Construction of nitrogen bicyclic and cage compounds with the use of allylic organoboranes*

Yu. N. Bubnov‡,1,2, N. Yu. Kuznetsov1, M. E. Gurskii2, A. L. Semenova2, G. D. Kolomnikova1, and T. V. Potapova2

1A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991 Moscow, Russian Federation; 2N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation

Abstract: It is shown that reactions of triallylborane with pyrrole, pyridines, isoquinolines, lactams, 1-pyrroline, and acetylenes offer versatile methodology for the construction of various bicyclic and polycyclic nitrogen compounds, some of which are skeletally related to important classes of alkaloids. Optically active 3-borabicyclo[3.3.1]non-6-enes are useful precursors for synthesis of chiral 3-aza- and 3-thiabicyclo[3.3.1]non-6-enes, as well as derived chiral cyclohexenoid systems. The convenient methodology for the transformation of 1-boraadamantanes into 1-azaadamantanes is also discussed.

Keywords: nitrogen bicyclic compounds; nitrogen cage compounds; allylic organoboranes; alkaloid synthesis; chiral cyclohexene derivatives; boraadamantanes; azaadamantanes.

INTRODUCTION

Nitrogen heterocyclic compounds are widely distributed in Nature and play a vital role in the metabolism of all living cells. A vast number of natural and synthetic nitrogen heterocycles are in regular clinical use and have other important practical applications. In this paper, novel approaches to nitrogen bicyclic and cage compounds (Fig. 1) are discussed. These new methods are based on the high reactivity of allylic organoboranes and their unique reactions developed in our team.

The following five general reactions have been applied in a course of this investigation:

• reductive trans-α,α’-diallylation of pyridines, isoquinoline, and pyrrole with allylic boranes [1,2]
• reductive diallylation of lactams with triallylborane [3]
• allylboration of imines [6,7]
• transformation of 1-boraadamantanes into 1-azaadamantanes [5b,8]

The preparation of alkaloids and related nitrogen compounds through the use of allylboranes has been reviewed in 1999 [9].

*Paper based on a presentation at the 12th International Meeting on Boron Chemistry (IMEBORON-XII), Sendai, Japan, 11–15 September 2005. Other presentations are published in this issue, pp. 1299–1453.
‡Corresponding author: Fax: +7(095)135 5085; E-mail: bubnov@ineos.ac.ru
SYNTHESIS OF BRIDGED AZABICYCLO[4.n.1]ALKENES AND AZIRIDINE DERIVATIVES

We have previously found that pyridines \[1,2,10\], isoquinolines \[2a,11\], and pyrrole \[2a,12\] undergo reductive trans-α,α'-diallylation on treatment with allylic boranes (triallyl-, trimethallyl-, tricryl-, or allyl(dipropyl)borane) and alcohol (1:1:4) to give the corresponding trans-α,α'-diallylated nitrogen heterocycles (e.g., 1) in 70–97 % yields. These general reactions proceed stereoselectively under mild conditions (20–90 °C); two novel carbon–carbon bonds are formed in the process. It was also discovered that trans-2,6-diallyl-Δ^3-piperidines (trans-2,6-diallyl-1,2,3,6-tetrahydropyridines) 1 are transformed into the cis-isomers 2 on heating with triallylborane at 130 °C \[1,2\]. Similar isomerization of trans-2,5-diallylpyrrolidine proceeds at 185–190 °C to furnish a mixture of cis/trans-isomers (1:2.5-3) \[2b,12\], which was used for further transformations without separation. Solid cis-1,3-diallyl-1,2,3,4-tetrahydroisoquinoline 6 (m.p. 61 °C) was isolated by crystallization of a 1:1 mixture of cis/trans-isomers.

Martin \[13\] and Kibayashi \[14\] have recently demonstrated that N-acyl and N-Boc derivatives of cis-2,6-dialkenylpiperidines exist in a chair conformation with diaxial disposition of the alkenyl groups to avoid unfavorable A1,3 strain between the carbonyl oxygen and substituents α to nitrogen. This unique property of piperidine compounds has been used for the creation of convenient methodology for the preparation of bicyclic nitrogen compounds through ring-closing metathesis (RCM). We reasoned that the same would apply to N-acylated cis-α,α'-diallylated heterocycles 2, 6, and 9, and that they could also be used as precursors for construction of certain bridged azabicycles via RCM. In the presence of the 1st-generation Grubbs catalyst (Grubbs-I, 1.8–2.5 mol %), N-Boc-protected cis-2,6-diallyl-1,2,3,6-tetrahydropyridines 3 undergo facile and efficient RCM to give the corresponding nitrogen heterocycles 4 in nearly quantitative yields. The cyclizations were carried out in CH$_2$Cl$_2$ under reflux (4–6 h); the substrate concentration was as high as 0.26 M. We did not observe the formation of any side products during RCM. Insignificant impurities of trans-isomers (2–4 %) remained unchanged and were separated from the product by flash chromatography \[15\].

Deprotection of the Boc-derivatives 4 with 4 M HCl in dioxane at 60–70 °C gave rise to the corresponding hydrochlorides 5 (95–97 %). The structure of the parent bicycle 5 (R = H) was supported...
by X-ray single-crystal analysis. The six-membered ring of 5 (R = H) has a sofa conformation, while the seven-membered ring exists in a chair conformation.

Similar methodology was used for the preparation of 7,8-benzo-10-azabicyclo[4.3.1]dec-3-ene hydrochloride 8 from isoquinoline. The pyrrolidine derivative 9 undergoes RCM only in the presence of the 2nd-generation Grubbs catalyst (Grubbs-II, 3.7 mol %) to give (after deprotection) 9-aza-bicyclo[4.2.1]non-3-ene hydrochloride 11 (Scheme 1) [15]. In both cases, ring closing proceeds in nearly quantitative yields (98–99 %).

Scheme 1

It should be mentioned that Brenneman and Martin [16] and Aggarwal’s team [17] in 2004 have applied intramolecular enyne metathesis of N-Cbz- and N-Boc-protected cis-2,5-disubstituted pyrrolidines in asymmetric syntheses of (+)-anatoxin-a and (+)-ferruginine, respectively.

Interesting bicyclic and tricyclic compounds involving the aziridine cycle can be prepared by the reductive diallylation of 3,5-dibromopyridine and 4-bromoisoquinoline with triallylborane (Scheme 2) [11b]. This approach is based on lability of allylic or benzylic bromine in the products 12 and 14. Their treatment with triethylamine and base give rise to aziridine derivatives 13 (b.p. 75–78 °C/0.5 Torr) and 15 (b.p. 95–96 °C/0.5 Torr).

©2006 IUPAC, Pure and Applied Chemistry 78, 1357–1368
SYNTHESIS OF 6-AZASPIRO[4.n]ALK-2-ENES

Many natural and biologically active compounds such as pinnaic acid, halichlorine, cephalotaxine, harringtonines [18,19], and others [20] contain azaspirocyclic frameworks. Consequently, the development of the convenient routes for the selective construction of the spiro fragments represents an important task.

We have recently found that compounds 17 are available in high yields via RCM of N-acylated 2,2-diallylated nitrogen heterocycles 16 [21] which are readily obtained by the reductive allylation of lactams containing a N–H bond with triallyl- or trimethallylboranes [22] (see Scheme 3 and Table 1).

Various protecting groups such as benzyl, acetyl, benzoyl, trifluoroacetyl, and Boc were tested. In the cases of acyl derivatives, 1 mol % of Grubbs-I catalyst was sufficient for full conversion to the corresponding metathesis products within 4 h, while metathesis of benzyl protected compounds required 4–5 mol % of the catalyst to achieve good conversion (94 % after 2 h). The trifluoroacetyl group was chosen as protecting group in most cases because of the higher volatility of derivatives, facilitating the gas chromatography (GC) analysis of the reaction mixtures.

Scheme 3
Pyrrolidine, piperidine, azepane, azacyclotridecane, and piperazine derivatives were isolated in nearly quantitative yields (Table 1). The structure of the dispiro-piperazine derivative was confirmed by X-ray analysis [21]. In this compound, the piperazine ring exists in a shallow twist-boat conformation to release strain in the dispiro system, while the cyclopentene rings are in a very shallow envelope-like orientation.

Free amine 18 was prepared in 74% yield by treatment of 17 (n = 1) with base in methanol (Scheme 4). Further acylation of 6-azaspiro[4.4]non-6-ene 18 with 19 [18b] followed by cyclization of

© 2006 IUPAC, Pure and Applied Chemistry 78, 1357–1368

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Catalyst</th>
<th>Time</th>
<th>Conversion<sup>b</sup></th>
<th>Product</th>
<th>Yield<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grubbs-I</td>
<td>h</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mol %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 (4)</td>
<td>91</td>
<td>(100)</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>97</td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Boc = tertButO,C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>97</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>97</td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>98</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>30</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>95</td>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>100</td>
<td></td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

^aConditions: indicated amount of catalyst, 22 °C, CH₂Cl₂, conc. of catalyst 5 mM, 4 h.

^bConversion determined by GC analysis of samples from the reaction mixture.

^cIsolated yields after silica gel chromatography.
amide 20 in the presence of palladium catalyst-III (Heck reaction) gave rise to the pentacyclic compound 21, the structure of which was confirmed crystallographically [23]. It is clear that the isomer of 20, having a different location of the double bond, would be amenable to construction of the cephalotaxine skeleton 22 via Heck cyclization.

![Scheme 4](image)

Scheme 4

(±)-PSEUDOHELIOTRIDANE

1,2- Allylboration of imines occurs with rearrangement to give the corresponding homoallyl amines [6]. Reaction of tricryotylborane ($E:Z = 7:3$) with 1-pyrroline was found to proceed stereoselectively to produce 2-(1-methylallyl)pyrrolidine 23 (Scheme 5). The latter was transformed into a pyrrolizidine alkaloid pseudoheliotridane 24 by a hydroboration-oxidation-cyclization sequence [7]. Oxidation was carried out in acidic media.

![Scheme 5](image)

Scheme 5

ALLYLBORON-ACETYLENE CONDENSATION

The thermal reaction of triallyl- or trimethallylborane (130–140 °C) with terminal acetylenes $RC\equiv CH$ (allylboron-acetylene condensation), proceeding regio- and stereoselectively, presents a general approach to the corresponding 7-R-3-borabicyclo[3.3.1]non-6-enes 27 in 70–97 % yields (Scheme 6) [4,5]. The condensation was found to proceed in three stages: (1) *cis*-allylboration of the acetylene triple bond, (2) intramolecular allylboration of the terminal double bond, and (3) intramolecular vinylbora-
The reaction of the racemate 28 with L-prolinol led to the mixture of diastereomers (1S,5R)-29a and (1R,5S)-29b. Two successive crystallizations from diethyl ether resulted in the less soluble diastereomer (1S,5R)-29a with 96 % de. An absolute configuration of 3-borabicyclo[3.3.1]non-6-ene moiety in this compound was established by X-ray diffraction analysis on the base of the comparison.
with known stereo structure of L-prolinol as a chiral ligand (Fig. 2). The conformation of boron cycle in 29a is “distorted chair”, while cyclohexene ring has “distorted sofa” conformation.

![X-ray crystal structure of the (1S,5R)-diastereomer 29a.](image)

Treatment of the (1S,5R)-diastereomer 29a with methanol and HCl in diethyl ether gave rise to (1S,5R)-3-methoxy-7-phenyl-3-borabicyclo[3.3.1]non-6-ene 31 ([α]_D^{20} -14, MeOH) (Scheme 8). Oxidation of the latter with hydrogen peroxide furnished (3S,5R)-3,5-dihydroxymethyl-1-phenylcyclohex-1-ene 32 ([α]_D^{20} -22.8, MeOH) in 60 % yield, while (3S,5R)-(Z)-3,5-dimethyl-1-phenylcyclohex-1-ene ([α]_D^{20} -9.52, hexene) was prepared in 78 % yield by the protolytic deboronation with butyric acid under reflux. From bis-tosylate 33, chiral 3-benzyl-7-phenyl-3-azabicyclo[3.3.1]non-6-ene hydrochloride 34 and 7-phenyl-3-thiabicyclo[3.3.1]non-6-ene 35 were obtained by standard procedures.

![Scheme 8](image)
A similar methodology was utilized for preparation of the (1R,5S)-diasteromer 30a ([α]$_D^{20} + 39.5$, MeOH) using d-prolinol (Scheme 7) as a chiral auxiliary. Further oxidation of 30a afforded optically active diol 36, while (3R,5S)-3,5-dimethyl-1-phenylcyclohex-1-ene 37 ([α]$_D^{20} 12.7$, hexane) was obtained by deboration of 30a with butyric acid (Scheme 9) [24].

![Scheme 9](image_url)

We have recently developed a novel version of the condensation (Scheme 10) wherein intramolecular arylboration of the terminal double bond (in 39) takes place instead of vinylboration (Scheme 6) and thus worked out a convenient approach to 6,7-benzo-3-bora- 41 and 6,7-benzo-3-aza-bicyclo[3.3.1]nonane 43 [25].

![Scheme 10](image_url)

© 2006 IUPAC, Pure and Applied Chemistry 78, 1357–1368
An unsymmetrical 2-allylphenyl(diallyl)borane 38a obtained by exchange reaction of dimethyl boronate 38 with triallylborane (1:2) undergoes intramolecular cyclization into 39 (via allylboration of the terminal double bond) under the reaction conditions (60 °C). The latter was transformed to the tricyclic compound 40 by heating at 140 °C for 8 h. Treatment of 40 with methanol gave rise to methyl borinate 41 (96 %), which was oxidized to the cis-diol 42, the structure of which was confirmed by X-ray analysis. The diol 42 was then transformed in two steps into azocine 43 [25], a carbocyclic analog of cytizine.

1-AZAADAMANTANES FROM 1-BORAADAMANTANES

1-Boraadamantane 44 and various alkylated 1-boraadamantanes are available in four steps from triallylborane or trimethallylborane (a key step involve the hydroboration of the appropriate 7-substituted 3-methoxy-3-borabicyclo[3.3.1]non-6-enes) [5]. We worked out a convenient procedure for the conversion of 1-boraadamantanes into 1-azaadamantanes (e.g., 45) consisting in the successive treatment with sodium azide, iodine, hydrogen peroxide, thionyl chloride, and base. The conversion is carried out as two-pot synthesis (Scheme 11) [26a,b].

From five 1-azaadamantanes and five 1-boraadamantanes, we have obtained many possible combinations of their complexes [26c].

Both (S)-(+) and (R)-(−)-2-methyl-1-boraadamantanes were recently isolated by crystallization of the corresponding (S)-(−) and (R)-(+) -phenylethylamine adducts from hexane, and transformed into optically active 1-hydroxy-2-methyladamantane by the carbonylation-oxidation sequence [27].

General methods for preparation of allylic boranes have recently been reviewed [28].

In conclusion, allylboranes present a useful class of reagents for the construction and modification of various types of nitrogen bicyclic and cage compounds.
ACKNOWLEDGMENTS

This work was supported by the President of the Russian Federation (Sci. School 1917.2003.3), Russian Foundation for Basic Research (grants 04-03-08135-ofi-a, 05-03-32953, 05-03-33268), Presidium RAS (Programme 9) and Division of Chemistry and Material Sciences, RAS (Programmes 1 and 10). We thank Sergey Erdyakov for his help in the preparation of the manuscript.

REFERENCES

© 2006 IUPAC, Pure and Applied Chemistry 78, 1357–1368

