effect in 50% of test organisms in a given *population* under a defined set of conditions.

Note: EC$_n$ refers to the median concentration that is effective in n% of the test population.

[1]

median effective time (ET$_{50}$)
For sublethal or ambiguously lethal effects, the median time until 50% of the exposed individuals respond.

median effective concentration (EC$_{50}$)
Statistically derived median concentration of a substance in an environmental medium expected to produce a certain effect in 50% of test organisms in a given *population* under a defined set of conditions.

Note: EC$_n$ refers to the median concentration that is effective in n% of the test population.

[1]
median effective dose (ED$_{50}$)
Statistically derived median dose of a chemical or physical agent (radiation) expected to produce a certain effect in 50% of test organisms in a given *population* or to produce a half-maximal effect in a biological system under a defined set of conditions.

Note: ED$_n$ refers to the median dose that is effective in n% of the test population.

median inhibitory time (IT$_{50}$)
inhibitory time
Time required for a *toxicant* to inhibit a specified process in 50% of a *population* under test conditions. See also *effect time*, *lethal time*.

median lethal concentration (LC$_{50}$)
Statistically derived median concentration of a substance in an environmental medium expected to kill 50% of organisms in a given *population* under a defined set of conditions.

median lethal dose (LD$_{50}$)
Statistically derived median dose of a chemical or physical agent (radiation) expected to kill 50% of organisms in a given *population* under a defined set of conditions.

median lethal time (LT$_{50}$)
Statistically derived median time interval during which 50% of a given *population* may be expected to die following *acute* administration of a chemical or physical agent (radiation) at a given concentration under a defined set of conditions.

median teratogenic concentration (TC$_{50}$)
Median concentration resulting in developmental malformations for 50% of the exposed individuals within a predetermined time, e.g., 96 h.

median time to death (MTTD)
Median time resulting in death for 50% of the exposed organisms. See also *median lethal time*.

median tolerance limit (TL$_{m}$ or TL$_{50}$)
Concentration of a substance in air, water, *sediment*, or *soil* at which 50% of the test organisms survive after a specified time of *exposure*. The TL$_{50}$ (equivalent to the TL$_{m}$) is usually expressed as a time-dependent value (e.g., 24-h or 96-h TL$_{50}$; the estimated concentration at which 50% of test organisms survive after 24 or 96 h of exposure).

Note: Unlike lethal concentration and lethal dose, the term “tolerance limit” is applicable in designating the level of any measurable lethal condition (e.g., extremes in pH, temper-
ature, dissolved oxygen). TL and TL\textsubscript{50} have been replaced by median lethal concentration (LC\textsubscript{50}) and median effective concentration (EC\textsubscript{50}).

medium, pl. -a (in environmental science)
Surrounding environment (air, water, soil, or sediment) in which living organisms function and thrive.

** meiofauna**
Small benthic invertebrates living in interstices of soil or sediment or in aquatic systems.

Note: The term loosely defines a group of organisms by their size, larger than microfauna but smaller than macrofauna. In practice, these are usually organisms that can pass through a 1-mm mesh but will be retained by a 45-µm mesh, but the exact dimensions vary from researcher to researcher. Whether an organism will pass through a 1-mm mesh may depend upon whether it is alive or dead at the time of sorting.

meiosis
Process of “reductive” cell division, occurring in the production of gametes, by means of which each daughter nucleus receives half the number of chromosomes characteristic of the somatic cells of the species.

[1]

meiotic drive
Any process that causes some alleles to be over-represented in the gametes which are formed during meiosis.

Note: With normal Mendelian segregation at a genetic locus, on average half of an organism’s offspring inherit one of the alleles and the other half the other allele. This term refers to rare cases in which Mendel’s laws are broken, and one of the alleles is consistently found in more than half the offspring.

melanic forms
Individuals or subspecies with increased dark pigmentation.

melanism
Increased black or nearly black pigmentation of skin, feathers, or hair of an organism, resulting from (increased) synthesis of melanin.
See *industrial melanism*.

Mendelism
Fundamental principles of inheritance (especially the laws of segregation and independent assortment and the existence of dominant and recessive characters), propounded originally by Gregor Mendel (1822–1884) and forming the basis for the science of classical genetics.
[4]
mesocosm
Enclosed and essentially self-sufficient (but not necessarily isolated) experimental environment or ecosystem that is on a larger scale than a laboratory microcosm.

[4]

Note: A mesocosm is normally used outdoors or, in some manner, incorporated intimately with the ecosystem that it is designed to reflect.

See also macrocosm, microcosm.

meta-analysis
Process of using statistical methods to combine the results of different studies. In the biomedical sciences, the systematic evaluation of a problem using information (commonly in the form of statistical tables and other data) from a number of independent studies.

Note 1: A common application is the pooling of results from a number of small randomized controlled trials, none in itself large enough to demonstrate statistically significant differences, but capable of doing so in aggregate.

Note 2: Meta-analysis has a qualitative component, i.e., application of predetermined quality criteria (e.g., completeness of data, absence of bias) and a quantitative component, i.e., integration of numerical information.

Note 3: Meta-analysis includes overview and data pooling aspects, but implies more than either of these processes. Meta-analysis carries the risk of several biases reinforcing each other. Because of such problems inherent in the pooling of data from different studies, interpretation of the results of meta-analysis must be very cautious.

metallothionein
Relatively small (6.5–7 kDa) protein with approximately 25–30% of its amino acids being cysteine, having no aromatic amino acids or histidine, and having the capacity to bind several metal atoms per molecule.

metallothionein-like proteins
Poorly characterized, cysteine-rich metal-binding proteins or proteins not conforming precisely to the classic properties of metallothioneins.

metameter
Measurement or a transformation of a measurement used in the analysis of biological tests, e.g., the probit metameter.

metapopulation
Set of local populations which interact via dispersing individuals among local populations; though not all local populations in a metapopulation need interact directly with every other local population.

[29]

Note 1: A metapopulation is generally considered to consist of several distinct populations together with areas of suitable habitat which are currently unoccupied. Each population cycles in relative independence of the other populations and eventually goes extinct as a consequence of demographic stochasticity.
Note 2: Individuals may immigrate to a small metapopulation and rescue that population from extinction.

See rescue effect.

method of multiple working hypotheses
Method proposed to reduce precipitate explanation by considering all plausible hypotheses simultaneously in testing so that equal amounts of effort and attention are provided to each.

[30]

microcosm
Artificial multi-species test system that simulates major characteristics of the natural environment for the purposes of ecotoxicological effects and risk assessment; such systems are normally terrestrial or aquatic and may contain plants, animals (vertebrates and invertebrates), and microorganisms.

Note: The terms mesocosm and macrocosm are used to refer to larger and more complex systems than microcosms, but the distinction is often not clearly defined.

microevolution
Evolutionary change below the species level; a small change in the genetic make-up of a population from generation to generation.

micronutrient
See trace nutrient.

microphyte
Plant of microscopic size.

Microtox® test
Test involving luminescent marine bacteria of the Vibrio sp. [e.g., V. (Photobacterium) phosphoreum, V. fischeri, V. harveyi]. A decrease in bioluminescence is thought to reflect toxic action.

migration (of a population)
Movement of an individual or group into or out of a new population or geographical region.

mineral
Naturally occurring substance, usually crystalline, which has a particular chemical composition and specific physical properties.

mineralization
1. Complete conversion of organic substances to inorganic derivatives, often visible as microscopic deposits that may be associated with damage to soft tissue, e.g., in the kidney.

[1]
See biomineralization.
2. Processes (e.g., fossilization) after death and burial of organisms within sediments involving the total replacement of the organic material with various minerals, frequently calcite or quartz, although many other minerals, such as pyrite, may be involved.

3. (in geology) The hydrothermal deposition of economically important metals in the formation of ore bodies.

4. (in soil science) The release of inorganic compounds during complete microbial decomposition of organic materials in the soil.

minimum significant difference (MSD)
Difference between groups (in tests with, e.g., salmonid fish, the difference in average weights or average mortality) that would have to occur before it could be concluded that there was a significant difference between the groups.

Note: The MSD is provided by Dunnett’s multiple range test [31].

minimal time to effect or response
Minimum time required to get an effect or response. Regardless of the toxicant concentration, the effect, or response, cannot occur any faster than this minimum time.

minimum viable population (MVP)
Smallest population size of a species allowing survival in the wild.

Note 1: More specifically, MVP is the smallest possible size at which a biological population can exist without facing extinction from natural disasters or demographic or environmental changes, or genetic drift.

Note 2: MVP is used in the fields of biology, ecology, and conservation biology/ecology.

mixing zone
Area where an effluent discharge undergoes initial dilution and is extended to cover the secondary mixing in the ambient water body.

Note: A mixing zone is an allocated impact zone where water quality criteria can be exceeded as long as acutely toxic conditions are prevented.

[5]

model
Formal representation of some component of the world or a mathematical function with parameters that can be adjusted so that the function closely describes a set of empirical data.

Note 1: A mathematical or mechanistic model is usually based on biological, chemical, or physical mechanisms, and its parameters have real-world interpretations. By contrast, statistical or empirical models are curve-fitted to data where the mathematical function used is selected for its numerical properties.

Note 2: Extrapolation from mechanistic models (e.g., pharmacokinetic equations) usually carries higher confidence than extrapolation using empirical models (e.g., the logistic extrapolation models).

Note 3: A model that can describe the temporal change of a system variable under the influence of an arbitrary “external force” is called a dynamic model. To turn a mass balance model
into a dynamic model, theories are needed to relate the internal processes to the state of the system, expressed, e.g., in terms of concentrations. The elements required to build dynamic models are called process models.

model error
Elements of uncertainty associated with the discrepancy between the model and the real world.

modifying factor (MF)
See *uncertainty factor*.

monitoring
Continuous or repeated observation, measurement, and evaluation of health and (or) environmental or technical data for defined purposes, according to prearranged schedules in space and time, using comparable methods for sensing and data collection.

Note: Evaluation requires comparison with appropriate reference values based on knowledge of the probable relationship between ambient *exposure* and adverse effects.

See also *biological monitoring*.

[1]

monitoring test
Test designed to be applied on a routine basis, with some degree of control, to ensure that the quality of an environmental *compartment*, biological endpoint, or *effluent* has not exceeded some prescribed criteria range. In a biomonitoring test, organisms are used as “sensors” to detect changes in the quality of water or effluent. A monitoring test implies generation of information, on a continuous or other regular basis.

Monte Carlo simulation
Analysis of a sequence of events using random numbers to generate possible outcomes in an iterative process.
After [3]

Montreal Protocol
Officially the Protocol on Substances That Deplete the Ozone Layer, a treaty signed on 16 September 1987, in Montreal by 25 nations; there are now 168 subscribing nations. The protocol sets limits on the production of *chlorofluorocarbons* (CFCs), halons, and related substances that release chlorine or bromine to the ozone layer of the atmosphere.

morphodynamics
Study of the interaction and adjustment of the seafloor topography and fluid hydrodynamic processes, seafloor morphologies, and sequences of change dynamics involving the motion of *sediment*.

[1]

mortality
Death rate, the number of dead individuals per unit time (see *carrying capacity*).
Note: Natality and mortality graphs together form a life table.

most-sensitive-species approach
Ecotoxicological approach in which results for the most sensitive of all tested species are used as an indicator of the toxicant concentration below which the entire community is protected from adverse effects.

moving average method
Method of estimating LC$_{50}$, EC$_{50}$, or LD$_{50}$. It can be implemented with straightforward equations if the toxicant concentrations are set in a geometric series and there are equal numbers of individuals exposed in each treatment. See also median effective concentration, median lethal concentration, median lethal dose.

multigeneration study
1. Toxicity test in which two to three generations of the test organism are exposed to the substance being assessed.
2. Toxicity test in which only one generation is exposed and effects on subsequent generations are assessed.

multiple heterosis
Higher fitness of an individual as a composite or summed effect of heterozygote superiority (heterosis) at each of a series of loci.

multiplicative growth factor per generation
See finite rate of increase.

mutualism
Interaction between two or more species, giving fitness benefit to all the involved species, e.g., increased carrying capacity.

Note 1: Similar interactions within one species are called cooperation.

Note 2: Symbiosis is the form of mutualism leading to the closest spatial or physical association. The process may be obligate, meaning the involved species cannot survive alone. Examples include cleaner fish, pollination and seed dispersal, gut flora, and nitrogen fixation by fungi.

narcosis
1. In ecotoxicology, see baseline toxicity.
2. In human toxicology, state of insensibility or stupor.

After [1]
National Academy of Sciences (NAS) paradigm of risk assessment
Model for risk assessment with four components—hazard identification, exposure assessment, dose–response assessment, and risk characterization.

Note: This model is used for both human and ecological risk assessments.

natural selection
Evolutionary theory, originally proposed by Darwin, of the preferential survival and reproduction of organisms better adapted to their environment as a result of genetic adaptation.

natality
Rate of birth, the number of newborn individuals per unit time.

Note: Natality and mortality graphs together form a life table.

[1]

natural radiation background
Cosmic radiation emitted from stars and long-lived terrestrial radionuclides that are ubiquitously present in the Earth’s soils.

nekton
Aggregate of actively swimming animals in a body of water ranging from microscopic organisms to whales.

neo-Darwinism
Theory of biological evolution (widely accepted since the 1920s) based on Darwin’s theory of natural selection but incorporating the theories of later biologists regarding genes, inheritance, and mutation, particularly those of Weismann and Mendel (see Mendelism, Weismannism).

[4]

neonat/e n., /al adj.
Newborn animal or human infant during the first four weeks of postnatal life

Note: For statistical purposes, some scientists have defined the period as the first seven days of human postnatal life. The precise definition varies from species to species.

After [1]

neophyte
Plant found newly in an area where it had not been recorded previously.

net reproductive rate, \(R_0 \)
Expected number of females to be produced during the lifetime of a newborn female as estimated with a life table.
niche (in ecology)
Group of conditions and resources, facilitating but limiting survival, growth, and reproduction of a defined group of organisms or species.

Note 1: The niche influences how a population responds to the abundance of its resources and enemies.

Note 2: The niche is influenced by its inhabiting populations.

Note 3: The abiotic or physical environment is part of the niche because it influences how populations affect, and are affected by, resources and enemies.

See also complimentary niche, fundamental niche, Hutchinsonian niche, niche preemption, realized niche.

niche preemption
Rapid use and preemption of resources by a species that exploits them to the exclusion or severe disadvantage of another species.
See also niche.

niche width
Term referring to the area which a species could physically inhabit.

Note: This area is defined by suitable climate and available food sources appropriate to that species as well as other factors such as temperature and air or water pressure levels. The niche width often differs from the realized niche.

NIMBY principle
Public acceptance of necessary provisions (e.g., waste incinerators) provided they do not affect the individual’s quality of life.

Note: Derived from the first letters of “not in my backyard”.

nine aspects of disease association
Nine aspects of evidence, defined by Bradford-Hill (1965), fostering the accuracy of linkage between a risk factor and disease: strength of association, consistency of association, specificity of association, temporal association, biological gradient (dose–response) in the association, biological plausibility, coherence of the association, experimental support of association, and analogy [32].

“no action” alternative (to remediation of the site)
Scenario in which one assesses if the contaminants at the waste site pose, or will pose in the future, a risk if left alone.

nonstochastic health effects
Effects that are dependent on the magnitude of the dose in excess of a threshold.

nontarget organisms
Organisms that are not the intended targets of a particular use of a pesticide.
no-observed-adverse-effect level (NOAEL)
Greatest concentration or amount of a substance, found by experiment or observation, which causes no detectable adverse alteration of morphology, functional capacity, growth, development, or life span of the target organism under defined conditions of exposure.

Note: When derived from a life-cycle or partial life-cycle test, it is numerically the same as the lower limit of the maximum acceptable toxicant concentration.

After [1]

no-observed-effect concentration (NOEC) (in aquatic toxicology)
Special case of the no-observed-adverse-effect level (NOEL), commonly used in aquatic toxicology.

Note: When derived from a life-cycle or partial life-cycle test, it is numerically the same as the lower limit of the maximum acceptable toxicant concentration (MATC).

no-observed-effect level (NOEL)
Greatest concentration or amount of a substance, found by experiment or observation, that causes no statistically significant alterations of morphology, functional capacity, growth, development, or life span of target organisms distinguishable from those observed in normal (control) organisms of the same species and strain under the same defined conditions of exposure.

[1]

no-response level (NRL)
Maximum dose of a substance at which no specified response is observed in a defined population and under defined conditions of exposure.

[1]

normal equivalent deviation (NED)
Proportion dying in a toxicity test expressed in terms of standard deviations from the mean of a normal curve.

normit
Metameter equal to the normal equivalent deviation (NED). The resulting analysis of dose- or concentration-effect data with the normit metameter is often called normit analysis and is essentially equivalent to probit analysis.

numerical response
Change in predator or grazer number through increased reproductive output, decreased mortality, or increased immigration in response to changes in prey or food densities.

nutrient
See essential nutrient.

octanol-air partition coefficient, P_{OA}, K_{OA}
Partition coefficient for a compound between octanol and air. Like K_{ow}, it is a measure of lipophilicity.
octanol-water partition coefficient, P_{ow}, K_{ow}
Ratio of the solubility of a chemical in octanol to its solubility in water at equilibrium.

Note: Measure of lipophilicity, used in the assessment of both the uptake and physiological distribution of organic chemicals and prediction of their environmental fate.

After [1]

octaves (in environmental science)
Log2 classes (e.g., 1–2, 2–4, 4–8, 8–16, 16–32,... individuals) used in species-abundance curves and representing doublings of the numbers of individuals in a species.

Oklo natural reactors
Naturally occurring nuclear reactors arising through biogeochemical processes approximately 1.8 billion years ago in Oklo (Gabon, Africa).

oligotrophic
Describing an environment having a low concentration of nutrients.

Note: The term is usually used to describe bodies of water or soils with very low nutrient levels and low rates of biological production.

See also eutrophic.

oligotrophy
1. State of being oligotrophic.
2. Obligate or facultative capacity to live in low-nutrient habitats.
See also eutrophy.

optimal-foraging theory
Theory that the ideal forager will obtain a maximum net rate of energy gain by optimally allocating its time and energy to the various components of foraging.

optimal stress response
Optimal stress response involves a shift in the balance in energy allocation between somatic growth rate and longevity (survival) to optimize Darwinian fitness under stressful conditions.

ozone hole
Extreme thinning of ozone above the Antarctic due to the combined effects of circulation patterns above the Antarctic and ozone destruction; thought to be largely a consequence of chlorofluorocarbon (CFC) accumulation in the stratosphere.

ozone layer
ozonosphere
Part of the Earth’s atmosphere, mainly located in the lower portion of the stratosphere, approximately 15–35 km above the Earth’s surface, containing relatively high concentrations (a few micromoles per litre) of ozone (O_3) which is higher than concentrations in the lower atmosphere. The thickness varies seasonally and geographically.

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
ozonosphere
See ozone layer.

palaeontology
Branch of science that deals with extinct and fossil humans, animals, and plants, or more generally with evidence of organic life during the geological past.

paradigm
1. Model or template.
2. Body of concepts that, in a particular branch of science, has withstood rigorous testing, and is generally accepted by scientists working in that field as offering true explanations of fact and observation.

Note: This usage is derived from the work of the philosopher T. S. Kuhn (1922–1996) [33].

parthenogenesis
Growth and development of an embryo or seed without male fertilization.

Note 1: Occurs in lower plants, invertebrate species (water fleas, aphids, some bees, and parasitic wasps), vertebrates (some reptiles, fish, and, very rarely, birds and sharks).

Note 2: Also used to describe reproduction in self-fertilizing hermaphroditic species.

partial kill
Treatment in a toxicity test in which some, but not all, exposed individuals are killed.

partition coefficient
Concentration of a substance in one phase divided by its concentration in the other phase when the heterogeneous system of two phases is in equilibrium.

Note 1: The ratio of concentrations (or, strictly speaking, activities) of the same molecular species in the two phases is constant at constant temperature.

Note 2: The octanol-water partition coefficient K_{ow} is often used as a measure of the bioconcentration factor (BCF) for modeling purposes.

Note 3: This term is in common usage in toxicology but is not recommended by IUPAC for use in chemistry and should not be used as a synonym for partition constant, partition ratio, or distribution ratio.

[1]

partition ratio, K_D
Ratio of the concentration of a substance in a single definite form, A, in the extract to its concentration in the same form in the other phase at equilibrium, e.g., for an aqueous/organic system:

$$K_D(A) = \frac{[A]_{org}}{[A]_{aq}}$$

[1]
pathway
Sequence of enzymatic or other reactions by which one biological material is converted to another.

pedosphere
Part of the Earth made up of soils and where important soil processes are occurring.

pelagic
Of or relating to the open sea, as distinguished from the shallow water near the coast; dwelling on or near the surface of the open sea or ocean; oceanic. Now chiefly: (Ecology) designating, relating to, or inhabiting that region of the sea which consists of open water of any depth, away from or independent of both the shore and the sea floor (and so contrasted with the littoral and benthic regions).

per capita birth rate, b
Average number of offspring per population member per time unit. Calculated from birth rate B and population size N as

$$b = \frac{B}{N}$$

See also population growth, per capita rate of increase.

per capita death rate, m
Average number of deaths per population member per time unit. Calculated from death rate D and population size N as

$$m = \frac{D}{N}$$

See also population growth, per capita rate of increase.

per capita rate of increase, r
Relative increase, r, in the population per unit of time expressed per capita.

$$r = b - m$$

where b is per capita birth rate and m is per capita death rate.

periphyton
Matrix of algae, microbes, and detritus attached to submerged surfaces in aquatic ecosystems. See aufwuchs.

persistence
Attribute of a substance that describes the length of time that the substance remains in a particular environment before it is physically removed or chemically or biologically transformed.

[1]

persistent inorganic pollutant (PIP)
Inorganic substance that is stable in the environment, is liable to long-range transport, may bio-accumulate in human and animal tissue, and may have significant impacts on human health and the environment.
Note 1: Examples are arsenides, fluorides, cadmium salts, and lead salts.

Note 2: Some inorganic chemicals, like crocidolite asbestos, are persistent in almost all circumstances, but others, like metal sulfides, are persistent only in unreactive environments; sulfides can generate hydrogen sulfide in a reducing environment or sulfates and sulfuric acid in oxidizing environments. As with organic substances, persistence is often a function of environmental properties.

[1]

persistent organic pollutant (POP)
Organic chemical that is stable in the environment, is liable to long-range transport, may bioaccumulate in human and animal tissue, and may have significant impacts on human health and the environment. Examples are tetrachlorodibenzodioxin (dioxin), PCBs, and DDT.

[1]

pesticide
Substance intended to kill pests.

Note: In common usage, any substance used for controlling, preventing, or destroying animal, microbiological, or plant pests.

[1]

phenology
Life history.

phenotype
Observable structural and functional characteristics of an organism determined by its genotype and modulated by its environment.

[1]

phocomelia
Developmental abnormality in which the individual is born with extremely short limbs because the long bones have failed to develop properly.

photochemical smog
summer smog
Mixture of highly reactive and toxic substances, including ozone, produced by the action of sunlight on hydrocarbons, nitrogen oxides, and other pollutants.

[1]

photodegradation
Any breakdown reaction of a chemical that is initiated by sunlight (UV light), or more accurately, by the influence of a high-energy photon. This can be either by direct photodegradation, in which the photon photolyzes or ionizes the relevant molecule itself, which then reacts with other species in its vicin-
ity, or by indirect photodegradation, in which the relevant molecule reacts with ions or radicals created by photolysis of other species. See indirect photolysis, photolysis.

photo-induced toxicity
Toxicity of a chemical in the presence of light due to the production of toxic photolysis products.

photolysis
Cleavage of one or more covalent bonds in a molecular entity resulting from absorption of light, or a photochemical process in which such cleavage is an essential part. See indirect photolysis, photodegradation.

photoperiod
The duration of illumination and darkness over a 24-h day.

photosensitivity
Sensitivity of cutaneous tissues to the effects of light, when the effects are evoked by a chemical.

pH-partition hypothesis
Hypothesis that bioavailability is governed by the diffusion of the unionized form of an ionizable substance through the gastrointestinal lumen, as determined by pK_a and pH.

phylogenetic tree
See cladogram.

phylogenetics
Branch of biology that deals with phylogeny, especially with the deduction of the historical relationships between groups of organisms.

phylogeny
phylogenesis
Pattern of historical relationships between species or other groups resulting from divergence during evolution. See cladogram, phylogenetics.

Note 1: Phylogenetic relationships are shown in diagrams (cladograms, phylogenetic trees, evolutionary trees).

Note 2: Paleontology is important for understanding phylogeny. Without the fossils of the many groups of organisms now extinct, it could not be understood how present life forms are interrelated.
Note 3: Phylogenetics, the science of phylogeny, is part of the larger field of systematics, also including taxonomy.

phylum
Taxonomic rank at the level below Kingdom and above Class

Note: Formally, a phylum can be used for any biological domain, but traditionally it was always used for animals, whereas “division” was traditionally often used for plants, fungi, etc.

physiological adaptation
1. Change in an organism, in response to changing conditions of the environment, which takes place without any irreversible disruptions of the given biological system and without exceeding normal (homeostatic) capacities of its response.
2. Process by which an organism stabilizes its physiological condition after an environmental change.

Note: If this process exceeds the homeostatic range, it becomes pathological and results in symptoms of disease (adverse effects).

phytochelatin
Class of cysteine-rich peptides in plants that are induced by and bind to metals. They can function in the regulation and detoxification of metals by plants.

See *metallothionein-like proteins*.

phytoestrogen
“dietary estrogen”
Diverse group of naturally occurring nonsteroidal plant compounds with structural similarity to estradiol (17β-estradiol) and able to cause estrogenic and (or) antiestrogenic effects.

phytoplankton
Photosynthesizing organisms found in the *plankton*.

[1]

phytotoxic
Toxic to plants.

Pielou’s J
Measure of *species evenness* for a sample from a *community*. It is calculated from the following equation:

\[
Pielou's \ J = \frac{H'}{\log S}
\]

where \(H' \) is the *Shannon–Wiener* diversity measure and \(S \) is the average *species richness*.

pinnipeds
Seals, sea lions, and walruses.

piscivorous
Feeding on fish.

planktivorous
Feeding on plankton.
[1]

plankton
Organisms living suspended in the water column and incapable of moving against water currents.
[1]

planktotrophic larva
Planktonic-dispersing larva that derives its nourishment by feeding in the plankton.
[1]

poikilotherm

ectotherm
“Cold-blooded organism” (such as an amphibian, reptile, or fish) with a body temperature varying with, but usually slightly higher than, the temperature of its environment.
See endotherm, exotherm.

poikilothermic
poikilothermous
See heterothermal.

point source
Single emission source in a defined location.
[1]

pollutant
Any undesirable solid, liquid, or gaseous matter occurring, as a result of human activities, in a solid, liquid, or gaseous environmental medium and causing adverse effects.

Note 1: “Undesirability”, like toxicity, is concentration-dependent, low concentrations of most substances being tolerable or even essential in many cases.

Note 2: A primary pollutant is one emitted into the atmosphere, water, sediments, or soil from an identifiable source.

Note 3: A secondary pollutant is a pollutant formed by chemical reaction in the atmosphere, water, sediments, or soil.

Modified from [1]
See contaminant.
Note 4: Pollutant should be distinguished from contaminant; the latter implies presence above background due to human activities; the former implies that the substance also is causing adverse effects.

pollution
Introduction of *pollutants* into a solid, liquid, or gaseous environmental *medium*; the presence of pollutants in a solid, liquid, or gaseous environmental medium; or any undesirable modification of the composition of a solid, liquid, or gaseous environmental medium. [1]

pollution-induced community tolerance (PICT)
Increase in tolerance to *pollution* resulting from *species* composition shifts in the *community*, *acclimatization* of individuals, and genetic changes in *populations* in the community.

pollution tolerance index (PTI)
Means of measuring environmental quality, usually water quality, by determining the presence of indicator species, classified into three groups—sensitive, facultative, and tolerant. Each group is assigned an index value 1, 2, and 3, with the sensitive group having the highest index value. The number of species present from the list included in each group is identified in a representative environmental sample and the group index multiplied by the number of species in the group. The scores for each group are finally added to give the PTI for the environmental medium under consideration. The environmental quality is directly proportional to the value of the index [31].

polygenic control
Control of a phenotypic trait by several genes.

polyploidy
Chromosomal alteration in which the organism possesses more than two complete chromosome sets. [36]

population
In ecology, any group of interacting and interbreeding organisms of the same *species* occupying a given area at the same time.

population biomass
Total mass or weight of organisms in a *population*, given by the sum of the masses (or weights) of all the individual members of the population.

population cycle
Changes in the numbers of individuals in a *population* that repeatedly oscillate between periods of high and low density.

population density (PD)
Number of individuals divided by area (m⁻²) or volume (m⁻³).

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
population dynamics
Variations in time and space in the sizes and densities of *populations*.

population ecology
Study of the variations in time and space in the sizes and densities of *populations*, and of the factors causing these variations.

population fluctuation
Variations over time in the size of a *population*.

population growth rate
Change in *population* size ΔN during a specified time period Δt

$$\frac{\Delta N}{\Delta t} = (b - d)N$$

where N is population size, b is *per capita birth rate*, and d is *per capita death rate*.
See *per capita rate of increase*.

population pyramid
Diagrammatic illustration of the age structure of a *population* by depicting the youngest age class at the base and stacking successive age classes above it.

population size
Total number of organisms in a *population*.

pore water
See interstitial water.

porous pot test
Biodegradation test that simulates the continuous activated sludge (sewage treatment) system.

potentiation
Dependent action in which a substance or physical agent at a *concentration* or *dose* that does not itself have an adverse effect enhances the harm done by another substance or physical agent.
See also *synergism*.
[1]

precautionary principle
Approach to *risk management* that can be applied in circumstances of scientific uncertainty, reflecting a perceived need to take action in the face of a potentially serious risk without waiting for definitive results of scientific research.
[1]

predicted environmental concentration (PEC)
estimated environmental concentration (EEC)
expected environmental concentration (EEC)
Concentration of a substance likely to be found in an environmental *compartment* calculated from estimates of quantities released, discharge patterns, and inherent disposition of the substance (fate and distribution) as well as the nature of the specific receiving ecosystems.

Note: EEC models for *pesticides* assume a maximum number of applications per growing season at the maximum rate of application according to the application methods stated on the product label.

After [1]

predicted no-effect concentration (PNEC)
Concentration that is expected to cause no adverse effect to any naturally occurring population in an environment at risk from exposure to a given substance.

[1]

predictive risk assessment

prospective risk assessment
Risk assessment performed for a proposed future action, such as the use of a new chemical or the release of a new effluent.

preliminary test

See screening test.

prevalence
Number of instances of existing cases of a given disease or other condition in a given *population* at a designated time; sometimes used to mean *prevalence rate*.

Note: When used without qualification, refers usually to the situation at a specified time (point prevalence).

[1]

prevalence rate (ratio)
Total number of individuals who have an attribute or disease at a particular time (or during a particular period) divided by the *population at risk* of having the attribute or disease at this point in time or midway through the period.

[1]

primary lamellae
filaments
Gill structures extending outward at right angles from the branchial arches.

primary producer
Organism capable of using the energy derived from light or a chemical substance in order to manufacture energy-rich organic compounds.

[1]
primary succession
Sequential colonization by species which begin to colonize the bare ground and modify the environmental conditions after a region is completely denuded; e.g., behind a retreating glacier, early colonizing organisms provide the soils needed by succeeding organisms.
See succession.

principle of allocation
Concept that there exists a cost or trade-off to every allocation of energy resources. Energy spent by an individual organism on one function, process, or structure cannot be spent on another. Optimal allocation of resources enhances Darwinian fitness.

probit
Probability unit obtained by adding 5 to the normal deviates of a standardized normal distribution of results from a dose–response study.

Note 1: Addition of 5 removes the complication of handling negative values.

Note 2: A plot of probit against the logarithm of dose or concentration gives a linear plot if the response follows a logarithmic normal distribution. Estimates of the LD$_{50}$ and ED$_{50}$ (or LC$_{50}$ and EC$_{50}$) can be obtained from this plot.

probit (log) transform
Probability unit obtained from the standardized normal distribution plotted against the logarithm of the concentration or dose of a substance when a quantal or graded response has been measured. A linear plot provides evidence that the distribution is lognormal. Estimates of the L(E)C$_{50}$ and L(E)D$_{50}$, as well as the standard deviation for the distribution, can then be made.

problem formulation (in ecological risk assessment)
Planning and scoping phase that establishes the framework around which the risk assessment is done.

productivity
The rate at which biomass is produced per unit area by any class of organisms.

product-limit (Kaplan–Meier) method
Nonparametric method for analyzing time-to-death or survival-time data that does not require a specific model for the survival curve [32].

proliferation
Multiplication, i.e., an increase by frequent and repeated reproduction or growth by cell division.

propagule
1. Portion of a plant, fungus, etc., that is capable, when detached, of giving rise to a new individual by asexual reproduction (e.g., a cutting, leaf bud, bulbil, seed, or spore).
2. Less commonly, any of the products of asexual reproduction in certain invertebrates.

After [4]

propagule rain
Relative to *metapopulation* dynamics, the presence of a seed bank or dormant stage for a *species* that continually introduces individuals to the patch regardless of the density of occupancy in the surrounding patches. This propagule rain increases the likelihood of *population* reappearance and decreases the likelihood of patch extinction.

prospective risk assessment
See *predictive risk assessment*.

Ptolemaic incongruity
False assertion that any particular level of biological organization holds a more central or important role than any other in the science of *ecotoxicology*.

pyrogenic
1. Describing anything that causes fire.
2. Describing products of fire; e.g., organic compounds produced by the high-temperature combustion of complex organic substances are pyrogenic compounds.

 Note: The polycyclic aromatic hydrocarbons (PAHs) are examples of pyrogenic compounds.
3. Describing a substance that produces fever.

quality criteria
Quality guidelines based on the evaluation of scientific data.

quality guidelines
Numerical limits or text statements established to support and maintain designated uses of the environment or to protect human health.

quality objectives
Numerical limits or narrative statements established to protect and maintain human health or designated uses of the environment at a particular site.

quality standards
Fixed upper limits for *exposure* to certain chemicals recognized under law by one or more levels of government. Well-known examples include the air, water, and *soil* quality standards, as well as *threshold limit values* for air *pollutants* in the workplace.

quantal effect
anonym: graded effect
all-or-none effect
Condition that can be expressed only as “occurring” or “not occurring”, such as death or occurrence of a tumor.
[1]

quantitative structure–activity relationship (QSAR)

1. Quantitative model relating chemical structure of organic compounds to biological activity (including toxicity), derived using regression analysis and containing as parameters physicochemical constants, indicator variables, or theoretically calculated values.

 Note 1: QSAR is used as a method of predicting toxicity. It is also used to design molecules with a defined biological activity prior to their synthesis for use as drugs, *pesticides*, etc, and for assessing environmental fate of chemicals.

2. Quantitative model relating chemical structure of compounds to chemical activity in the environment.

 Note 2: The term is extended by some authors to include chemical reactivity, i.e., activity and reactivity are regarded as synonyms. This extension is discouraged.

After [1]

quantitative structure–metabolism relationship (QSMR)

Quantitative association between the physicochemical and (or) the structural properties of a substance and its metabolic behavior.

[1]

quotient method

Calculation of the quotient of the measured or predicted environmental concentration (PEC) of a contaminant and the predicted no-effect level (PNEC), used as an expression of hazard or risk. Higher quotients constitute greater evidence of a hazard or a greater risk.

See also *hazard quotient*.

rain-out

Removal of *pollutants* from air by incorporation into developing rain droplets of rain clouds.

range-finding test

See *screening test*.

rarefaction estimate of richness

Estimate of *species richness* (S) expressed relative to that of a sample having a standard number of individuals.

rate constant-based model

Compartment model that employs rate constants to quantify the rate of change in concentration or amount of *toxicant*.
rate-of-living theory of aging
Theory that the total metabolic expenditure of a genotype is generally fixed, and longevity depends on the rate of energy expenditure.

rate ratio (in epidemiology) (RR)
Value obtained by dividing the rate in an exposed population by the rate in an unexposed population.

realized niche
Portion of a species’ fundamental niche that it actually occupies.

Note: The realized niche is narrower than the fundamental niche due to pressure from, and interactions with, other organisms (e.g., superior competitors).

See Hutchinsonian niche, niche.

reasonable worst case
Semiquantitative term referring to the lower portion of the high end of the exposure, dose, or risk distribution.

reasonable maximum exposure (RME)
Highest exposure that is reasonably expected to occur.

Note: Typically, the 95 % upper confidence limit of the toxicant distribution is used: if only a few data points (6–10) are available, the maximum detected concentration is used.

receiving water
Surface water (e.g., in a stream, river, or lake) that has received, or is about to receive, a discharged waste (i.e., the surface water immediately around the discharge point).

receptor
Molecular structure in or on a cell that specifically recognizes and binds to a compound and acts as a physiological signal transducer or mediator of an effect.

recommended limit
Maximum concentration of a potentially toxic substance that is expected to be safe.

Note: Such limits are rarely defined as legal limits to be enforced. They are analogous to guidelines, which have only advisory status.

reconstituted water
De-ionized or glass-distilled water to which reagent-grade chemicals have been added. The resultant synthetic freshwater is expected to be free from contaminants and have the desired pH and hardness characteristics.
redundancy hypothesis
Hypothesis that many species are redundant, and their loss will not influence the community function as long as crucial (e.g., keystone and dominant) species populations are maintained.

reference dose (RfD)
Estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure of a defined substance to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.

Note 1: It can be derived from a no-observed-adverse-effect level (NOAEL), lowest-observed-adverse-effect level (LOAEL), or benchmark dose, with uncertainty factors generally applied to reflect limitations of the data used. It is generally used in the EPA’s noncancer health assessments.

Note 2: The RfD is reported in units of mg of substance/kg body weight/day for oral exposures.

After [1]

reference environment
Generalized description of the environment into which contaminants will be released and in which organisms will be exposed. Reference environments are used when there is no specific site at risk.

reference material
Material, sufficiently homogeneous and stable regarding one or more properties, used in calibration, in assignment of a value to another material, or in quality assurance.

[34]

reference sediment
Whole sediment near an area of concern used to assess sediment conditions in the absence of substances of concern.

Note: Such sediment is collected near a site of concern and should represent the background conditions.

After [4]

reference site
Relatively unpolluted site used for comparison with polluted sites in environmental monitoring studies, often incorrectly referred to as a control site.

reference toxicant
Chemical used in an aquatic toxicity test as a positive control in contrast to the negative control provided by exposure water without the test chemical. Information collected is used to determine the general health and viability of the test organisms and assess consistency in testing protocol implementation.

Note: In this definition, the term “positive control” is used to describe a procedure that is very similar to the actual experimental test and that is known from previous experience to give a positive result.

[5]
reference toxicity test
Test conducted in conjunction with sediment tests to determine possible changes in condition of the test species.

Note 1: Deviations from an established normal range indicate a change in the condition of the test organism population. Reference toxicant tests are most often acute lethality tests performed in the absence of sediment.

Note 2: Sediment spiked with a toxicant might also be included as a positive control for the sediment toxicity test.

region (in geography)
Area of the Earth’s surface differentiated by its specific characteristics.

relative bioavailability
Bioavailability estimated for a dose administered by any route or formulation relative to a dose administered in a reference (or alternate) route or formulation.

relative fitness
See fitness.

relative risk (RR)
risk ratio
1. Ratio of the risk of disease or death among the exposed to the risk among the unexposed.
2. Ratio of the cumulative incidence rate in the exposed to the cumulative incidence rate in the unexposed.

remedial investigation (RI)
Study that has three parts: characterization or the type and degree of the contamination, human risk assessment, and ecological risk assessment.
After [34]

remedial investigation and feasibility study (RI/FS)
For an EPA Superfund site, a study that has as its goal the implementation of “remedies that reduce, control, or eliminate risks to human health and the environment” or, more specifically, the accumulation of “information sufficient to support an informed risk management decision regarding which remedy appears to be most appropriate for a given site”.
After [35]

remediation
1. Giving a remedy.
2. Removal of pollution or contaminants from environmental media such as soil, groundwater, sediment, or surface water for the general protection of human health and the environment.
[1]
remote sensing
Technologies that allow the acquisition and analysis of data without requiring physical contact with the land or water surface being studied. Most determine qualities or characteristics of areas of interest based on measurements of visible light, infrared radiation, or radio energy coming from them.

renewed static test
See static-renewal test.

reproductive value \((V_A) \)
Expected contribution of offspring during the life of an individual of an age class \(x \) in a life table.

rescue effect
Increased probability of a vacated-patch reoccupation in a metapopulation as the number of nearby, occupied patches increases.

resilience (of a community)
Ability of a community to maintain its structure and function in the face of disturbance, and to reorganize following disturbance-driven change.

resistance (in physiology and toxicology)
Ability to withstand the effect of various factors including potentially toxic substances.

Note: The term “resistance” is often reserved for the enhanced ability to cope with a factor due to genetic adaptation. The term “tolerance” is often reserved for enhanced abilities associated with physiological acclimatization. Tolerance may be used for both acclimatization and genetic adaptation.

See also tolerance.

respiratory lamellae
See secondary lamellae.

retention effect
Observed effect of the properties of persistent organic pollutants (POPs) with high lipophilicity which causes them to be bound more firmly than less lipophilic POPs in solid phases such as soil and vegetation; consequently, they spend less time in the atmosphere and are less available for transport in that medium.

retroactive risk assessment
See retrospective risk assessment.

retrospective risk assessment
retroactive risk assessment
Risk assessment dealing with an existing condition.
ring test
Part of an external quality assurance program for assessment of an analytical method or test. A reference institute sends identical samples, which have to be analyzed or tested for specified parameters, to a number of different laboratories. The laboratory has a deadline before which to provide results. Statistical evaluation and interpretation of the results permits assessment of the reliability of the methods used and a comparison of the laboratories’ proficiency.

Note: For accreditation of laboratories, regular participation in ring tests is obligatory, but accreditation is not essential for participation in the tests.

riparian
Interface between land and a flowing body of surface water.

Note: Plant communities along river margins are called riparian vegetation.

risk
1. Probability of adverse effects caused under specified circumstances by an agent in an organism, a population, or an ecological system.
2. Probability of a hazard causing an adverse effect.
3. Expected frequency of occurrence of a harmful event arising from such an exposure.
[1]

risk analysis
Process for controlling situations where an organism, system, or subpopulation could be exposed to a hazard.

Note 1: The risk analysis process consists of three components: risk assessment, risk management, and risk communication.

Note 2: The term is misleading since “analysis” has the fundamental meaning “resolution or breaking up of anything complex into its various simple elements, the opposite process to synthesis; the exact determination of the elements or components of anything complex (with or without their physical separation)”, see [4]. The usage defined here originates with the WHO Joint Expert Committee on Food Additives and has been accepted in this context in spite of objections from terminologists.

[36]

risk assessment
Identification and quantification of the risk resulting from a specific use or occurrence of a chemical or physical agent, taking into account possible harmful effects on individuals or populations exposed to the agent in the amount and manner proposed and all the possible routes of exposure.

Note 1: Risk assessment is generally considered to involve four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization.

Note 2: Quantification ideally requires the establishment of dose–effect and dose–response relationships in likely target individuals and populations.

After [1]
risk characterization
Outcome of hazard identification and risk estimation applied to a specific use of a substance or occurrence of an environmental health hazard.

Note: Risk characterization requires quantitative data on the exposure of organisms or people at risk in the specific situation. The end product is a quantitative statement about the proportion of organisms or people affected in a target population.

risk hypotheses (in ecological risk assessment)
Clear statements of postulated or predicted adverse effects of a toxicant on an assessment endpoint.

risk management
Decision-making process involving considerations of political, social, economic, and engineering factors with relevant risk assessments relating to a potential hazard so as to develop, analyze, and compare regulatory options and to select the optimal regulatory response for safety from that hazard.

Note: Essentially, risk management is the combination of three steps: risk evaluation; emission and exposure control; and risk monitoring.

[1]

risk ratio
See relative risk.

risk source
Agent, medium, process, procedure, or site with the potential to cause an adverse effect or effects.

risk quotient
Ratio of predicted exposure concentration (PEC) to predicted no-effect concentration (PNEC).

Note: The higher this value is above one, the greater the risk. If the value is below one, there should be no risk as a result of the predicted exposure.

[1]

risk reduction
Taking measures to protect humans or the environment against identified risks.

rivet popper hypothesis
Hypothesis that each species in a community contributes to its proper functioning.

Note: Derived from the metaphor that the species can be compared to rivets that hold an airplane together, and the loss of each rivet weakens the structure.

[37]

round-robin test
See ring test.
r-strategy
Opportunistic strategy favoring species that establish themselves quickly, grow quickly to exploit as many resources as possible, and produce many offspring.

rules of practical causal inference
Fox’s rules of practical causal inference that are used in ecotoxicology (environmental epidemiology) to infer causality for toxicant exposure/effect scenarios.

Note: The rules apply the following criteria for objectively evaluating the relationship between a suspect cause and a chronic effect: (1) probability, (2) time order, (3) strength of association, (4) specificity, (5) consistency on replication, (6) predictive performance, and (7) coherence.

[38]

run-off (in ecology)
Portion of the wet precipitation on the land that ultimately reaches streams and, eventually, the sea.

saddle back
See lordosis.

safe concentration
Concentration of a substance to which prolonged exposure will cause no adverse effect.

safety factor
See uncertainty factor.

salinity, S
Mass of dissolved salts in seawater, brackish water, brine, or other saline solution divided by the mass of the solution.

Note 1: In practice, this quantity cannot be measured directly in seawater or other natural waters because of the difficulty of drying the salts from these waters. Salinity is usually calculated from another property (e.g., chlorinity, electrical conductivity) whose relationship to salinity is well known.

Note 2: In oceanography, where precise and reproducible determination of seawater density is of interest, practical salinity, S, is defined in terms of the ratio k_{15} of the electrical conductivity of the seawater sample at 15 °C and 1 atm (1.01325 kPa) to that of a potassium chloride (KCl) solution, in which the mass fraction of KCl is 32.453 6 × 10$^{-3}$ at the same temperature and pressure.

Note 3: Before 1978, the usual unit for S expressed as a mass fraction was permil (no longer recommended), now usually in units g kg$^{-1}$ or expressed as g kg$^{-1}$ without the units given explicitly. Example: the practical salinity of a sample of artificial seawater is $S = 35.000 \ 0 \%e$ or 35.000 0 g kg$^{-1}$ or 35.000 0 × 10$^{-3}$ or 35.000 0.

From [39]
Salt tolerance index, (STI) S_T
Quotient calculated as total plant (shoot + root) dry mass at different salt concentrations compared to the total plant dry mass obtained for the controls, as indicated below:

$$S_T = \frac{m_d(x)}{m_d(i)}$$

where m_d is the total dry mass, and x, i refer to a control treatment and a defined salt treatment, respectively.

After [40]

Saprobic
Living in or being an environment rich in organic matter but lacking oxygen.

Saprobic index
Means of classifying the saprobic state of running waters, covering the full range from unpolluted to extremely polluted waters.

Saprobic water classification
Biological classification of water quality according to five categories:

(a) oligosaprobic: clear, with no or only slight pollution and high dissolved oxygen (DO) content;
(b) p-mesosaprobic: moderately polluted with still high DO content;
(c) x-mesosaprobic: polluted with not very high DO content;
(d) polysaprobic: strongly polluted, with negligible DO content; and
(e) antisaprobic: so polluted that no living organism is capable of living in the water.

Saprobien spectrum
Characteristic change in community composition at different distances below the discharge of putrescible organic waste to a river or stream.

Saprophyte
Organism that carries out external digestion of nonliving organic matter and absorbs the products across the plasma membrane of its cells (e.g., fungi).

Satellite groups
Organisms or groups of organisms treated in a similar fashion to those in standard toxicity tests for the purpose of special additional studies.

Scaling
Transformation of allometric data to produce a quantitative relationship between organism (or species) size and some characteristic such as metabolic rate, gill surface area, lung ventilation rate, or biochemical activity.

Scoliosis
Lateral curvature of the spine.
See also lordosis.
scope for growth
Index ($P = production$) calculated as the amount of energy taken into the organism in its food (A) minus the energy used for respiration (R) and excretion (U): $P = A - R - U$.

Note: It is an indicator of the amount of energy available for growth or production of offspring.

scope of activity
Difference between the rates of oxygen consumption of an organism under maximal and minimal activity levels.

Note: It reflects the respiratory capacity available for the diverse demands on and activities of an organism.

screening
1. adj. Describing a testing procedure designed to separate people or objects according to a fixed characteristic or property.
2. v. Carrying out test(s), examination(s), or procedure(s) in order to expose undetected abnormalities, unrecognized (incipient) diseases, or defects: examples are mass X-rays and cervical smears.

Note: Pharmacological or toxicological screening consists of a specified set of procedures to which a substance is subjected in order to characterize its pharmacological and toxicological properties and to establish dose–effect and dose–response relationships.

After [1]

screening level
Decision limit or cut-off point at which a screening test is regarded as positive.

screening test (preliminary test or range-finding test)
1. Test conducted to estimate the concentrations to be used for a definitive test.
2. Acute test used early in a testing program to evaluate the potential of a substance to produce a given adverse effect (e.g., mortality).

secondary lamellae (respiratory lamellae)
Parallel rows of projections on the dorsal and ventral sides of each primary lamella of the fish gill. They are the primary sites of gas exchange of the gills.

secondary poisoning
Poisoning of a predator as a result of eating prey that has accumulated a toxicant as a result of biomagnification through its food chain.

secondary substrate metabolism
Microbial growth on a nutrient substrate while transforming another substrate without gaining energetic benefit.

Note: Although it must occur, secondary substance metabolism is very difficult to demonstrate in nature, but it can be demonstrated in pure cultures.

See *cometabolism*.

secondary succession
Sequential appearance of *species* following major changes to an established *ecosystem*.

Note: Catastrophic weather events, fire, or human activities all disturb the environment. After such an event on land, well-developed *soil* remains, giving pioneer species an easy foothold; similar changes occur in abandoned agricultural areas.

See *succession*.

sediment
1. Matter that settles to the bottom of a liquid.
2. In geology, matter deposited by water or wind.

selection components
Components of the life cycle of an individual upon which natural selection can act. They are *viability selection*, *sexual selection*, *meiotic drive*, *gametic selection*, and *fecundity selection*.

Selyean stress
Syndrome named for Hans Selye (1907–1982) that consists of all the nonspecifically induced changes within a biological system following and during environmental stress. [41]

semelparous species
Species that reproduces once.

semi-continuous activated sludge (SCAS) test
Test for inherent biodegradability of organic substances in activated sludge by measurement of the decrease in *dissolved oxygen content* (DOC) in the test system.

semi-static test
See *static-renewal test*.

sentinel species
Feral, caged, or endemic *species* used in measuring and indicating the level of *contamination* or effect during a *biomonitoring* exercise.

seston
Minute living organisms and particles of nonliving matter that float in water and contribute to turbidity.

sexual selection
Natural selection involving differential mating success of individuals.

Shannon–Wiener diversity index, H
Index based on the assumption that all species are represented in the sample studied and that the sample was obtained randomly, giving the following mathematical relationship:
\[H = -\sum_{i=1}^{S} p_i \log p_i \]

where \(p_i \) is the fraction of individuals belonging to the \(i \)-th species and \(S \) is the number of species.

Note 1: The Shannon index is affected by both the number of species and their equitability, or evenness. Both a greater number of species and a more even distribution increase diversity as measured by \(H \).

Note 2: The most important source of error in this index is failure of sampling to include all species from the community of interest.

See also **diversity index**.

Shelford’s law of tolerance

Species’ tolerance(s) along an environmental gradient (or series of environmental gradients) will determine its *population* distribution and size in the environment.

silt

Sediment particles with a grain size between 0.004 and 0.062 mm, i.e., coarser than clay particles but finer than sand.

Simpson’s diversity index, \(D \)

Dominance index weighted toward the abundance of the most common *species*, giving the probability of any two individuals drawn at random from an infinitely large community belonging to different species. The bias corrected mathematical form of Simpson’s index is

\[D = \sum_{i=1}^{S} p_i^2 \]

where \(p_i \) is the fraction of all organisms which belong to the \(i \)-th *species* and \(S \) is the number of species.

Note: Since \(D \) and diversity are negatively related, Simpson’s index is usually expressed as either a reciprocal or a complementary form (1/\(D \) or 1-\(D \)) so that as the index goes up, so does measure of diversity.

See also **diversity index**.

simulated field studies

Experimental *ecosystem* that should be: physically confined; self-maintaining; multitrophic; have a duration time exceeding the generation time of the penultimate trophic level present; and of size sufficient to enable pertinent sampling and measurements to be made without seriously influencing the structure and dynamics of the system.

After [5]

sister chromatid exchange (SCE)

Reciprocal exchange of chromatin between two replicated chromosomes that remain attached to each other until anaphase of mitosis; used as a measure of mutagenicity of substances that produce this effect.

[1]
smog
Mixture of smoke and fog.

Note: Term is used to describe city fogs in which there is a large proportion of particulate matter and also a high concentration of sulfur and nitrogen oxides.

soil
Naturally occurring, unconsolidated mineral and (or) organic material at the surface of the Earth that is capable of supporting plant growth. It extends from the surface to 15 cm below the depth at which properties produced by soil-forming processes can be detected.

Note 1: Soil formation results from an interaction between climate, living organisms, and surface relief acting on soil parent material.

Note 2: Unconsolidated material includes material cemented or compacted by soil-forming processes. Soil may have water covering its surface to a depth of 60 cm (or less in the driest part of the year).

table
Minor component of a solution that is regarded as having been dissolved by the solvent.

solution
Liquid or solid phase containing more than one substance, when for convenience, one (or more) substance, which is called the solvent, is treated differently from the other substances, which are called solutes.

solvent
See solute, solution.

solvent drag
Movement of a solute (e.g., a contaminant) along with the bulk movement of the solvent.

somatic death
Death of an individual organism.

somatic risk
Risk of an adverse effect to the exposed individual associated with genetic damage to somatic cells, e.g., damage leading to cancer.

sorbate
Noncommittal term used instead of adsorbate or absorbate when the sorption process is undefined.

sorbent
Noncommittal term used instead of adsorbent or absorbent when the sorption process is undefined.
sorption
Process whereby a solute becomes physically or chemically associated with a sorbent regardless of the mechanism (absorption, adsorption, chemisorption).

Note: Sometimes used instead of adsorption or absorption when it is difficult to discriminate experimentally between these two processes.

sorption constant
Quantity describing the distribution of a substance between a solvent and a sorbent, typically water and sediment, at equilibrium, e.g.,

\[K_d = \frac{C_{\text{sediment}}}{C_{\text{water}}} \]

After [5]

source term
Estimate of the total amount released, or the temporal pattern of the rate of release, of a pollutant from a source.

spawning
1. vb. Release of eggs or sperm gametes from mature adult fish.
2. adj. Behavior related to the readiness of mature adult fish to release gametes.

Spearman–Karber method
Nonparametric method to estimate the LC\textsubscript{50}, EC\textsubscript{50}, or LD\textsubscript{50} when it is difficult or unnecessary to assume a specific model for the dose- or concentration effect data.

See also median effective concentration, median lethal concentration, median lethal dose.

speciation (in chemistry)
Distribution of an element amongst defined chemical species in a system.

[1]

speciation analysis (in chemistry)
Analytical activities of identifying and (or) measuring the quantities of one or more individual chemical species in a sample.

[1]

species
1. (in biology) Group of organisms of common ancestry that are able to produce fertile progeny only among themselves.
2. (in chemistry, of an element) Specific form of an element defined as to isotopic composition, electronic or oxidation state, and (or) complex or molecular structure.

After [1]

species–area relationship
Common pattern in which the number of species on islands decreases as island area decreases.
species assemblage
Operationally defined subset of the entire community.

species-deletion stability
Tendency in a model community for the remaining species to remain at locally stable equilibria after a species is made extinct.

species differences in sensitivity
Quantitative or qualitative differences of response to the action(s) of a potentially toxic substance on various species of living organisms.

[1]

species diversity
Heterogeneity of an ecological community, considering both species richness \((S)\) and species evenness.

species evenness
Degree to which the individuals in the community are evenly or uniformly distributed among species.

species imbalance
Change in the species numbers or diversity in an ecosystem, or in their interactions, which results in change in ecological character and its functions and attributes. See also ecological imbalance.

species richness \((S)\)
Total number of species in an ecosystem.

Note: This index makes no use of relative abundances.

See biodiversity.

species sensitivity distribution (SSD)
Statistical relationship between exposure concentration and a defined effect derived from a combination of single-species test data to predict concentrations affecting only a certain percentage of the total number of species in a defined community.

Note: Single-species data [e.g., median lethal concentration \((LC_{50})\) or no-observed-effect concentration \((NOEC)\) values] for many species are fitted to a distribution relationship such as the lognormal or log-logistic curve. From this distribution of species sensitivities, a hazardous concentration \((HC_p)\) is identified at which a certain percentage \((p)\) of all species is likely to be affected. The most conservative form of this approach uses the lower 95% tolerance limit of the estimated percentage to ensure that the specified level of protection is achieved.

[42]
species-specific sensitivity
Quantitative and qualitative features of response to the action(s) of a potentially toxic substance that are characteristic for a particular species of living organism.
[1]

specific action concept
Assumption made in radiotracer usage concerning specificity of action of a radionuclide used to trace or quantify the movement of a stable nuclide (e.g., \(^{14}\)C for stable C), implying that the radionuclide behaves identically in chemical and biological processes to its nonradioactive analog (e.g., stable C).

Note: Sometimes confusingly called the “specific activity concept”.

spiked bioassay (SB) approach
Sediment toxicity test method to generate a concentration response model for effects to individuals placed in sediments spiked with different amounts of toxicant.

Note: The method may also be used to test hypotheses regarding the mechanism of production of previously observed effects.

spillover hypothesis
Hypothesis that toxic effects of metals will begin to occur after the metal concentration exceeds the capacity of the amount of metallothionein present to bind the metal. The unbound metals then “spill over” to interact at sites of adverse action. This is based on the assumption that binding by metallothionein sequesters toxic metals away from sites of action.

stable age distribution
Abundance of relative age classes that a population approaches if it is allowed to grow exponentially.

stable population
Population with a constant distribution of individuals among the various age classes and a zero growth rate.

Note: Stable populations do not change in size over time if environmental conditions do not change.

standard (general definition)
That which is established as a measure or model to which others of a similar nature should conform. See environmental quality standard.

standard (in law or regulation)
technical directive
Technical specification, usually in the form of a document available to the public, drawn up with the consensus or general approval of all interests affected by it, based on the consolidated results of science, technology, and experience, aimed at the promotion of optimum community benefits and approved by a body recognized on the national, regional, or international level.
standard (in analytical chemistry)
See *reference material*.

static-renewal test
batch-replacement test
renewed static test
renewal test
semi-static test
static-replacement test
Modified static aquatic *toxicity* test in which solutions are completely or partially replaced with new solutions at set periods during *exposures* or in which organisms are periodically transferred to new solutions.

static-replacement test
See *static-renewal test*.

static-toxicity test
Aquatic *toxicity* test in which the *exposure* water is not changed during the test.

steady state (in chemistry and toxicology)
State of a system in which the conditions do not change in time.

 Note: For further information, see [3].

[1]

stratification
Process by which materials form or are deposited in layers, as in sedimentary rocks and some igneous rocks. The atmosphere and the ocean also exhibit stratification, with the warmer air or water occupying the upper layers.

stratified sampling
Sampling of individual subgroups (strata) of a *population* after its division into homogeneous strata.

stress (in biology)
Any condition that results in reduced growth of an organism or that prevents an organism from realizing its “genetic potential”.

stressor
Any physical, chemical, or biological factor causing an adverse response on any component of an *ecosystem*.

stress-protein fingerprinting
Proposed use of the patterns of stress-protein induction seen in the field to suggest the particular *toxicant* inducing the response, after patterns from organisms sampled in the field are compared with those obtained with single-candidate toxicants in the laboratory.
stress proteins
Several classes of proteins coded by genes transcriptionally activated by acute stresses, generally serving a protective or adaptive function.

Note 1: These proteins include chaperones such as the heat shock proteins, enzymes protective against oxidative stress, metallothioneins, etc.

Note 2: Stressors include physical agents such as heat and radiation, infection and inflammation, oxidative stress and hypoxia, desiccation and starvation, metals, xenobiotics, etc.

See also heat shock proteins.

stress theory of aging
Theory that stress shortens longevity by accelerating energy expenditure. Selection takes place for resistance to stress, and as an epiphenomenon, individuals resistant to stress will predominate in extreme age classes of a population. The diminution of homeostasis under stress with age should be slowest in individuals with highest longevity.

See also rate-of-living theory of aging.

structural diversity
Range of types of physical structure in a community that may provide habitats for species.

structure–activity relationship (SAR)
Association between specific aspects of molecular structure and defined biological action.

See also quantitative structure–activity relationship.

structure–metabolism relationship (SMR)
Association between the physicochemical and (or) the structural properties of a substance and its metabolic behavior.

Sturm test
Biodegradation test based on the measurement of CO₂ production.

stygobiont
Organism that lives only in groundwater.

stygophile
Organism that lives in groundwater and in surface water.

subcooled
Term applied to a substance that is a liquid at a temperature lower than the saturation temperature for the existing pressure.

Note: Sometimes such a substance is described as a “compressed” liquid since the existing pressure is greater than the saturation pressure for the given temperature.
subcooled liquid vapor pressure (P_L)

Vapor pressure of a *subcooled* liquid.

Note: This physicochemical property is an important factor in determining the fate of chemicals in the environment and in allowing for the effects of environmental temperature variability.

[43]

sublimation

Direct transition of a solid to a vapor without passing through a liquid phase.

[3]

succession

Orderly sequential progression of changes in *community* composition that occurs during development of new *populations* in any area, from initial colonization to the attainment of the *climax* typical of a particular geographic area.

See also *allogenic succession*, *autogenic succession*, *autotrophic succession*, *heterotrophic succession*, *primary succession*, *secondary succession*.

supercooled

Term describing a substance that persists as a liquid at a temperature below its freezing point without solidification or crystallization.

surfactant

Surface active agent

Substance that lowers the surface tension of the medium in which it is dissolved, and (or) the interfacial tension with other phases, and, accordingly, is positively adsorbed at the liquid/vapor interface and (or) at other interfaces.

Note: Surfactants facilitate dispersion of other substances in water.

See *detergent*.

[3]

surrogate organism

Test organism, or *population* that is cultured under laboratory conditions to serve as a substitute in *toxicity* testing for indigenous organisms, communities, or populations.

surrogate toxicant

Relatively well-studied substance whose properties are assumed to apply to an entire chemically and toxicologically related class; e.g., benzo[a]pyrene data may be used as toxicologically equivalent to that for all carcinogenic polynuclear aromatic hydrocarbons.

[1]
surveillance
Systematic ongoing collection, collation, and analysis of data and the timely dissemination of information to those who need to know in order that action can be taken to initiate investigative or control measures.

[1]

survival time
Time interval between initial exposure of an organism to a harmful substance and death.

survivorship
Proportion of animals surviving between two specified ages.

survivorship curve
Graph showing how survivorship from birth varies with age.

susceptibility
Condition of an organism or ecological system that makes it more vulnerable to a given exposure than the majority of the population or group of ecological systems to which it belongs.

Note: Susceptibility is inversely proportional to the magnitude of the exposure required to cause a toxic effect.

suspension feeder
filter feeder
Animal that feeds by straining suspended matter and food particles from water, typically by passing the water over a specialized structure, such as the baleen of baleen whales.

Note 1: Some animals that use this method of feeding are clams, barnacles, krill, mysids, sponges, whale sharks, and flamingoes.

Note 2: Other types of feeder are deposit feeder, fluid feeder, and food-mass feeder.

syngenetic
Describing mineral deposits formed at the same time as the enclosing rocks; characterized by or pertaining to a formation contemporaneous with the enclosing or surrounding rock.

[4]

systematics
taxonomy
Study of the diversity of past and present life forms and of relationships among them through time.

Note: Relationships are visualized in cladograms (evolutionary trees, phylogenetic tree phylogenies). Systematics is used to understand the evolutionary history of life on Earth.

See evolution.
taxocene
Taxonomically defined subset of an entire community.
See taxonomy.

taxon, pl. -a
taxonomic unit
Name given to designate an organism or group of organisms.

Note: In biological nomenclature according to Carl Linnaeus, a taxon is assigned a taxonomic rank and can be placed at a particular level in a systematic hierarchy reflecting evolutionary relationships.

taxonomy
Science applied to the allocation of biological names and the rules of naming.

Note: Classification (systematics) is the process of rank ordering of taxa according to presumptive evolutionary (phylogenetic) relationships.

teratogen
Agent that, following exposure of a mother, may induce nonheritable permanent structural malformations or defects in the offspring.
After [1]

teratogenic
Capable of causing nonheritable permanent structural malformations or defects in the offspring of an exposed parent.

teratogenicity
1. Potential to cause the production of nonheritable structural malformations or defects in offspring.
2. Production of nonheritable structural malformations or defects in offspring.
[1]

teratogenic index (TI)
Mortality of eggs expressed as an LC$_{50}$ divided by the TC$_{50}$ (or EC$_{50}$) for production of abnormal embryos with nonheritable permanent structural malformations or defects following exposure to a teratogen. The TI is thought to reflect the developmental hazard of a contaminant.

teratogenesis
Process resulting in permanent structural malformations or defects in the offspring of a parent exposed to a teratogen.

teratology
Study of the production and consequences of permanent structural malformations and (or) defects in the offspring of a parent exposed to a teratogen.
After [1]
terrestrial
Relating to land, as distinct from water or air.

threshold-effect concentration (TEC)
Concentration calculated as the geometric mean of no-observed-effect concentration (NOEC) and lowest-observed-effect concentration (LOEC).

Note 1: “Chronic” or “subchronic” may be added as qualifiers dependent on the duration of exposure in the test.

Note 2: The TEC is equivalent to the maximum acceptable toxicant concentration (MATC) used in some countries.

threshold theory
Theory that, for a given substance, no toxic effect can occur below a defined low dose.

tiered testing
Structured approach to assessment of the fate and effects of substances, where a tier of relatively simple tests is used initially to select substances of concern and to define their toxicity. If the information from these tests is inadequate for regulatory decisions, further more complex tests (higher tier tests) may be required. For example, under a tiered structure, testing might progress from acute studies to chronic laboratory studies to field studies.

time-independent (TI) test
Acute toxicity test with no predetermined temporal endpoint.

Note: This type of test, sometimes referred to as a “threshold” or “incipient” lethality test, is allowed to continue until acute toxicity (mortality or a defined sublethal effect) has ceased or nearly ceased and the toxicity curve (median survival time vs. test material concentration) indicates a threshold or incipient concentration. With most test materials, this point is reached within 7–10 d, but it may not be reached within 21 d. Practical or economic reasons may dictate that the test be stopped at this point and a test be designed for longer duration.

[5]

tolerance
1. Adaptive state characterized by diminished effects of a particular dose of a substance: the process leading to tolerance is called “adaptation”.

See genetic adaptation, physiological adaptation.

2. In food toxicology, dose that an individual can tolerate without showing an effect.

3. Ability to experience exposure to potentially harmful amounts of a substance without showing an adverse effect.

4. Ability of an organism to survive in the presence of a toxic substance: increased tolerance may be acquired by adaptation to constant exposure.

5. In immunology, state of specific immunological unresponsiveness.

[1]
tolerance index (TI)
Quotient of an adequate parameter acquired under treated and control environments, multiplied by 100, thus:

\[TI = \left(\frac{\text{parameter treated}}{\text{parameter control}} \right) \times 100 \]

Note: This index was originally defined in terms of root growth.

See air pollution tolerance index, pollution tolerance index, salt tolerance index.

[44]

top-down ecotoxicological study
Approach to investigating ecotoxicological effects that starts with a determination of the presence and nature of any adverse effects via responses at community and ecosystem levels of organization rather than the suborganisal levels of organization.
See also bottom-up ecotoxicological study.
[5]

total organic carbon (TOC)
Organic matter content of soil, sediment, or water determined by measurement of organic carbon as the ratio of mass of organic carbon/mass of solid or of water.

Note 1: TOC is determined by oxidation of the organic matter into carbon dioxide (CO₂) after removal of inorganic carbon such as carbonate or hydrogen carbonate. TOC includes all the carbon atoms covalently bonded in organic molecules.

Note 2: Most of the organic carbon in water is dissolved organic carbon (DOC), with the remainder referred to as particulate organic carbon. In natural waters, TOC is composed primarily of nonspecific humic materials.

See dissolved organic carbon.

toxic
Able to cause injury to living organisms as a result of physicochemical interaction.

toxicant
See toxic substance.

toxic chemical
See toxic substance.

toxic metal
See toxic substance.

toxic substance
poison
toxicant
toxic chemical
Substance causing injury to living organisms as a result of physicochemical interactions.
Note 1: All substances are toxic above a certain dose (or exposure). Thus, the term is normally applied only to those substances causing toxicity at relatively low doses.

Note 2: Toxicity of any substance varies from organism to organism. Thus, this term should be accompanied by the name of the organism to which it applies, but this is rare. In common use, the term refers to toxicity to humans and related mammals.

Note 3: In ecotoxicology, great care should be taken in using this term because of the variation in susceptibility of different species, some of which have adapted to survive, and even benefit from, exposure to substances which are very toxic to many other species.

After [1]

toxic unit (TU)
toxicity unit
Dose or concentration of a toxicant expressed in units of lethality such as units of LD\(_{50}\) or LC\(_{50}\).

Note: For example, if TUs are based on the LC\(_{50}\), a chemical with an LC\(_{50}\) of 20 mg l\(^{-1}\) would be present at 0.5 TU in a 10 mg l\(^{-1}\) solution. In combined exposures, the toxicities of the individual components can be expressed in TUs.

See median lethal concentration, median lethal dose.

toxicity
1. Capacity to cause injury to a living organism defined with reference to the quantity of substance administered or absorbed, the way in which the substance is administered and distributed in time (single or repeated doses), the type and severity of injury, the time needed to produce the injury, the nature of the organism(s) affected, and other relevant conditions.
2. Adverse effects of a substance on a living organism defined as in 1.
3. Measure of incompatibility of a substance with life: This quantity may be expressed as the reciprocal of the absolute value of median lethal dose (1/LD\(_{50}\)) or median lethal concentration (1/LC\(_{50}\)).

[1]

toxicity curve
Curve obtained by plotting the median survival times of a group of test organisms against the concentration of a substance on a logarithmic scale.

toxicity equivalency factor (TEF), f
1. Ratio of the toxicity of a chemical to that of another structurally related chemical (or index compound) chosen as a reference.
2. In risk assessment, ratio of the toxicity of a chemical to that of another structurally related chemical (or index compound) chosen as a reference. Factor used to estimate the toxicity of a complex mixture, commonly a mixture of chlorinated dibenzo-p-dioxins [oxanthrenes], furans, and biphenyls: in this case, TEF is based on relative toxicity to 2,3,7,8-tetrachlorodibenzo-p-dioxin [2,3,7,8-tetrachlorooxanthrene] for which the f = 1.

[1]
toxicity equivalent (TEQ), T_{xe}
Contribution of a specified component (or components) to the toxicity of a mixture of related substances.

Note 1: The amount-of-substance (or substance) concentration of total toxicity equivalent is the sum of that for the components B, C … N.

Note 2: Toxicity equivalent is most commonly used in relation to the reference toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin [2,3,7,8-tetrachlorooxanthrene] by means of the toxicity equivalency factor (TEF, f) that is 1 for the reference substance. Hence, where c is the amount-of-substance concentration:

$$T_{xe} = \sum_{i=B}^{N} f_i c_i$$

[1]

toxicity identification and evaluation (TIE)
Systematic pretreatment (e.g., pH change, filtration, or aeration) of a sample to obtain defined fractions that are subsequently tested for their toxicity. This fractionation is designed to separate out defined substances and thus to identify the agent(s) primarily responsible for lethal or sublethal toxicity of a complex mixture.

toxicity value (T_x)
Factor used to estimate risk. It may be a reference dose or it may be calculated from the following equation:

$$T_x = m C$$

where m is the slope of a published dose–effect relationship and C is the toxicant concentration.

trace element (in biology)
Element required in very small quantities by an organism to maintain health.

Note 1: This term often has an operational definition as an element present in body fluids or compartments near the detection limits of standard analytical techniques.

Note 2: Use of the term is often misleading since it is meaningless unless accompanied by a statement of which organisms show a requirement for the element.

trace element (in geology)
Element having an average concentration in a given sample of less than about 100 atoms per million atoms (ppm) or less than 100 µg g$^{-1}$.

After [3]

trace metal
See trace element, trace nutrient.
trace nutrient
micronutrient
Substance required in very small quantities by a defined organism to maintain health.

Note 1: The quantities required for health and the species must be stated before application of this term has any meaning.

Note 2: Use of the term is often misleading since it is meaningless unless accompanied by a statement of which organisms show a requirement for the nutrient and the amount required.

tracer
1. Entity by which something may be followed; for example, a radioactive isotope may replace a stable chemical element in a toxic compound enabling the toxicokinetics to be followed.

[1]
2. Foreign substance mixed with or attached to a given substance to enable the distribution or location of the latter to be determined subsequently.

[3]
3. Labeled member of a population used to measure certain properties of that population.

[1]

trade-off (in population ecology)
Exchange of one advantageous character for another. For example, rapid growth in insects living in an agricultural area may be replaced by resistance to a pesticide because some of the energy otherwise available for growth is used to degrade the pesticide. The result may be reduced fitness.

trigger values
Criteria applied to results from tests (for fate or effects) which prompt further studies, e.g., moving to the next tier of tests (see tiered testing), which are generally more complex.

trophic
Relating to nutrition.

trophic cascade
Situation arising when predators in a food chain suppress the abundance of their prey, thereby releasing the next lower trophic level from predation (or herbivory if the intermediate trophic level is an herbivore).

Note 1: For example, if the abundance of large piscivorous fish is increased in a lake, the abundance of their prey, zooplanktivorous fish, should decrease, large zooplankton abundance should increase, and phytoplankton biomass should decrease.

Note 2: Trophic cascades may also be important for understanding the effects of removing top predators from food webs, as humans have done in many places through hunting and fishing activities.
trophic dilution
Decrease in contaminant concentration as trophic level increases; this results from a net balance of ingestion rate, uptake from food, internal transformation, and elimination processes favoring loss of contaminant that enters the organism via food.

trophic enrichment
See biomagnification.

trophic level
trophic position
Position in a food chain, assessed by the number of energy-transfer steps to reach that level.
See ecological energetics.

trophic position
See trophic level.

trophic structure
Organization of an ecological community described in terms of energy flow through its various trophic levels.

trophic transfer
Transfer of a substance from one trophic level to another.

trophic transfer factor
Ratio between the concentration of a compound in a predator and in its prey.

turbidity (in light scattering, τ)
Apparent absorbance of incident radiation due to scattering.
[3]

turbidity (of water)
Extent to which the clarity of water is reduced by the presence of suspended or other matter that causes light to be scattered and absorbed rather than transmitted (in straight lines) through the sample.

twin-tracer technique
Experimental method for evaluating assimilation that introduces simultaneously a radiotracer of the substance being assimilated and an inert tracer that will not be assimilated, thus providing a basis for evaluating the assimilation.

type A organism (in relation to sediment)
Animal or plant living in contact with sediments but unable to ingest particulates.

Note: The classification implies that such organisms take up substances from interstitial water but not from sediment-associated particulates; examples of such organisms are rooted macrophytes and benthic algae.
Glossary of terms used in ecotoxicology

See type B organism.
[45]

type B organism (in relation to sediment)
Animal or plant living in contact with sediments and capable of ingesting particulates.

Note: The classification implies that such organisms take up substances from both *interstitial water* and from sediment-associated particulates; examples of such organisms are detritivorous organisms and suspension feeders.

See type A organism.
[45]

uncertainty factor (UF)
1. In assay methodology, confidence interval or fiducial limit used to assess the probable precision of an estimate.
2. In toxicology, value used in extrapolation from experimental animals to humans (assuming that humans may be more sensitive) or from selected individuals to the general population. For example, a value applied to the *no-observed-effect-level* (NOEL) or *no-observed-adverse-effect-level* (NOAEL) to derive an *acceptable daily intake* (ADI) or tolerable daily intake (TDI).

Note: The NOEL or NOAEL is divided by the value to calculate the ADI or TDI.
[1]

upstream water
Water in a rivulet, river, or lake that is situated above a defined point, in a direction opposite to that of the current flow.

Note: Upstream water is not influenced by incoming effluent at or below the defined point because the effluent is carried away by the flow.

uptake
Entry of a substance into the body, into an organ, into a tissue, into a cell, or into the body fluids by passage through a membrane or by other means.

Note: The term may also be applied to sorption of a substance onto the outside of an organism, e.g., the shell of a mollusk or the exoskeleton of an insect even without any entering the body or its cells.

After [1]
See also *absorption* (in biology).

uptake rate constant
First-order one-compartment constant to describe the *uptake* of a substance by an organism from water.

viability selection
Component of the *life cycle* of an individual in which natural selection can occur through the differential survival of individuals. It begins at the formation of the zygote and continues throughout the life of the individual.

vital rates
Measures of how fast vital statistics change in a population (usually expressed per 1000 individuals).

Note: There are two categories within vital rates, crude rates referring to change in the whole population (e.g., overall change in births and deaths per 1000) and refined rates referring to change in a specific demographic such as age, sex, race, etc.

vitellogenin
Protein that forms part of the yolk of egg-laying vertebrates.

vulnerability (in toxicology)
Susceptibility to harm by toxicants.

Wahlund effect
Net deficit of heterozygotes when two populations, each in Hardy–Weinberg equilibrium but with different allele frequencies, are mixed and the genotype frequencies quantified in a combined population sample.

waldsterben
Widespread and substantial decline in growth and the change in behavior of many softwood and hardwood forest ecosystems in central Europe.

wash-out
Removal of air pollutants by falling rain or snow.

waste-water
General term describing effluents, leachate, and elutriates which enter the natural environment.

watershed
See drainage basin.

weakest-link incongruity
Questionable extension of the critical life-stage concept (see critical life-stage testing) that protection of the most sensitive life stage will ensure protection of all life stages; it assumes that exposure of field populations to concentrations identified in laboratory testing as causing significant mortality at a critical stage of life will result in significant impact on the field population.

weathering
Degradation of materials by abiotic environmental forces and associated biotic processes.

Note: Examples include the breakdown of rocks and other solid materials into smaller and smaller fragments; and the combined effects of evaporation, dissolution, UV degradation, and bacterial mineralization of complex mixtures, e.g., oil.
Weibull model

Dose–response model of the form

\[P(d) = \gamma + (1 - \gamma) (1 - e^{-\beta d^\alpha}) \]

where \(P(d) \) is the probability of a tumor (or other response) from lifetime, continuous exposure at dose \(d \) until age \(t \) (when tumor is fatal), \(\alpha \) is a fitted dose parameter (sometimes called the Weibull parameter), \(\beta \) is a fitted dose parameter, and \(\gamma \) is the background response rate.

[1]

weight composition

Distribution of organisms among the various weight classes present in a population.

Note: The sum of individual weights over all weight classes equals the population biomass.

weight of evidence

1. (in general) Quantitative, semiquantitative, or qualitative estimate of the degree to which the evidence supports or undermines a given conclusion.

2. (in toxicology) Estimate of the extent to which the available biomedical data support the hypothesis that a substance causes a defined toxic effect such as cancer in humans.

After [1]

Weismannism

Theory of evolution and heredity propounded by the German biologist, August Weismann, especially in regard to the continuity of the germ-plasm and the nontransmission of acquired characteristics.

[4]

wet deposition

Transfer of chemicals from the atmosphere to the Earth’s surface in atmospheric water precipitation (atmospheric deposition), e.g., rain, snow, or hail, of pollutants that occur in the precipitation, e.g., as a result of Brownian capture, nucleation, dissolution, or impaction.

See dry deposition.

wetland

Area of land consisting of soil that is saturated with moisture, such as a swamp, marsh, or bog.

Note 1: As defined in terms of physical geography, a wetland is an environment “at the interface between truly terrestrial ecosystems and aquatic systems making them inherently different from each other yet highly dependent on both”.

Note 2: Wetlands are ecotones. Wetlands often host considerable biodiversity and endemism.

Note 3: In many locations such as the United Kingdom and United States, wetlands are the subject of conservation efforts and biodiversity action plans (BAPs).

See conservation biology, conservation ecology.

[47]
whole-effluent toxicity (WET)
Total toxic effect of an effluent measured directly with aquatic organisms in a toxicity test.
[5]

whole sediment
Sediment and associated interstitial water that have had minimal manipulation.
[5]

xenobiotic
Compound with a chemical structure foreign to a given organism.

Note: Frequently restricted to man-made compounds.

After [1]

zooplankton
Small floating or weakly swimming animals that drift with water currents and which, with phytoplankton, make up the planktonic food supply upon which almost all oceanic organisms ultimately depend. See also plankton.

ANNEX 1: ABBREVIATIONS AND ACRONYMS USED IN ECOTOXICOLOGY

AchE acetylcholinesterase
ACR acute-to-chronic toxicity ratio
AEC adenylate energy charge
ADI acceptable daily intake
AF accumulation factor, application factor
AHH aryl hydrocarbon hydroxylase
ALAD aminolaevulinic acid dehydrase [porphobilinogen synthase, 5-aminolevulinate dehydrase]
ALARA as low as reasonably achievable
APTI air pollution tolerance index
ATCN asymptotic threshold concentration
AVS acid-volatile sulfide
B biomagnification factor
BAF bioaccumulation factor
BAP biodiversity action plan
BCC bioaccumulative chemicals of concern
BCF bioconcentration factor
BF bioaccumulation factor
BI bioavailability index
BLM biotic ligand model
BOD biochemical (biological) oxygen demand
BSAF biota-sediment accumulation factor
BSF biota-sediment factor
CBA cost–benefit analysis
CBR critical body residue
CF concentration factor
CFC chlorofluorocarbon
Glossary of terms used in ecotoxicology

ChE cholinesterase
CMP 2-(4-chloro-2-methylphenoxy)propionic acid
COD chemical oxygen demand
COPEC contaminants of potential concern
CSM conceptual site model
2,4-D 2,4-dichlorophenoxyacetic acid
2,4-DB 2,4-dichlorophenoxybutyric acid [4-(2,4-dichlorophenoxy)butyric acid]
\(p,p' \)-DDT \(p,p' \)-dichlorodiphenyltrichloroethane [4,4’-(2,2,2-trichloroethane-1,1-diyl)bis(chlorobenzene)]
DEB dynamic energy budget
DNOC dinitro-orthocresol [3,5-dinitrobenzene-1,2-diol]
DO dissolved oxygen
DOC dissolved oxygen content, dissolved organic carbon
DOM dissolved organic matter
DT depuration time
DU Dobson unit
EA environmental assessment
EBI ergosterol biosynthesis inhibitor (fungicide)
EC effective concentration
ED effective dose
EEC estimated (expected) environmental concentration
\(EF_{\text{crust}} \) enrichment factor (for the Earth’s crust)
EIA environmental impact assessment
EIS environmental impact statement
ELS early life stage
EQO environmental quality objective
EqP equilibrium partitioning
EQS environmental quality standard
EROD ethoxyresorufin \(O \)-deethylase [7-ethoxyphenoxazin-3-one \(O \)-deethylase]
ET effective time
FATS fish acute toxicity syndrome
FAV final acute value
FCV final chronic value
FIAM free ion activity model
FONSI finding of no significant impact
FS feasibility study
GABA gamma-aminobutyric acid [4-aminobutyric acid]
GAS general adaptation syndrome
GIS geographic information system
GEM genetically engineered microorganism
GLP good laboratory practice
GMO genetically modified organism
HCB hexachlorobenzene
HC\(p \), HCS hazardous concentration
HEDSET harmonized electronic data set
HI hazard index
HMO hepatic microsomal monooxygenase
HPVC high production volume chemical
HQ hazard quotient
HSP heat shock protein

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
IC inhibitory concentration
ID inhibitory dose
IED individual effective dose
IRIS integrated risk information system
IT_{50} median inhibitory time
K_{OA} octanol-air partition coefficient
K_{OW} octanol-water partition coefficient
LBB lethal body burden
LC lethal concentration
LD lethal dose
LED lowest effective dose
LFER linear free energy relationship
LLE loss of life expectancy
LOAEL lowest-observed-adverse-effect level
LOEC lowest-observed-effect concentration
LOEL lowest-observed-effect level
LSER linear solvation energy relationship
LT lethal time
LTRE life-table response experiment
LV limit value
MAC maximum allowable concentration
MAT mean absorption time
MATC maximum acceptable toxicant concentration
MCPA (2-methyl 4-chloro-phenoxyacetic) acid [2-(4-chloro-2-methylphenoxy)propionic acid]
MF modifying factor
MIC minimum inhibitory concentration
MIT median inhibitory time
MLE maximum likelihood estimation
MO monooxygenase
MRT mean residence time
MSD minimum significant difference
MTTD median time to death
MVP minimum viable population
NED normal equivalent deviation
NOAEL no-observed-adverse-effect level
NOEC(D) no-observed-effect concentration (dose)
NOEL no-observed-effect level
NRL no-response level
NTE neuropathy target esterase (acetylcholinesterase)
OC organic carbon, organochlorine compound
OP organophosphorus compound
P_{OA} octanol-air partition coefficient
P_{OW} octanol-water partition coefficient
PAH polycyclic aromatic hydrocarbon
PBT persistent, bioaccumulative, and toxic
PCB polychlorinated biphenyl
PCDD polychlorinated dibenzodioxin
PCDF polychlorinated dibenzofuran
PD population density

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
PEC predicted environmental concentration
PFOA perfluorooctanoic acid
PFOS perfluorooctane-1-sulfonate
PICT pollution-induced community tolerance
PIN preferred IUPAC name
PIP persistent inorganic pollutant
PMN pre-manufacture notification
PNEC predicted no-effect concentration
POM particulate organic matter
POP persistent organic pollutant
PSD prevention of significant deterioration
PTI pollution tolerance index
QSAR quantitative structure–activity relationship
QSMR quantitative structure–metabolism relationship
RfD reference dose
RfD_{dt} developmental reference dose
RI/FS remedial investigation and feasibility study
RME reasonable maximum exposure
RR rate ratio, relative risk
SAM standardized aquatic microcosm
SAR structure–activity relationship
SB spiked bioassay
SCAS semi-continuous activated sludge
SCE sister chromatid exchange
SMR structure–metabolism relationship
SSD species sensitivity distribution
STI salt tolerance index
STP sewage treatment plant
2,4,5-T 2,4,5-trichlorophenoxyacetic acid
T_{x} toxicity value
TBT tributyl tin
TC threshold concentration, teratogenic concentration
TCDD tetrachlorodibenzo-dioxin
TDI tolerable daily intake
TEC threshold-effect concentration
TEF toxicity equivalency factor
TEQ toxicity equivalent
TI teratogenic index, time independent
TIE toxicity identification and evaluation
TL_{m}(TL_{50}) median tolerance limit
TL threshold level, tolerance limit
TOC total organic carbon
TU toxicity unit
UF uncertainty factor
WET whole-effluent toxicity
WHAM Windermere humic aqueous model
WWTP waste-water treatment plant

© 2009 IUPAC, Pure and Applied Chemistry 81, 829–970
ANNEX 2: ABBREVIATIONS AND ACRONYMS OF NAMES OF INTERNATIONAL BODIES AND LEGISLATION

AFNOR Association Française de Normalisation
APHA American Public Health Association
CEQ Council on Environmental Quality
ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals
ECHA European Chemicals Agency
EEA European Environmental Agency
EINECS European Inventory of Existing Commercial Chemical Substances
EMPA Eidgenössische Materialprüfungs- und ForschungsAnstalt (Swiss Federal Laboratories for Materials Testing and Research)
EPA (U.S.) Environmental Protection Agency
EPPO European and Mediterranean Plant Protection Organization
FAO Food and Agriculture Organization (of the United Nations)
FDA (U.S.) Food and Drug Administration
IPCS International Programme on Chemical Safety
IRPTC International Register of Potentially Toxic Chemicals
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
OECD Organization for Economic Cooperation and Development
PAR COM Paris Commission
SARA (U.S.) Superfund Amendment and Reauthorization Act
TSCA (U.S.) Toxic Substances Control Act
UNCED United Nations Conference on Environment and Development (held in Rio de Janeiro, Brazil, 1992)
USEPA United States Environmental Protection Agency
USES Uniform System for the Evaluation of Substances
USFDA United States Food and Drug Agency
VIM Vocabulaire Internationale de Métrologie (International Vocabulary of Basic and General Terms in Metrology)
WHO World Health Organization

ANNEX 3: NUMBERED REFERENCES

30. T. C. Chamberlin. J. Geol. 5, 837 (1897).

ANNEX 4: OTHER SOURCES CONSULTED

