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Abstract: We recently obtained simple expressions for the variation with concentra- 
tion of the transport coeficients of electrolytes in aqueous solution, namely: self- 
diffusion, conductance of two simple ionic species, conductance of three simple ionic 
species and micellar systems. The FuossOnsager continuity equations were solved 
using modern equilibrium pair distribution functions such as the MSA (mean spher- 
ical approximation) leading to explicit expressions for the variation of the transport 
coefficients with concentration. These expressions are in good agreement with the 
experimental values for both unassociated and associated electrolytes and micellar 
solutions. 

1 Introduction 

The variation of transport coeficients of electrolytes with concentration is one of the oldest subjects 
in physical chemistry, since in 1926 [l] and in 1932 [2] the limiting laws in f i  of variation of 
conductance with the concentration C for single electrolytes were given by Onsager et a!.. 
In 1945 Onsager [3] gave also the limiting laws for self-diffusion in single electrolytes and in 1957 
for electrolyte mixtures [4). Acoustophoresis was originally described by Debye in 1933 [5]. The 
extension of the conductivity description to higher concentrations was made by Onsager el  al. [4] in 
1957, using the Debye-IJiickel equilibrium pair distribution functions available a t  this time [6]. The 
self-diffusion was also treated at the same level [7]. 
Ebeling el al. [8] used the MSA (mean spherical approximation) with the restricted primitive model 
to describe the variation of conductance with concentration, with approximate pair distribution 
functions in the calculation of the relaxation contribution. 
Recently an  approach was proposed in which Onsager's continuity equations were combined with 
MSA equilibrium correlation functions, using a Green's functions formalism. This treatment is 
a primitive model theory, where the solvent effects are averaged out. This yields concentration 
independant potentials, generally valid in the 0-1 M concentration range. This approach was applied 
to self-diffusion coefficients [9], acoustophoresis [lo], conductance [ll] of two simple ionic species [ll] 
of unassociated electrolytes. An extension to associated electrolyte were made for conductance and 
self-diffusion coefficients [12], using a chemical model of association. We also propose a model for 
conductance in electrolyte mixtures in the case of three simple ionic species and micellar systems. 
The purpose of the present paper is to summarize the main features of this approach within the 
MSA only, emphazing on the resulting explicit expressions more than on the techniques of their 
derivation. 

2 General Theory 
The most important effects in the non-ideal transport of electrolytes are the relaxation and eiec- 
trophoretic effects. The  first effect was first introduced by Debye [S]. 
When the equilibrium state is perturbed in a charged solution, electric interionic forces appear, 
which tend to  restore the electric equilibrium of the ions. 
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The other effect, the hydrodynamic correction, was intiated by Onsager (2,3). This effect consists in 
the mutual deceleration of the ions by the mean of the solvent, when they have different velocities, 
tending to equalize those velocities. 
The electrophoretic effect can be evaluated by means of the Navier-Stokes equations (13); the relax- 
ation effect requires the evaluation of the electrostatic drag of the ions by their surroundings and 
the time lag of this effect known as the Debye relaxation time. 
The  basic equations of the relaxation effect are the hydrodynamic continuity equations 

where uij is the velocity of an ion j in the vicinity of an ion i and f i ,  is the two-particle density, 
related to the pair distribution function gij(r, 1 )  

The pair distribution function is related to the total distribution function h;j(r, t) 

gij(r,t) = 1 + h;j(r,t) (3) 

In the linear response theory, the total pair distribution is expressed as the sum of an equilibrium 
part (superscript O) and a part that  is proportional to the external perturbation (superscript '). 

h;j(r,t) = h:j(r) + h:j(r, t)  

The velocity vji of an ion of species i in the vicinity of an ion of species j is given by 

uji = vf + w;(Kj; - kBT V In f j i )  

(4) 

(5) 

where the diffusion coefficient Di of the ion i is related to its generalized mobility wi by the relation 
w; = D;/kBT ( k ~  is the Boltzmann constant and T is the absolute temperature), uf is the average 
relative velocity of the solvent with respect to the ion of species i and Kj;  is the force acting on an 
ion of species i in the neighbourhood of species j 

Kj;  = ki (1 + 6lc; /k;)  - e; V +j (6) 

In equation ( 6 )  k; is the acting (diffusive or electric) force on an ion i :  for conductance the external 
force is an  electric field and for self-diffusion the external force is a gradient of the chemical potential 
corresponding to a gradient of isotopic concentration for the diffusing tracer. 

00 
6k; is the relaxation force 

6ki = - pj V ( @ *  + K>)h$r 
J 

(7) 

where &yb is the Coulomb potential and is the hard sphere potential where we introduce the 
sum of the crystallographic radii of the two ions uij. 
$J, is the electric potential around an ion j and can be expressed as the sum of an  equilibrium part 
(superscript O) and a part that  is proportional to the external perturbation (superscript '), in the 
linear response theory. 

Without external force the potentials of mean force are related to  the pair distribution functions by 
the equilibrium relation 

+j ( r , t )  = $(r) + +i(rit) (8) 

which also displays the symmetry of the correlation function. 
In the nonequilibrium case, the nonequilibrium potentials +; are related to the nonequilibrium total 
distribution functions hij by means of the Poisson equation (in cgs units), 
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since the unperturbed parts can be provided by any modern equilibrium statistical theory such as 
HNC (14) or MSA (15). 
€ 0 ~ ~  is the permittivity of the solvent, pj is the particle density [ions/volume] and ej  the charge of 
the ion j. 
The continuity equations may be expressed in terms of perturbed and equilibrium terms. The 
number of relevant continuity equations, as well as the form of the term under consideration depend 
on the transport phenomena, self-difiusion or conductivity. 
In any case the continuity equations can be written in the form of an inhomogeneous differential 
equation of the type 

(A - K;") h(r)  = F(r, k) (11) 

where K? is a function of the generalized individual mobilities and F(r, k) is the driving force. I t  
corresponds to the right-hand side of the continuity equation. 
The  solutions of equation (11) may be classified as first-order, or second-order solutions, according 
to the expansion of the continuity equation showing two kinds of terms: terms yielding the limiting 
laws in 4 by the use of the Debye Huckel equilibrium pair distribution functions (6) (first-order 
terms) as the input and terms leading to terms of higher order in concentration with the same 
distribution functions (second-order terms). 
The contribution of the second-order terms is always small for concentrations lower than 0.5 M for 
most 1-1 electrolytes in aqueous solution. I t  can then be neglected as first approximation. 
The adaptation of the solution to the particular transport coeflficient and to the required order in 
concentration will be presented in the next sections. 

3 Self-Diffusion 
For self-diffusion the relaxation forces are the only relevant contributions and the hydrodynamic 
interactions do not play any significant role in this range of concentration except for low viscosity 
solvents. The  resolution of equation (11) yields following expression: 

The superscript 1 denotes first-order equation and the subscript 1 indicates the tracer ion. Here l/I' 
is the MSA length parameter corresponding to Debye's 1 / ~  and with, using an average diameter : 

= (47re2/ ( 6 k . B ~ ) )  c P,z:D;/ (D; + D:) 
n 

The formal expression of the diffusion coefficient becomes then 

where DP is the diffusion coefficient at infinit dilution of an ion i .  

4 Conductance of two simple ionic species 
In conductance, anions and cations move in opposite direction, and not only the relaxation effect, 
but also the effect of hydrodynamic interactions must be taken into account. 

4.1 Relaxation 

The resolution of equation (11) yields following expression, with k; = ZieE: 

6 k i  6 k i  - 6E IZlZ2 I e- 
_.--_-- - - 
k.1 k.2 E 3€ksTa (1 + [K: + 2 h q  + 2r2 (1 - e-Kqu)] 
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with 

x (sinh(nqa) - (€kBT(COsh(KqU) - (sinh(tc,a)/(n,u)))  / ( e i e j ) ) )  (16) 

4.2 Electrophoretic effect 
The electrophoretic contribution is due to hydrodynamic interaction between the ions and the solvent 
molecules. The  first order term is given by 

where 7 is the Oseen tensor 
I t  can be shown that the MSA pair distribution functions give an easy extension of Henry's law for 
electrophoretic mobility (13) 

~uP'/u; = ( - ~ B T /  ( s R v , ~ ~ ) )  (r/p + rU]) (19) 

The total equivalent conductance is given by A = xi Ai and 

Ai = A: (1 + 6uf'/up) (1 + 6 E / E )  (20) 

where A! is the individual equivalent conductance of the ith ion at infinite dilution. 

5 Conductance in electrolyte mixtures and micellar systems 
Conductance of solutions containing more than two ions was first theoretically studied in a systematic 
way by Onsager and Kim in 1957. (4). Their theoretical expressions (limiting laws), are in agreement 
with experiment until bulk salt concentrations of 0.01M. Later Quint 8z Viallard (16) were able to 
extend this limit to 0.1M, by introducing finite ionic size corrections (extended limiting law) in 
DebyeHuckel equilibrium pair distribution functions. 
In this part we present new results concerning the theoretical description of conductance for solutions 
containing three ionic species. The  model has been tested on NaCI/KCI mixtures and reproduces 
the experimental values in a very satisfying manner, within a large concentration range. 
With our ionic strength correction we get for the conductance 

3 

xsp (R-'cm-') = (lOeaNn/ (keT)) ~ c i L ) ; r ~  (1 + ( ~ V ~ ~ ~ / U ~ ) )  (1 + ( 6 k I e ' / k ; ) )  (21) 
i=l 

where ci is the molar concentration for the component and up is the velocity at infinite dilution 
(without ionic strength correction). For an ion i ,  b k r '  is the correction on electrical force due to  
relaxation effect and 6 u p d  is the velocity increment due to hydrodynamic interaction. 
We express now the conductance as the specific conductivity xsp divided by the common ion con- 
centration c2 (molar conductivity): A (cm2iY1mol-') = lOOOx, / cp. 
In this description we worked with individual closest approach distances. Our idea was to apply 
the same approach to charged micellar systems. It is well known that surfactants in water form 
aggregates above a critical micelle concentration (cmc). In the case of ionic surfactants, below the 
cmc, the solution is constituted by monomeric surfactant ions and their counterions. At and above 
the cmc, there is an effective loss of ionic charges through ion condensation onto the micellar surface. 
Three types of charged species may be then considered in the solution. The  monomer surfactant, 
a fraction of counterions (not condensed) and the micelles. The consequence of the formation of 
micelles is a sudden change of slope of the conductivity versus surfactant concentration curve. 
An important problem in the case of micellar solutions is that  the various species have widely 
dissymetric size and electrical charges. The MSA may not be valid under such conditions as the 
concentration increases. However, at high volume fraction, those are the more important sources of 
interactions. Being aware of these limitations, we have compared our model to  experimental data  for 
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two ionic surfactants: one anionic surfactants: sodium dodecylsulfate (SDS) up to a concentration 
of 0.1 M and one cationic surfactant dodecyltrimethylammonium bromide (DTAB) up to 0.1 M. At 
the highest concentration, the solute volume fraction is 0.1, a value for which our approximations 
should still be valid. 

6 Comparison with experimental results and discussion. 
Figure 1 shows the experimenlal and theoretical self-diffusion coefficient of Cs+ up to 1 M. The 
theoretical curve, based on lhe MSA treatment with the same average diameter as for conductance, 
is in good agreement with the experimental results. 
Figure 2 shows an exemple of conductance of aqueous alkaline metal halide solutions known to be 
dissociated electrolytes within reasonable concentration ranges. We present the experimental and 
theoretical conductance of CsCl up to  1 M. The theoretical curve, based on the MSA treatment, were 
done using mean size parameters u adjusted in order to have a good agreement with the experimental 
results. These parameters are found to be slightly higher or appraximatively equal to the sum of 
the cristallographic. The other input parameters are the Dp values, the dielectric constant and the 
viscosity of the solvent and the temperature. 
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Fig. 1. Self-diffusion coefficient of Cs+ in aque- 
ous CsCl solutions at 25°C as a function of the 
square root of molarity. (0) : experimental Val- 
ues taken from ref (17). (-): theoretical values 
predicted by the MSA expression with average 
diameter u = 3.48 A. 

Fig. 2. Equivalent conductance of aqueous CsCl 
solutions at 18°C as a function of the molarity. 
(0) : experimental values taken from ref (18). 
(-): theoretical values predicted by the MSA 
expression with average diameter u = 3.48 A. 

Our approach has proved its efficiency for several unassociated and weakly associated systems. The 
combination of the chemical model and the MSA yields an extension of this theory for partly associ- 
ated electrolytes. This approach (12) gives also a good agreement between theory and experimental 
results for concentration range up to 1 M. Extensions to other transport coefficients are currently 
under way. 
Concerning the conductance of mixed electrolytes, there are very few experimental da ta  available 
in the literature for electrolyte mixtures at moderate and high concentration. This could be due 
to  the lack of any satisfying theoretical model for concentrations in both diluted and concentrated 
domains. We present here the results for the mixture NaCIIKCI. The  two figures presented in the 
following give the conductance as a function of the proportion of one of the salts (KCI), for different 
total salt concentration. One test of the theory presented here is the asymptotic convergence of 
our results for low concentration toward those of Onsager-Kim, which tend themselves to the ideal 
behavior. We present then for the lowest concentrations (figure 3), Onsager-Kim limiting law, as 
well as the ideal law (no interaction). For vanishing concentrations, all curves merge. 
Our expressions -involve individual ionic closest approach distances, in order to describe properly 
dissymmetrical systems. We have the three distances to consider. We take two sets of values: 
the crystallographic radii, which constitute the minimum values and the crystallographic radii aug- 
mented by a factor of lo%, which is a common choice in this type of description. 

0 1996 IUPAC, Pure and Applied Chemistry68,1583-1590 



1588 S. DURAND-VIDAL eta/. 

-” 
0 0.2 0.4 0.6 0.8 1 

85 
0 0.2 0.4 0.6 0.8 

KCI proportion (t,ot,;rl niolnlity of 0.1 ml/kg) KCI proportion (t.ot,d molnlity of 0.75 mol/kg) 

Fig. 3. Conductance of the NaCI/KCI mixture 
for an total molality of 0.1 mol/kg. (4) : experi- 
mental data (16), 1 : Ideal case, 2 : Limiting law 
(Onsager), 3 : Our results (MSA) with cristallo- 
graphic radii, 4 : Our results (MSA) with cristal- 
lographic radii augmented by a factor of 10%. 

Fig. 4. Conductance of the NaCI/KCI mixture 
for an total molality of 0.75 mol/kg. (+) : ex- 
perimental data (19), 1 : Our results (MSA) 
with cristallographic radii, 2 : Our results 
(MSA) with cristallographic radii augmented by 
a factor of 10%. 

On the figure 3, we remark that both choices of distance are in good agreement with experiment, 
due to the small contribution of hard sphere interactions for low concentrations. 
On the opposite, on figure 4, we see a noticeble difference between the two sets of ionic radii, whereas 
the ideal and limiting law models are out the frame of the figures. We have an excellent agreement 
with the experimental values by taking the crystallographic radii augmented by a factor of lo%, until 
above 1M. After that limit, not only the validity of our MSA model is questionable, but the data 
are not available, even for NaCI-KCl. A further extension of the theory would imply also a change 
in the equilibrium model. One possibility would be the use of €INC or of other improvements for 
MSA (soft MSA, exp MSA, ....). The problem is the the connection to low concentration (limiting 
laws) and the increase in adjustable parameters. For the moment we remain at  the MSA level. 
An other interesting application is the description of micellar systems. The conductance is the ratio 
of the conductivity over the total monomer concentration. Our results are compared with the ideal 
conductance Aid and Onsager’s result. Aid is the sum of the conductance of the ions at infinite 
dilutions multiplied by the concentration of each ionic species and divided by the total monomer 
concentration chon) and Onsager’s conductance is the calculated value using Onsager’s theory (4) 
divided by the total monomer concentration. 
The parameters which enter our conductance equation are, for each ionic species, its diffusion coeffi- 
cient at infinite dilution Dp, or its conductance at infinite dilution A!, and the electrolyte minimum 
distance of approach ui. For the simple counterions, Na+ and Br-, these two parameters are known. 
For the monomer surfactant and micelles, we suppose that these radii are close to the hydrody- 
namic radii extracted from the monomeric diffusion coefficient using the approximation of a perfect 
sticking: 

rhvd = k ~ T / ( 6 r q ~ D O )  

As the diffusion coefficients at infinite dilution can either be taken from the literature or considered 
as adustable parameters the hydrodynamic radii is also directly deduce from the diffusion coefficient 
through Eq.22. In effect, below the cmc, besides the minimum distance of approach, the diffusion 
coefficient at infinite dilution is the only unknown in our expressions. As for the micelles (above the 
cmc), in addition to the diffusion coefficient and its minimum distance of approach, the aggregation 
number nogg (the number of monomer per micelle) a quantity which may vary with concentration, 
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and the apparent charge, ZaPP which is directly related to the degree of ion condensation, must 
be known. In order to simplify this first contribution, we have admitted that  all these parameters 
remained constant as the surfactant concentration varies. This restriction enabled us to define the 
concentration of the various ionic constiluents: monomers, micelles, counterions. 
The surfactants used in this investigation being 1-1 electrolytes, below the cmc, the monomer 
concentration was equal to the counterion concentration. Above the cmc, any addition of sur- 
factant will be considered as being part of a micelle. This is strictly speaking the pseudephase 
model of micelle formation. The concentrations of the various constituents are: cmon - - cmc, 

Cmic = (cmOn - cmc)/nagg and Ccounterion = cmc+ I Zap' I Cmtc ,  where Ccounterion is the 
countcriori conccntration and cmic is tlic micellar coriceritration. 
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Fig. 5. Conductance of dodecyltrimethylam- 
monium bromide (DTAB) as a function of to- 
tal monomer concentration. (0) : experimental 
data. 1 : Ideal case, 2 : Limiting law (On- 
sager), 3 : Our results (MSA). Parameters : 
r?tn = 5.4 A, rBr- = 1.1 x 1.97 A, rmic = 
21.3 A, D&,,, = 4.5 10-'0m2s-', D&- = 2.079 
10-9m2s-1, Dgic = 1.15 10-"m2s-' (20). Ag- 
gregation number of the micelles nagg = 60 (20). 
Apparent charge ZaPP = +18 (20). 

hvd 

Fig. 6. Conductance of sodium dodecylsulfate 
(SDS) as a function of total monomer concen- 
tration, (0) : experimental data (21). 1 : Ideal 
case, 2 : Limiting law (Onsager), 3 : Our re- 
sults (MSA). Parameters : r?in = 4.1 A, rNa+ 
= 1.1 x 0.97 A, r z  = 21.3 A, DgOn = 6.0 
10-'0m2s-1 (22), Oha+ = 1.333 10-gm2s-1, 
Dgic = 1.15 10-"rn2s-' (22). Aggregation 
number of the micelles nagg = 70 (23). Ap- 
parent charge Z"w = -18 (23). 

Figure 5 presents a comparison between theory and experiment for the cationic surfactant. The  
experimental results are very reasonably reproduced. We had no value for DgOn for tha t  system. All 
the other parameters were taken from Walrand et. al. (20). They were deduced from quasi-elastic 
light-diffusion experiments. 
Figure 6 presents the same comparison for the anionic surfactant, SDS. The experiment values 
were taken from the literature (21). We observe again a very good agreement between theory and 
experiment. N o  adjustable parameter was here necessary as the Do values for monomers and micelles 
were available f r y n  Lindman et.al. (22). These da ta  had been obtained from Fourier Tkansform 
Proton NMR experiments ('I1 I?" NMR) and tracer-diffusion. 
The effect of changing the values of the different parameters which have to  be introduced in the 
theory is interesting. Small variations have little consequences on the shape of the curves. The 
largest effect arises from changes in the aggregation number. Experimentally i t  has been shown (24) 
that  for SDS, the aggregation number varies from approximately 70 at the cmc to 120 at 0.1M. i 
As all other parameters have remained unchanged, the increase of nagg reflects simply the decrease 
of the micelle concentration. Experimentally i t  is observed that nagg varies less with concentration 
for anionic micelles than for cationic ones. This may be the consequence of the somewhat better 
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description of the DTAB than of SDS system. This result was predictable. The  cmc of DTAB is 
equal to  0.016 M, whereas that of SDS is 0.0081 M. Our description of the surfactant behavior below 
the cmc raises no problem, contrary to the micelle/counterion interaction. Thus the theoretical 
treatment is certainly better the higher the cmc. 
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