I  U  P  A  C

News & Notices

Organizations & People

Standing Committees




. . CI
. . PAC
. . Macro. Symp.

. . Books
. . Solubility Data



Links of Interest

Search the Site

Home Page


Pure Appl. Chem. Vol. 73, No. 3, pp. 535-542 (2001)

Pure and Applied Chemistry

Vol. 73, Issue 3

Molecular and biomolecular optoelectronics*

Itamar Willner** and Bilha Willner

Institute of Chemistry, The Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

Abstract: Reversible electronic transduction of photonic processes occurring on electrodes is the conceptual method to develop molecular and biomolecular optoelectronic systems. Cyclic photochemical activation of molecular or biomolecular monolayer redox-functions provides a general methodology for the amperometric transduction of photonic information that is recorded by the chemical assembly. Alternatively, photoisomerizable monolayers associated with electrodes act as "command interfaces" for controlling the interfacial electron transfer between molecular redox-species or redox-proteins. The systems use a photonic input for the generation of an electronic output and act as information processing assemblies. Programmed arrays of photosensitizer/electron acceptor cross-linked Au-nanoparticle arrays are assembled on indium tin oxide (ITO) for photoelectrochemical applications.

*Lecture presented at the XVIIIth IUPAC Symposium on Photochemistry, Dresden, German , 22-27 July 2000.Other presentations are published in this issue, pp.395-548.
**Corresponding author


Page last modified 5 June 2001.
Copyright © 2001 International Union of Pure and Applied Chemistry.
Questions or comments about IUPAC, please contact, the Secretariat.
Questions regarding the website, please contact web manager.