INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON EQUILIBRIUM DATA*

Critical Evaluation of

THE STABILITY CONSTANTS OF METAL COMPLEXES OF AMINO ACIDS[†] WITH POLAR SIDE CHAINS[‡]

(Technical Report)

Prepared for publication by

G. BERTHON

INSERM U305, Equipe "Bioréactifs: Spéciation et Biodisponibilité", 38 rue des Trente-six Ponts, F-31400 Toulouse, France

*Membership of the Commission during the period (1989–93) when this report was prepared was as follows:

Chairman: 1989–93 D. G. Tuck (Canada); Secretary: 1989–90 O. Yamauchi (Japan); 1990–93 T. Kiss (Hungary); Titular Members: A. C. M. Bourg (1989–91; France); A. Braibanti (1989–93; Italy); R. H. Byrne (1991–93; USA); L. H. J. Lajunen (1991–93; Finland); H. K. J. Powell (1989–91; New Zealand); O. Yamauchi (1990–91; Japan); Associate Members: R. H. Byrne (1989–91; USA); J. R. Duffield (1991–93; UK); B. Holmberg (1989–93; Sweden); S. Ishiguro (1989–93; Japan); T. A. Kaden (1989–93; Switzerland); S. H. Laurie (1989–93; UK); R. B. Martin (1989–93; USA); P. Paoletti (1989–93; Italy); R. Portanova (1989–93; Italy); S. Sjöberg (1989–93; Sweden); O. Yamauchi (1991–93; Japan); National Representatives: C. B. Melios (1991–93; Brazil); M. P. Zhang (1989–93; Chinese Chemical Society); P. Valenta (1989–93; FRG); L. H. J. Lajunen (1989–91; Finland); M. T. Beck (1989–91; Hungary); P. K. Bhattacharya (1989–93; India); M. C. Vaz (1991–93; Portugal); K. I. Popov (1989–93; USSR); L. D. Pettit (1989–91; UK); G. R. Choppin (1989–91; USA).

Names of countries given after Members' names are in accordance with the then prevailing *IUPAC* Handbook.

[†]Although IUPAC nomenclature recommends "aminocarboxylic acid", the expression "amino acid", more familiar to biochemists to whom this review is predominantly addressed, has been used throughout.

[‡]Series Title: Critical Evaluation of Stability Constants of Metal Complexes in Solution

Republication of this report is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference together with IUPAC copyright symbol (© 1995 IUPAC), is printed. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

TABLE OF CONTENTS

1.	INTRODUCTION 1-1. Ligand structures and general properties 1-2. Formation constants and reliability 1-3. Protonation constants as references 1-4. Coordination enthalpies and entropies 1-5. Selection criteria	1119
2.	CYSTEINE 2-1. Protonation constants of cysteine 2-2. Thermodynamic quantities for the protonation of cysteine 2-3. Metal complex formation constants 2-4. Thermodynamic quantities for metal complex formation with cyste	1124 ine
3.	CYSTINE 3-1. Protonation constants of cystine 3-2. Metal complex formation constants	1143
4.	METHIONINE 4-1. Protonation constants of methionine 4-2. Thermodynamic quantities for the protonation of methionine 4-3. Metal complex formation constants 4-4. Thermodynamic quantities for metal complex formation with methic	1148 ionine
5.	 SERINE 5-1. Protonation constants of serine 5-2. Thermodynamic quantities for the protonation of serine 5-3. Metal complex formation constants 5-4. Thermodynamic quantities for metal complex formation with sering 	1164 e
6.	THREONINE 6-1. Protonation constants of threonine 6-2. Thermodynamic quantities for the protonation of threonine 6-3. Metal complex formation constants 6-4. Thermodynamic quantities for metal complex formation with threo	1188 nine
7.	ASPARAGINE 7-1 Protonation constants of asparagine 7-2. Thermodynamic quantities for the protonation of asparagine 7-3. Metal complex formation constants 7-4. Thermodynamic quantities for metal complex formation with aspar	1207 agine
8.	GLUTAMINE 8-1. Protonation constants of glutamine 8-2. Thermodynamic quantities for the protonation of glutamine 8-3. Metal complex formation constants 8-4. Thermodynamic quantities for metal complex formation with glutar	1220 mine
9.	REFERENCES	1229

Critical evaluation of the stability constants of metal complexes of amino acids^{*} with polar side chains (Technical report)

Abstract

Available experimental data on proton and metal complex equilibria of the seven essential amino acids with polar side chains (i.e. cysteine, cystine, methionine, serine, threonine, asparagine and glutamine) have been critically evaluated. First, the introduction outlines the main structural features of these amino acids as ligands and calls attention to their important roles in biology. A general discussion is also reported on the determination of formation constants and their reliability. In particular, the critical role played by protonation constants as reference parameters for the determination of complex formation constants by glass electrode potentiometry has been emphasized. Coordination enthalpies and entropies are also introduced, and the selection criteria employed in the course of the review are described.

For each of the seven amino acids, a specific chapter then reports (i) protonation constants and their associated enthalpic and entropic changes, (ii) formation constants for binary metal complex species and ternary mixed-ligand complexes with the associated thermodynamic quantities whenever available. For every entry, all data available in the literature are first reported. Then, a selection of recommended or tentative values is proposed for as many sets of specific experimental conditions as possible, in accordance with the criteria given in the introduction and based on considerations developed in corresponding discussions.

1. INTRODUCTION

1-1. Ligand structures and general properties

All of the seven amino acids considered in the present survey are found in proteins and are thus classified as essential. From the chemical point of view, all are optically active and include side chain groups likely to form a chelate ring with a metal ion bound at the α -amino nitrogen. The first three acids contain sulfur as an extra donor atom, each in a different chemical function: a β -thiol in cysteine, a $\beta\beta$ '-disulfide bridge in cystine, and a γ -thioether in methionine. Among the last four, both serine and threonine incorporate a β -hydroxy group whereas asparagine and glutamine include an amide function at their respective β and γ positions.

The above structural characteristics indicate that if these amino acids are to behave as tridentate ligands, cysteine and cystine as well as serine and threonine will form 5-membered chelate rings, methionine and asparagine 6-membered rings, and glutamine 7-membered rings. All other factors being equal, there is a known tendency for side chain chelation to weaken as ring size increases. One would thus a priori expect cysteine, cystine, serine and threonine to be tridentate while glutamine would coordinate metal ions in a glycine-like manner. We shall see later that the actual situation is not that simple, the nature of the side chain groups overriding such structural considerations to determine the coordinative properties of each amino acid (79M).

Concerning the biological role of these amino acids as ligands, cysteine is of particular importance because of the high affinity of its thiol group for soft metal ions. For example, to a challenge from toxic ions such as Cd^{2+} , Hg^{2+} and Pb^{2+} , the first response of the body consists in an increased synthesis of metallothionein by liver and kidney. This small metalloprotein has an exceptionally high content of sulfur, about one third of it being constituted of cysteine residues (83VK). A consequence of this is that metallothionein is also the metalloprotein with the highest known zinc content. In particular,

^{*} Although IUPAC nomenclature recommends "aminocarboxylic acid", the expression "amino acid", more familiar to biochemists to whom this review is predominantly addressed, has been used throughout.

it is owing to the role of metallothionein in zinc homeostasis that this metal can now be used in the treatment of Wilson's disease (83HV). The high affinity of zinc ions for the thiol side group of cysteine will also explain that zinc-cysteine binary and ternary complexes take up a predominant position in the distribution of this metal into its low-molar-mass (1.m.m.) fraction in blood plasma (78BM).

A second reason why cysteine is of particular interest lies in the capacity of its thiol group to oxidise. For example, the ability of cysteine thiol groups to form disulfur bridges will largely contribute to the stabilisation of the three-dimensional conformation of proteins. Oxidation of the -SH group usually takes place in the presence of catalysts, these generally being transient cysteine complexes of various metal ions such as iron(III) and copper(II). From a practical point of view, this implies that if stable complexes are likely to be formed between a ligand and a metal ion in different oxidation states, it will be necessary to reckon with the parallel occurrence of acid-base and redox reactions (79GS). This, added to the propensity of sulfur atoms to give rise to polynuclear complexes, indicates the difficulty of investigating complex equilibria involving cysteine with many transition metal ions.

In comparison with cysteine, other amino acids examined in this review display a much simpler behaviour. With the other two thio-ligands for example, the ether sulfur of methionine is an extremely weak base undergoing protonation in strongly acidic solutions only (72BL). A priori, this weak basicity is not expected to favour coordination in general. According to the HSAB principle however, there is a known tendency for the soft sulfur donor to combine with soft metal ions, and most soft metal ions do effectively coordinate to the methionine thioether. This functional group has even been proposed as a test of "softness" (79M), even though the related effects are rather difficult to generalise (86M). Similarly, only marginal interactions are expected from the above principle between the methionine thioether and metal ions being classified as borderline, and NMR data have confirmed the small involvement of the thioether group in this case. In fact, methionine behaves as a substituted glycine towards most borderline as well as all hard metal ions.

The disulfide bond present in cystine is an even weaker base than the ether sulfur of methionine (73BL), which should predispose it still less to metal coordination. Nevertheless, its involvement in copper(II) coordination has been reported (63HP). From a general point of view, the poor solubility of cystine in neutral aqueous solutions has severely limited the investigation of its metal complex equilibria.

Whether they contain a hydroxy (serine and threonine) or an amide (asparagine and glutamine) side group, the four remaining amino acids largely behave as substituted glycines and bind most metal ions in a bidentate manner.

As far as the optical activity of the above ligands is concerned, it seems that, on the whole, stereoselectivity plays no significant role in the formation of their metal complexes (79PH).

1-2. Formation constants and reliability

In his introductory chapter to the present series of critical evaluations, Beck (77B) wrote that "users of stability data not familiar with this fairly large field may mistakenly conclude from widely diverging values that stability constants are not reliable in general". More recently, computer simulation modelling of the distribution of metal ions in biological fluids has been questioned on the basis that results for copper in blood plasma did not significantly coincide with corresponding experimental observations previously made on this biofluid (79YS, 81S). It was proved later (86BH) that this lack of coincidence actually stemmed from the poor reliability of the stability constants on which the initial models were built (71HP, 73PA, 77ML). Since this problem only involved copper complex equilibria with simple amino acids such as histidine, cystine, glutamine, threonine and serine, one realises what more serious risks of misinterpretations might affect simulations involving equilibria with more complicated ligands.

This illustrates once more the need for reliable stability constants to solve analytical problems such as those encountered in industrial and biological fields, and details of both experimental technique and computational strategy as well as of the experimental conditions under which they have been obtained constitute invaluable information to the well-informed user. For example, it frequently occurs that several sets of constants give rise to almost identical goodness-of-fit parameters. In such cases, it is important to know by which criteria the "best" set has been selected. A better reliability will normally be expected from results tested on graphical grounds, usually by simulating experimental curves as they would have been obtained from corresponding analytical data in the hypothesis of each possible set (75CM, 84MM, 85MM). It is also important to know which species have been finally discarded, since these could become significant under different concentration conditions.

Easy to prevent though widely spread is the misuse of the so-called distribution curves showing the percentage of a given metal or of a given ligand as a function of pH *for given concentrations of metal and ligand*. This mode of representation is still nowadays considered too often by occasional users - even sometimes by coordination chemists- as an absolute feature of the system, and it may be worthwhile to recall that it should always be stressed by the authors of such curves that these are only pertinent to those reactant concentrations which are being taken into consideration under specific conditions.

In this respect, it should also be borne in mind that the total reactant concentrations on which these curves are based should preferably lie within the limits of the range used to determine the corresponding equilibrium constants. Indeed, outside of this range, some additional equilibria may have to be taken into account while others will become negligible (see above). Nowadays, most equilibrium studies are carried out over large ranges of reactant concentrations and concentration ratios, but these ranges always suffer inevitable limitations due to factors such as variations of activity coefficients for weak complexes, solubility problems, etc, and applications are by definition open to potentially larger regions than those experimentally investigated.

Before analysing equilibrium constants, two important points must be made clear which concern their mode and scale of representation. Formation constants may a priori be expressed in terms of activity or concentration quotients: (i) activity quotients are usually defined as (true) "thermodynamic" constants which are by definition independent of the ionic medium since they refer to the pure solvent taken as the reference state. This character of universality was long considered an advantage (70B), but since these ideal values must be extrapolated from curves which are far from linear or calculated by approximate semi-empirical equations, they are rather difficult to determine and hence do not actually offer a sound basis for reliability; (ii) concentration quotients are usually defined as "stoichiometric" constants. Although less than unity in this case, activity coefficients are kept invariant by the addition of high and constant concentrations of an inert background electrolyte, and reliable constants can be directly determined. Incidentally, these practical constants are also thermodynamic quantities since they refer to a standard state in which activity coefficients are unity at infinite dilution of the reactants in the particular salt medium selected. Generally speaking, it thus seems more desirable to obtain reliable values of stoichiometric constants -even of theoretically limited applicability- rather than less certain values of a priori more universal thermodynamic constants (61RR). In addition, thermodynamic constants never correspond, by definition, to any practical situation where an ionic medium is naturally present such as encountered in biological fluids, whereas stoichiometric constants specific to a given application can always be determined. For all these reasons, stoichiometric constants should systematically be preferred.

Because logarithmic quantities are non-dimensional, it is often forgotten that constant numerical values depend on the units in which activity terms are expressed, the molar concentration scale being the most commonly used. This remark may seem of minor importance, but it nonetheless implies that comparisons between logarithmic constants are permissible for complexes of equivalent stoichiometries only.

Even when this recommendation is satisfied, direct comparisons between formation constants may still be extremely misleading. This is especially the case when the ligands are protonated to different extents at the same pH values. For example, the ML complex of copper with the salicylate dianion will be much less concentrated at pH 7.4 than, say, the same ML species with the dianionic form of a dicarboxylic acid, whereas respective formation constants suggest the opposite (90BB). When simulation models are used to predict the distribution of such complexes, all these considerations are implicitly taken into account in the calculations. In simpler cases, however, approximate guesses should use the notion of conditional constants, which express complex concentrations with respect to ligand concentrations not bound to the metal.

1-3. Protonation constants as references

As pointed out by Pettit in a previous article in the present series of critical evaluations (84P), the pH range within which amino acids interact with protons is particularly suited for the use of proton-ligand equilibria as a reference for metal-ligand system investigations. Titrations in absence and presence of metal ions have thus long been a technique of choice for the determination of metal complex formation constants of amino acids. Unfortunately, frequent utilisation of the pH scale for glass electrode measurements -i.e. made by reference to buffer solutions- has led to a rather confused situation concerning the definition of protonation constants. In older studies especially, the need to establish metal, ligand and acid mass-balance equations in terms of concentrations was reconciled with the use of proton activities by expressing protonation constants in a "mixed" manner (69CP). For example, the protonation constant of a monobasic ligand L is represented by the [LH]/[L].{H} ratio in which [LH] and [L] concentrations are mixed with the proton activity {H}. Although this mode of representation should of course be avoided, it is still sometimes in use. In such cases, corresponding results must be redetermined in the concentration scale when reliable applications are needed.

Since the ligands examined in this survey are essential amino acids, particular emphasis will be placed on the applications of their complex stability constants to problems of biological relevance. In this respect, protonation constants are of high importance. Metal complex formation constants determined with reference to stoichiometric or mixed protonation constants will not vary to a significant extent since the systematic difference between the two standard states will be cancelled when subtracting the results of measurements made in presence and absence of metal. Yet, the simulated distribution of the corresponding metal complexes in a given solution may well be seriously biased (81AB).

In biological fluids indeed, amino acids are generally far more concentrated than the metal ions with which they form the most stable complexes. Under normal circumstances, metal-complexed fractions of these ligands are thus largely negligible with respect to their overall concentrations, which implies that their free concentrations depend almost exclusively on their interactions with protons. Small variations in free ligand concentrations caused by slightly different protonation constants determined with reference to distinct standard states may then entail important discrepancies in the distribution of metal complexes. Concentrations of metal complexes will indeed reflect these variations unevenly, the more so as complexes of high ligand-to-metal ratios as well as mixed-ligand species will usually be predominant (78BM, 80BM, 86BH).

Clearly, the use of stoichiometric protonation constants as references for determining stoichiometric metal complex formation constants should always be preferred. There remains the problem of choosing a calibration procedure. The oldest and most straightforward method consists of titrating a strong acid with a strong base or vice versa under the same experimental conditions (temperature, ionic strength, nature of the background electrolyte) as those used for determining stability constants. Provided that the concentrations of both acid and base are known with high precision, free concentrations of hydrogen as well as hydroxide ions can be calculated for each point of the titration curve. E.m.f.'s of the electrochemical cell comprising a glass electrode and a reference electrode can then be determined as a function of the -log[H] and -log[OH] values in acidic and basic ranges, respectively. The acidic curve will provide a suitable value for the apparent standard potential E° of the electrode pair. Both curves allow a check on the theoretical slope of the glass electrode, whereas their intersection point will yield $pK_w/2$ (72CB).

Of course, this technique suffers theoretical limitations. The main objection against its use is that pH ranges where such calibration curves are effectively linear rarely coincide with the interval experimentally investigated, especially for biological systems. For this reason, the new procedure known as internal calibration has recently gained increasing popularity (84LT). It basically consists in titrating a weak acid (or base) with a strong base (or acid), both electrode parameters and protonation constants being simultaneously calculated by appropriate computer programs for this titration. Actually, all parameters may be allowed to vary, including acid and base concentrations.

This new concept undoubtedly represents a real breakthrough in the theoretical approach to calibration of the glass electrode. Its application to practical problems may also be extremely fruitful. In particular, the facility it offers to optimise the ligand concentration may be of great help in increasing both precision and applicability of protonation constants, provided identical concentrations of ligand (and mineral acid if any) are then used in presence of metal. This facility is extremely valuable when concentration errors are very small, but its application may become hazardous if experimental data are less precise. In general, great care must be taken of the fact that the optimisation of too many variables inevitably leads to indeterminate answers. The use of such a technique thus actually requires more attention from the experimentalist than usual. In particular, it is advisable that ligands be independently titrated before their concentrations are submitted to automatic optimisation. Without particular care, this marvellous "tool" might turn into quite a redoubtable "weapon", and it should not be forgotten that the less difference between experimental and optimised data, the more

1-4. Coordination enthalpies and entropies

The decomposition of stability constants into their enthalpic and entropic contributions is of fundamental importance to the understanding of the various factors (electronic and steric effects, solute-solvent interactions, etc) that may influence coordination. Enthalpy changes due to coordination reactions can always be obtained from the determination of stability constants at different temperatures according to the van't Hoff relationship

reliable the corresponding results. It is to some extent rather reassuring to note that one must first rely

on the quality of one's experimental work rather than on the "magic" of the computer.

 $d\log K/dT = \Delta H/RT^2$.

However, reaction enthalpies derived from this approach are generally only approximate since (i) stability constant variations are often too low within the narrow range of temperature investigated to allow calculation of reliable slopes, and (ii) the extension of the temperature range is limited by the fact that enthalpy changes are temperature-dependent and that ΔC_p° values which would permit to correct them through the Kirchoff equation are not usually available. Enthalpy determinations from direct calorimetric measurements are thus highly preferable, the more so as the calculation of correlative entropy changes will accumulate errors from both constants and enthalpies.

1-5. Selection criteria

By taking the above comments into account, a number of criteria have been defined for evaluating stability constants and standard enthalpies and entropies.

The first point concerns the experimental conditions under which these quantities have been determined. Most investigations refer to the normal temperature of 25 °C, but a large number have been carried out at 20 °C while some have been performed at 37 °C. Ionic strength values are also very variable. Formation constants have thus been selected separately for different ionic strength values or intervals at 25 °C, 37 °C and 20 °C whenever possible.

In order to take account of the potential use of amino acid formation constants for biologically relevant applications, particular attention has been paid to the values obtained under physiological conditions (37 °C; I = 0.15 mol dm⁻³). Among the ionic backgrounds employed, KNO₃ and NaClO₄ are not expected to induce significant differences in corresponding constants. However, the use of NaCl may result in distinct values, depending on the affinity of each metal for chloride ions. Concerning this problem, the use of an ionic medium whose anions are likely to form metal complexes on their own should be avoided if one wants to determine thermodynamically "pure" constants. Nevertheless, as biofluids incorporate sodium chloride as a natural constituent, "practical" constants determined in its presence may appear more realistic from the biological point of view. Values determined in sodium chloride solutions have thus been evaluated separately.

Whenever reliable average values could be calculated with a good precision from the results obtained by different authors, recommended (R) or tentative (T) stability constants and associated thermodynamic quantities have been proposed, depending on the reproducibility observed.

For metal complex binary systems, overall formation constants β will normally be expressed according to the general formula

 $\beta_{pqr} = [M_q L_p H_r] / [M]^q [L]^p [H]^r$

in which the value of r is negative for hydroxo species. For example, the equilibrium

 $M^{2+} + L^{2-} + H_2O \Leftrightarrow MLOH^- + H^+$

is represented by

 $\beta_{11-1} = [ML(OH)]/[M][L][H]^{-1},$

with log $\beta_{11-1} = \log \beta_{ML(OH)} - pK_w$.

Successive stability constants K may sometimes be more expressive than their overall counterparts. This is especially the case for protonation equilibria, whose constants will be expressed according to

$$K_{\rm r} = \beta_{10\rm r} / \beta_{10(\rm r-1)}$$

Finally, overall formation constants for mixed-ligand species will also be mentioned when available. They will correspond to the general formula

 $\beta_{pp'qr} = [M_q L_p X_{p'} H_r] / [M]^q [L]^p [X]^{p'} [H]^r$

where X stands for the extra ligand.

In accordance with these definitions, the enthalpy and entropy changes collected in this review will refer to stepwise equilibria for protonation data, but to overall equilibria for all metal complexes.

2. CYSTEINE - HSCH₂CH[NH₂]CO₂H

(2-amino-3-mercaptopropanoic acid, LH₂)

The fully protonated form of cysteine contains three dissociable protons. Clearly, the most acidic of these lies on the carboxylic group. By contrast, assigning the respective sites of the two most basic protonation steps is less straightforward since related constants result from intermingled microscopic processes (79GS). Corresponding microconstants can be determined by the joint use of potentiometric and spectroscopic (69CMa, 72JB, 74WL, 85BC) or calorimetric (64WI) techniques, or through the determination of macroconstants of appropriate chemical derivatives (44RS, 55GN).

With three ionisable protons, cysteine will naturally be prone to protonated complex formation. Moreover, the size of the sulfur atom of its thiol group will facilitate the formation of polynuclear complexes. Both tendencies are confirmed by the following observations.

2-1. Protonation constants of cysteine

The relatively high value of the most basic protonation constant of cysteine (log K > 10) makes its accurate determination difficult since a significant fraction of the protonation curve lies in the pH range where the glass electrode response becomes less reliable. Attempts to correct related systematic deviations have been made (85MM), but the use of optimisation processes to improve electrode data (85MMa) in a range where the repercussion of ligand and acid concentration errors is a maximum may also be hazardous. Similar uncertainties are likely to affect the constant of the most acidic protonation step (log K < 2) since the use of high total concentrations of mineral acid to reach the largest possible protonation numbers may entail significant variations in the ionic strength. For this reason, this constant has often been omitted in the determinations reported in the literature.

The most striking feature of cysteine protonation lies in the difficulty to assign the donating groups involved in its two most basic equilibria. Its mode of ionisation between the two microprocesses described in the following scheme

1124

has been discussed for several decades (44RS, 51SK, 55BB, 55GN, 62EE, 64WI, 65D, 69CM, 69CMa, 72JB, 79GS, 79PB, 85BC). It is now generally accepted that proton ionisation occurs simultaneously from the SH and NH_3^+ groups, but the extent to which LH^{-+} and LH^- individually contribute to the whole equilibrium is all the more difficult to determine as the ratio of their respective concentrations has not only been shown to lie near unity (44RS, 55GN, 72JB), but also to reverse depending on the ionic strength (64WI).

Fortunately, this uncertainty does not affect the precision of the macroconstants to which the determination of metal complex formation constants refers, but one of its undesirable consequences is that some of the constants collected earlier may be misleading. According to Sillén and Martell's tables for example (64SM), references 55TK, 53SK and 44RS are expected to report log K_1 and log K_2 values equal to 10.51 and 8.60, respectively. These values in the corresponding articles actually refer to the microconstants relative to the individual formation of LH⁻, as deduced by Rycklan and Schmidt (44RS) from the macroconstants published by Borsook, Ellis and Huffman (37BE) and from their own determinations on homocysteine.

Literature values for the macroconstants are given in Table 2-1. Thermodynamic constants determined at 25 °C in references 37BE, 64WI and 69CM are close to one another, and a recommended value has been calculated. In contrast, no such agreement is observed in mixed constants obtained at 25 °C although the two sets determined at 20 °C and I = 0.1 mol dm⁻³ are quite similar (65D, 68PS) and have been used to propose tentative average values. Tentative values have also been calculated for stoichiometric constants determined at 25 °C in 3.0 mol dm⁻³ NaClO₄ (72GW, 76BH), although related log K_2 values differ to a surprising extent.

Concerning the determinations made at 37 °C, mixed constants (71HP) have logically (79ZJ, 81AB, 82BK, 84BP) been found about 0.1 larger than stoichiometric ones (78BM, 80AM, 85CF, 88GG), which roughly corresponds to the correction of 0.12 used by Martell and Smith in their constant tables (74MS, 82MS, 89SM). A fair agreement has been found between stoichiometric values in spite of different background salts (78BM, 80AM, 85CF, 88GG). A recommended average has thus been calculated. Recommended and tentative values for the protonation constants of cysteine are given in Table 2-2.

2-2. Thermodynamic quantities for the protonation of cysteine

Publications reporting determinations of enthalpy and entropy changes for the protonation of cysteine are relatively numerous. Among the seven available (64WI, 66WS, 69CM, 71MB, 72GW, 83BV, 89RF), three refer to the van't Hoff equation, in the 25-45 °C range in one of these (83BV), and between 5 and 95 °C in another, so that particular thermodynamic quantities have been calculated at

25, 50 and 75 °C (69CM). The application made at 30 °C (66WS) seems particularly dubious, as is the case in reference 88MA whose results have been discarded. The other four studies are based on calorimetric measurements (64WI, 71MB, 72GW, 89RF) and should thus a priori be considered more reliable. However, only 64WI, 72GW and 89 RF seem to correspond to the expected standards.

All these values can be seen in Table 2-3, where the subscripts relative to thermodynamic functions correspond to those employed for the stepwise stability constants shown in Tables 2-1 and 2-2.

2-3. Metal complex formation constants

Available overall stability constants for the formation of cysteine metal complexes are reported in Table 2-4. Some of these deserve some comments.

The different experimental conditions used for investigating Cd^{2+} -cysteine equilibria do not allow any comparison among available results. Moreover, the data obtained by polarography in 82NA did not take cysteine protonation into account and have thus been discarded. Consequently, the only reliable constants in this system are those determined at 37 °C (85CF), which have been proposed as tentative (Table 2-5).

The case of Co^{2+} complexation is similar since studies relative to identical temperatures (52A, 65D and 83HS, 83KP) refer to different ionic strengths. Acceptable agreement is observed between constants obtained at 20 °C, especially for ML₂ (52A, 65D). However, these data are far from being corroborated by a more recent study (83HS) in which formation of the polynuclear complexes -also suggested in 83KP- has been taken into consideration, and whose results are thus expected to be more reliable.

A huge discrepancy affects the constants for Cu^+ complexes (51SKa, 78BK). NH₃ may interfere with the polarographic determinations reported by Stricks and Kolthoff (51SKa), but it is unlikely that it can account for such a large difference. Redox problems are thus to be suspected. No complex could be obtained with the Cu^{2+} form due to its reduction into Cu^+ , cysteine being simultaneously transformed into cystine. In this respect, it must be noted that Sillén and Martell's Tables (71SM) mistakenly report for Cu^{2+} -cysteine complexes stability constants which actually correspond to those for Cu^{2+} -cystine. The same remark also holds for protonation constants in the same reference (63HP).

There is no agreement among different authors on Hg^{2+} complex stability constants (53P, 53SK, 64LM, 79ZN). Even the related complex stoichiometries vary depending on the above sources. It is also surprising that determinations on this system are so few, given the environmental and biological implications of mercury. Nevertheless, it must be noted that the various organic mercurials which result from the assimilation of this metal by living organisms are more toxic than Hg^{2+} ions (88M). Accordingly, stability constants of cysteine complexes with aryl (76HS) and alkyl (76HS, 78NM, 81JI, 81RR, 83AC) mercury have been determined. For methylmercury, the values in 76HS, 81JI, 81RR and 83AC relative to different ionic strengths are of the same order of magnitude and are thus to be considered as acceptable.

Nickel-cysteine complex equilibria have been investigated by several groups of authors. Acceptable agreement can be noted for the ML_2 constant between the most recent results obtained at 20 °C (20.18±0.03 for references 65D and 68PS), but none is observed at 25 °C (19.5±0.5 for references 56WM, 64LM, 72RJ and 79SG). The formation of ML_2 from ML is more favourable than that of ML from hydrated Ni²⁺ ions, so ML is a minor species at almost all concentrations. This explains the large uncertainty affecting its constant. The existence of M_2L_3 and M_3L_4 polynuclear complexes seems likely, but the distinct experimental conditions used by the different groups of authors who mention this possibility (68PS, 79SG, 85CF) makes impossible any estimation of realistic average values. The three corresponding sets of constants have thus been proposed as tentative (Table 2-5).

For lead-cysteine determinations, the large scale of experimental conditions used precludes any systematic comparison except for the 3.0 mol dm⁻³ NaClO₄ medium at 25 °C (73CT, 76CW, 76CWa). The constant found for ML under these conditions is fairly reproducible (13.18±0.03) between two of the above studies (73CT, 76CWa), but there seems to be a misprint in the third (76CW) where log β_{ML} is reported as 12.213 (instead of 13.213?). Moreover, there is no agreement about the stoichiometries of other possible species, although all three investigations have been performed by the

same group of authors. The very important stability of ML with respect to ML_2 , which gives the formation curve its particular shape (73CT), is probably at the origin of these discrepancies. It is also worth noting that no polynuclear complex has been mentioned. No set of constants has finally been selected.

Zinc(II)-cysteine complexes have been the most extensively investigated. As is the case with nickel, the formation of ML is less favourable than that of ML₂, and so the corresponding constant cannot be determined with precision. Results of studies considering simple mononuclear species only, which also happen to differ significantly from one another, must be discarded. By contrast, most of those relative to studies mentioning the existence of acidic and polynuclear species are much more reliable (68PS, 71HP, 76CW, 78BM, 79SG, 85CF), especially as far as ML₂ (17.9±0.1 at 37 °C for example), ML₂H and M₃L₄H are concerned. The main discussion still concerns the coexistence of M₂L₃ and M₃L₄ and their respective acidic counterparts, although the second alternative seems more likely (78BM). There is also no general accord about the coexistence of MLH, ML₂H and ML₂H₂, though independently characterised by two groups of authors (78BM, 79SG).

In spite of these remaining uncertainties, all of the six above-mentioned studies agree on the essentials, and there is only one work (80AM) strikingly at variance with this common position. Surprisingly, not only does Arena et al.'s study at 37 °C (80AM) report a constant for ML₂ much lower than the above average, but it also mentions a constant for M₂L₃ nine orders of magnitude below the corresponding values obtained in 78BM, 85CF and 79SG (the latter referring to 25 °C). More than that, it is the only one to report an accurate log β_{ML} , but much larger than log K_2 (= log β_{ML_2} - log β_{ML}), while sulphur-containing ligands are well known to be prone to give the sequence log $\beta_{ML} < \log K_2$ in their metal complexes. At the very least, these results, as well as their accompanying comments on the validity of earlier blood plasma simulation models (71HP, 78BM), should thus be considered with extreme caution.

To conclude on zinc(II)-cysteine complex equilibria and except for the case just treated, it is very difficult to select objectively a particular set of constants from which average values can be derived. For this reason, we do not propose any other choice than 17.9 for log β_{ML_2} , which is after all the most relevant constant for quantitative biological applications involving this system.

Determinations reported in Table 2-4 for cysteine binary complexes with other metal ions are too restricted to allow significant comparisons or to suggest useful comments.

Table 2-6 reports overall formation constants for mixed-ligand complexes involving cysteine. All the values determined at 25 °C are due to the same group of authors (74RM, 74RMa, 75RM). The MLX constant relative to the zinc(II)-cysteine-citrate system has not been confirmed by a more recent study (78BM) in which no ternary complex could be characterised. The latter finding is substantiated by the fact that the statistical combination of parent binary constants leads to a value situated about four orders of magnitude below the constant reported by Ramamoorthy and Manning (74RMa). This casts doubt on all the results obtained by this group, which should thus be considered with caution.

A large number of formation constants have been determined at 37 °C for mixed-ligand complexes of zinc(II) involving cysteine. This stems from the fact that cysteine is definitely *the* main l.m.m. ligand of zinc(II) in human blood plasma (78BM). Among these results, fair agreement is to be noted between the constants reported by two groups of authors for the MLX and MLXH main species in the zinc(II)-cysteine-histidine system (71HP, 81ABb), MLX₂H being definitely minor (81ABb). It is remarkable that no MLX complex could be found in the zinc(II)-cysteine-glycine and zinc(II)-cysteinelysine systems (81ABa, 81ABb). Apart from the known poor ability of glycine -and hence of glycinelike amino acids- to give rise to ternary coordination with other aliphatic ligands (72GS), ligand-ligand interactions may also be at the origin of such a priori unexpected results. The stereospecific effect brought to light in the zinc(II)-histidine-threonine system, which will be developed in the threonine chapter, is of particular interest in this respect (81ABa, 81G).

2-4. Thermodynamic quantities for metal complex formation with cysteine

Determinations of thermodynamic quantities relative to the formation of metal cysteine complexes are extremely scarce. In particular, no calorimetric study has been performed on any of the corresponding equilibria. Table 2-7 reports the only available data thus obtained from the van't Hoff equation, among which the values from 76CWa appear to be the most reliable.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	log K ₃	Ref.
Mixed	0.02 0.1	30 10.34	10.28 8.14	8.18 1.86	1.96	27CK
Thermo	0.02-0.18	25	10.78	8.33	1.71	37BE
Thermo	0.01	20	10.28	8.36	1.96	52A
Thermo	0.01	20	10.53	8.53	-	53P
Mixed	0.15 NaCl	25	10.40	8.30	-	55GN
Mixed(?)	0.15 KNO ₃	25	10.55	8.48	-	55LM
Mixed	0.1 KCl	25	10.42	8.27	-	56G
Stoichio	0.1 KNO ₃	25	10.11	8.13	-	64LM
Thermo	0.02-1.00	25	10.76	8.39	-	64WI
Mixed	0.16 KNO ₃	25	10.36	8.21	-	65CM
Mixed	0.1 Nacio ₄	20	10.472	8.308	1.881	65D
Mixed(?)	0.3	30	10.37	8.15	-	OJFC CONC
Mixed(?)	0.1 KCl	20	10.47	0.15 9.225		68DS
Thermo	0.1 NaClO4	20	10.490	8 81	~2	60CM
Thermo	15	10,80	8 58	0.04	-	090111
	25	10.05	8 37	_		
	35	10.50	8.17	-		
	45	10.34	7.98	-		
	55	10.23	7.85	-		
	65	10.08	7.69	-		
	75	9.93	7.52	-		
	85	9.85	7.38	-		
	95	9.76	7.28	-		
Mixed(?)	0.1 NaClO ₄	30	10.56	8.27	1.65	70RS
Mixed	0.15 KNO ₃	37	10.23	8.07	(1.90)	71HP
Mixed(?)	? NaClO ₄	20	9.88	7.95	1.90	72GP
Stoichio	3.0 NaCIO ₄	25	10.709	8.784	2.44	72GW
-	-	25	10.25	8.25	-	72JB
Mixed(?)	0.1 KCI	25	10.361	8.178	1.896	72RJ
Mixed(?)	0.2 KNO_3	15	10.53	8.44	2.25	/35K
		23 40	10.30	0.27	2.20	
Mixed(2)	0.5(2)	toom t	10.10	7.33 8.48	2.52	74337
Mixed(?)	0.5(7)	25	10.40	8.40	1.02	757K
Stoichio	$3.0 \text{ N}_2\text{ClO}_4$	25	10.55	8 64	2 36	76BH
Mixed(?)	2.0 Mac104	$\frac{23}{22}$	-	8 17	2.50	76HS
Stoichio	0.1 KNO2	$\tilde{2}\tilde{1}$	10.42	8.36	2.06	76KS
Stoichio	0.15 NaClO	37	10.110	7,968	1.972	78BM
Stoichio	0.1 KCl	25	10.87	8.20	1.97	79PB
	16.3% acetonitrile	25	10.67	8.38	2.20	
	34.2% acetonitrile	25	11.00	8.47	2.39	
	53.9% acetonitrile	25	11.33	8.66	2.73	
Mixed	0.15 KNO3	37	10.21	8.04	-	79ZJ
Stoichio	0.15 NaClÕ ₄	37	10.04	7.91	1.81	80AM

Table 2-1. Protonation Constants of Cysteine

Values in parentheses are estimates.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	log K ₁	log K ₂	log K ₃	Ref.
Mixed(?)	0.1 NaClO₄	20	10.750	8.900	2.974	80SD
	•	35	10.050	8.350	2.365	
		45	10.000	8.255	2.128	
	0.25 NaClO ₄	20	10.400	8.850	2.535	
		35	10.025	8.325	2.137	
		45	9.950	8.250	1.980	
	0.50 NaClO_4	20	10.350	8.775	2.485	
		35	9.855	8.250	1.984	
	1.0.11.010	45	9.750	8.150	1.879	
	1.0 NaClO ₄	20	10.300	8.675	1.962	
		35	9.850	8.225	1.533	
Otalahia	1.0.1.10	45	9.725	8.100	1.530	0177
Stoicnio	1.0 NanO_3	25	10.15	8.12 9.25	1.90	
Mixed(?)	1.0 NaClO_4	25	10.30	8.33	1.71	81MC, 84MCD
Stoichio	1.0 NaClO ₄	25	10.19	8.23 9.15	2.09	82BC
Stoichio	0.5 Macio ₄	25	10.10	0.15	1.85	02IN 82NTM
Mixed	0.1 MNO_3	23 50	10.352	0.244	-	OZINIMI OZINIMI
Mixed	0.1 Nacio ₄	25	10.30	8 23	1.90	02 V IN 83 A C
Mixed	0.1 KC	25	10.57	8.25	1.90	8324
Mixed(?)	0.1 Normal	20	10.5	8 37	_	83BV
WILKCU(1)	0.1 Macio4	25	10.70	8 17	-	020 4
		45	10.30	7 98	-	
Stoichio	0.2 KCl	25	10.16	8 10	1.86	83HS 885K
Stoichio	0.1 KNO_2	25	-	8 244	2 308	83NM
Mixed(?)	0.1 KNO_2	15	10.45	8.15	-	84ID
		30	10.35	8.10	-	
Stoichio	0.5 NaClO₄	25	10.407	8.286	-	85BC
Stoichio	0.15 NaCl	37	10.102	7.928	1.962	85CF
Mixed(?)	0.1 NaClO₄	25	10.75	8.95	2.96	85SN
		35	10.06	8.35	2.35	
		45	10.00	8.26	2.13	
	0.25 NaClO₄	25	10.40	8.84	2.53	
	4	35	10.02	8.33	2.14	
		45	9.95	8.25	2.13	
	0.5 NaClO₄	25	10.37	8.77	2.50	
	•	35	9.85	8.25	1.98	
		45	9.75	8.15	1.88	
	1.0 NaClO ₄	25	10.35	8.67	1.96	
	•	35	9.85	8.22	1.53	
_		45	9.72	8.10	1.53	
Mixed(?)	1.0 NaNO3	25	10.26	8.07	2.02	88BA
Stoichio	0.15 NaCl	37	10.068	7.911	1.817	88GG
Mixed	0.1 KNO3	25	10.15	8.16	-	89S

Table 2-1. Protonation Constants of Cysteine (continued)

N.B. Other references consulted but rejected: 74PN, 85KR.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	log K ₃	Ref.
Thermo (R)	0	25	10.75 (±0.05)	8.36 (±0.03)	1.71	37BE, 64WI, 69CM
Mixed (T)	0.1	20	10.48 (±0.01)	8.32 (±0.01)	1.94 (±0.06)	65D, 68PS
Stoichio (T)	3.0 NaClO ₄	25	10.69 (±0.02)	8.71 (±0.07)	2.40 (±0.04)	72GW, 76BH
Stoichio (R)	0.15	37	10.08 (±0.04)	7.93 (±0.04)	1.89 (±0.08)	78BM, 80AM, 85CF, 88GG

Table 2-2. Recommended (R) and Tentative (T) Values for Protonation Constants of Cysteine

Table 2-3. Thermodynamic Quantities for Cysteine Protonation Equilibria

Method	Medium (mol dm ⁻³)	Temp. (°C)	ΔH° ₁ ΔH° ₂ ΔH (kJ mol ⁻¹)	$\begin{array}{ccc} \mathrm{H}^{\circ}{}_{3} & \Delta \mathrm{S}^{\circ}{}_{1} & \Delta \mathrm{S}^{\circ}{}_{2} & \Delta \mathrm{S}^{\circ}{}_{3} \\ & (\mathrm{J} \ \mathrm{K}^{-1} \ \mathrm{mol}^{-1}) \end{array}$	Ref.
Cal.	→0	25	-34.3 -36.0 -	91.6 39.7 -	64WI
Pot.	0.1 KCl	30	-22.6 -28.9 -	- 126.0 60.7 -	66WS
Pot.	~0.01	25 50 75	-35.1 -35.1 - -29.3 -33.5 - -24.3 -31.8 -	- 87.0 42.2 - 105.8 47.7 - 121.7 52.3 -	69CM
Cal.	~0	20	-35.9 -32.2 -		71 MB
Cal.	3.0 NaClO ₄	25	-40.4 -38.8 -1	.4 69.5 38.0 50.6	72GW
Pot.	0.1 NaClO ₄	25	-32.6 -35.6 -	95.0 40.6 -	83BV
Cal.	~0	25	-37.8 -29.2 -2	2.3 79.5 61.3 25.1	89RF, 89R

(Pot. = potentiometry; Cal. = calorimetry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Ag+	Ag el.	1.0 NaNO3	25	ML	14.00	76ZN
Al ³⁺	G1.	0.1 NaClO ₄	25	ML	6.43	74RM
Au+	Sol.	-	25	ML.LH/	2.68	79SSb
	NMR	pH 7	-	ML ₂ .H ML.H/ LH.M	24.18	86LS
	Gl.	0.15 KNO ₃	20 37	$ML_2.H^{2/}$ (LH) ² .M ML 12.04	28.48 11.11	79 Z J
Au ³⁺	G1.	0.1 KNO ₃	15 30	ML ML	14.85 14.85	84ID
Be ²⁺	Gl.	0.1 KNO ₃	15	ML	12.50	84ID
			30	ML ₂ ML ML ₂	20.00 12.35 19.75	
Bi ³⁺	Sp.	0.5 NaClO ₄	25	MLH ML ₂ H ₂	22.38 40.96	82N
Ca ²⁺	Gl. Gl. (DL-)	0.1 NaClO ₄ 0.1 NaClO ₄	20 25	ML ML	2.50 1.92	65D 75RM
Cd ²⁺	Pol. Pol.	0.15 KNO ₃ 0.2 (phosphate buffer	25 25	precipitate ML	9.89	55LM 66SP
	Gl.	3.0 NaClO ₄	25	ML ML	12.875	74WW
	Gl. (DL-) Gl.	0.1 NaClO ₄ 0.5 NaClO ₄	25 25	ML ₂ ML ML	6.45 (~)8.65 (~)14.20	75RM 75ZK
	Gl. Gl.	0.15 NaNO3 0.15 NaCl	25 37	$\begin{array}{c} \text{ML}_2 \\ \text{ML}_2 \text{H}_2 \\ \text{ML} \\ \text{MLH}_{-1} \\ \text{ML}_2 \\ \text{ML}_2 \text{H} \\ \text{ML}_2 \text{H}_2 \\ \text{ML}_3 $	24.58 10.3 2.42 16.92 24.97 30.93 19.78	79ZN 85CF
	GlCd el.	1.0 NaNO ₃	25	ML ₃ H ML ML ₂	12.82 21.72 27.52	88BA
	DPP	-	-	ML ₂	15.3	89WZ
Ce ³⁺	G1.	- → 0	20	ML MLa	6.379 12.567	80SD
			35 45	ML ML ₂ ML ML ₂	6.198 12.297 6.005 11.900	

Table 2-4. Overall Formation Constants for L-Cysteine Metal Complexes

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl.	0.1 KNO ₃	15	ML	13.50	84ID
			30	ML_2 ML ML_2	20.50 13.40 20.30	
Co ²⁺	Gl. (DL-)	0.025	20	ML	8.8	52A
	Gl.	0.1 NaClO ₄	20	ML ₂ ML	8.46	65D
	Gl.	0.2 KCl	25	ML_2 ML ML_2 M_2L_3 M_3L_4 M_3L_4	8.00 14.20 26.34 37.98	83HS
	G1.	0.1 NaClO ₄	25	$M_{3}L_{4}H$ $M_{2}L_{3}$	27.5	83KP
Co ³⁺	Gl. (DL-)	0.040	20	ML ML ₂	9.3 16.9	52A
Cr ²⁺	Gl. (DL-)	-	25	ML	9.77	70FMa
Cr ³⁺	G1.	0.1 NaClO ₄	25	ML ML ₂	8.32 16.01 22.95	81MC, 84MCb
	Sp.	0.1 NaClO ₄	25	ML ML ML ₂	8.05 15.50 21.82	81MC, 84MCb
	Gl.	0.1 NaClO ₄	50	$\begin{array}{c} \text{ML}_3\\ \text{MLH}\\ \text{ML}_2\text{H}\\ \text{ML}_2\text{H}_2\\ \text{M}_2\text{L}_3\end{array}$	18.33 31.83 35.90 44.49	82VN
Cu+	Pol. Sp.	1.0 NH ₄ Cl 1.0	25 20	ML ML	19.19 11.38	51SKa 78BK
Cu ²⁺	Pol.	0.17 (phosphate buffer)	25	ML_2	16.0	61KP
NB: Co	nstants in ref.	71SM on Cu ²⁺ -cyst	eine (63H	IP) actually re	fer to Cu ²⁺ -cy	ystine
Dy ³⁺	G1. G1.	0.1 KCl →0	20 20	ML ML ML ₂	5.0 8.625 15.625	74PN 80SD
			45	ML ML ₂ ML ML ₂	15.425 8.325 15.150	
Er ³⁺	G1.	→ 0	20	ML ML ₂	8.000 15.790	80SD
			35 45	ML ² ML ML ₂ ML ₂	7.885 15.464 7.755 15.240	

Table 2-4. Overall Formation Constants for L-Cysteine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Eu ³⁺	Gl.	→0	20	ML ML	7.525	80SD
			35	ML ² ML	7.475	
			45	ML ₂ ML ML ₂	7.350 13.800	
Fe ²⁺	Gl. (DL-)	0.025	20	ML	6.2	52A
	SO 1.	→ 0	25	ML ₂ MLH ₋₁	-1.23	551K
	G1.	0.1 NaClO ₄	20	ML ML ₂	6.66 12.16	65D
Fe ³⁺	Sol.	→0	25	ML ₃ ML ₃ H	32.01	55TK
	G1.	0.15 KNO ₃	20	ML ₂ II-1 ML	10.85	79ZJ
			37	ML ₂ ML ML ₂	10.63 14.01	
Ga ³⁺	Gl.	3.0 NaClO ₄	25	ML M(LH) M(LH ₂)	16.1 8.3 2.4	76BH
Gd ³⁺	Gl.	0.1 KCl	20 20	ML MI	4.7 7.950	74PN 80SD
	01.		35	ML ₂	15.075	
			45	ML ₂	14.900	
			45	ML_2	14.700	
Hg ²⁺	Gl. (DL-) Pol	0.025 0.1 KNO2	20 25	ML ML o	20.5 43.57	53P 538K
	1 01.	0.1 11(03	23	ML ₂ H ML ₂ H	54.37	55501X
	Gl.	0.1 KNO_3	25	ML ₂ H ₂ ML	14.21	64LM
	fig el. Gl.	0.1 NaNO ₃ 0.15 NaNO ₃	25 25	$M(LH)_2$ ML_2H_2	39.4 54.92	73VB 79ZN
	Hg el.	-	25	ML ⁻ ML ₂	37.8 44.0	81BC
	GL	1.0 KNO2	25	M(ĽH) ₂ ML	38.3 41.80	83DO
	Gl	0 1 NaNO-	38	ML ₂ (ML ₂)H	41.20	859
	01.	0.1 1101103	25	$(ML_2)H_2$ $(ML_2)H_2$	16.31	020
CH ₃ Hg		0.1	25	λű	15 7	(10)
	NMR	-	25	MLH(H)	1.95	75RF
	G1.	-	22	ML(H) M(LH)	9.05 7.19	76HS
				ML(H) ML(M)	8.92 5.96	
	Liq. Part.	1.0 HNa,Cl	25	ML*	1.71	78NM

Table 2-4. Overall Formation Constants for L-Cysteine Met	al Complexes (continued)
---	--------------------------

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl.	1.0 NaNO ₃	25	ML MLH	15.70	81JI
	Gl.	0.3 KNO ₃	25	MLH ML MLH	24.96 16.67 25.68	81RR
	Gl.	0.1 KNO ₃	25	ML MLH	16.46 25.48	83AC
C ₂ H ₅ H ₂	gII Liq. Part.	1.0 HNa,Cl	25	ML*	1.55	78NM
C ₃ H ₇ H ₂	g ∏ Liq. Part.	1.0 HNa,Cl	25	ML*	1.49	78NM
* log β_M	$L = \log \beta_{ML}$	* + log K_1				
C ₆ H ₅ H ₂	gH Gl.	-	22	M(LH)	4.77	76HS
	Solv. ext.	1.0	25	ML(H) ML ₂	8.64 16.5	88KS
H0 ³⁺	G1.	→0	20	ML MLa	8.025 15.825	80SD
			35	ML ML	7.900	
			45	ML^{2} ML_{2}	7.800 15.250	
In ³⁺	Gl.	0.1 KNO ₃	21	ML MLo	14.72 27.26	76KS
				MLH ML ₂ H	18.46 31.78	
				$ML_2^2H_2$ ML_3	35.74 32.20	
La ³⁺	Gl. Gl	0.1 KCl →0	20 20	ML ML	4.9 6.025	74PN 80SD
	U I,	<i>,</i> ,	35 45	ML ML	5.875 5.700	0002
	Gl.	0.1 KNO ₃	15	ML ML	13.35 18.65	84ID
			30	ML^{2} ML_{2}	13.25 18.45	
Mg ²⁺	Gl. (DL-) Gl.	0.025 0.1 NaClO ₄	20 20	ML ML	< 4 2.746	52A 65D
Mn ²⁺	Gl. (DL-)	0.025 0.1 KCl	20	ML MI	4.1 ~2	52A 52K
	GL.	0.1 KNO_3 0.1 NaClO_4	25 20	ML ML	4.56	64LM 65D
	01.	0.1 1140104	20	ML ₂	8.65	

Table 2-4. Overall Formation Constants for L-Cysteine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Mo ^{IV}	Sp.	-	-	MLH	(~)20.5	77L
Mo ^V	Sp.	1.5-3.0 (acetate buffer)	25	ML	6.0±0.1	63SC
MoVI	Sp.	1.5 (acetate buffer)	25	ML ₃	18±1	63SC
Nd ³⁺	G1.	→ 0	20	ML ML ₂	6.852 13.522	80SD
			35 45	ML ² ML ₂	6.755 13.304 6.698	
	G1.	0.1 KNO ₃	15	ML ML2 ML	13.183 13.45	84ID
			30	ML ₂ ML ML ₂	18.75 13.35 18.55	
Ni ²⁺	Gl. (DL-) Gl.	0.025 0.15	20 25	ML ₂ ML	19.3 10.48	52A 56WM
	G1.	0.1 KNO ₃	25	ML ₂ ML	9.64	64LM
	G1.	0.1 NaClO ₄	20	ML_2 ML ML_2	9.83 20.21	65D
	G1.	0.1 NaClO4	20	ML ₃ ML ML ₂ MLH M ₂ L ₃	23.08 ~9.0 20.156 15.426 33.005	68PS
	GI.	0.1 KCl	25	M ₃ L ₄ ML MI	45.719 9.816 20.066	72RJ
	G1.	0.2 KNO ₃	15	ML_2 ML ML_2	10.36 20.10	73SR
			25 40	ML ML ₂	10.20 19.97 9.95	
	G1.	0.2 KCl	25	ML ML2 ML	19.27 8.7	79SG
				ML ₂ MLH ML ₂ H M ₂ L ₃ M ₂ L	19.61 14.87 24.02 30.3 44 51	
	G1.	0.15 NaCl	37	$ML ML_2 M_2L_3$	9.603 19.219 31.49	85CF
Pb ²⁺	Pol.	0.15 KNO ₃	25	ML MI	12.20	55LM
	G1.	0.1 KNO_3	25	ML	11.39	64LM

	Table 2-4.	Overall	Formation	Constants	for L	-Cysteine	Metal	Complexes	(continued)	
--	------------	---------	-----------	-----------	-------	-----------	-------	-----------	-------------	--

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	G1.	0.1 NaClO ₄	20	ML ML ₂	12.75 16.91	65D
	Gl.	3.0 NaClO ₄	25	ML ₃ ML ML ₂	13.163 19.203	73CT
	G1.	3.0 NaClO ₄	25	ML ₃ ML MLH ML ₂ ML ₂ H	22.470 12.213 17.347 18.571 27.476	76CW
	Gl.	3.0 NaClO ₄	10	ML ₂ H ₋₁ ML MLH ML ₂ H	7.331 13.579 17.974 28.417	76CWa
			25	ML ² MLH ML ₂ H MI	13.207 17.434 27.301	
	GI	1.0 NoClO	40	MLH ML ₂ H ML	12.828 16.968 26.445 12.20	8280
	01.	1.0 NaCl04	23	ML MLH ML ₂ ML ₂ H MLH 1	16.16 15.90 25.10 2.04	6200
	Sp.	0.5 NaClO ₄	25	ML	12.21	82N
(CH ₃) ₃]	PbIV	0.2 // 1/0	25	Ъď	5.07	01DD
	NMK	0.3 KNO3	25	ML M(LH) M(LH ₂)	5.97 4.99 0.34	81BK
Pr ³⁺	Gl.	→ 0	20 25	ML ML ₂	6.586 12.975 6 398	80SD
			45	ML ₂ ML	12.693 6.245	
	Gl.	0.1 KNO ₃	15	ML ₂ ML ML ₂	12.345 13.40 18.65	84ID
			30	ML ML ₂	13.30 18.45	
Pt ⁴⁺	G1.	0.1 KNO ₃	15	ML ML ₂	13.40 18.65	84ID
			30	ML ⁻ ML ₂	13.35 18.50	
Rh ³⁺	Gl.	→0	25	ML ML ₂	8.60 11.95	85SN
			35	ML ₃ ML ML ₂ ML ₃	8.25 11.45 13.60	

 Table 2-4. Overall Formation Constants for L-Cysteine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
			45	ML ML ₂ ML ₃	7.90 11.00 13.05	
Sn(CH ₃) ₃ (H ₂ O) ₂ + Gl.	0.3 NaClO ₄	25	ML ML ₂ MLH	10.54 18.97 15.21	87HO
Sm ³⁺	G1. G1.	0.1 KCl →0	20 20 35	ML ML ML ₂ ML ML ₂	4.8 7.300 14.000 7.150 13.650 7.075	74PN 80SD
Sr ²⁺	G1.	3.0 KNO ₃	43 25	ML ML ₂ no evidence cplx format	13.475 of ion	64LM
Tb ³⁺	G1.	→ 0	20 35 45	ML ML ₂ ML ML ₂ ML ML ₂	7.925 15.525 7.875 15.375 7.800 15.225	80SD
Th ⁴⁺	Gl. (D-) Gl.	0.1 KNO ₃ 0.1 KNO ₃	25 15 30	ML ML ₂ ML ML	7.51 14.80 14.30 14.05	83NM 84ID
Tm ³⁺	Gl.	→0	20 35 45	ML ML ₂ ML ML ₂ ML ML ₂	7.998 15.897 7.800 15.400 7.698 15.173	80SD
UO ₂ ²⁺	Gl. Gl. (D-) Gl.	0.1 NaClO4 0.1 KNO3 0.1 KNO3	30 25 15 30	ML ML ₂ ML ML ₂ ML ML ML ₂	9.04 5.84 11.85 13.80 22.50 13.65 22.20	70RS, 73RS 82NM, 83NM 84ID
VO ²⁺	G1.	2.25 NaNO3	25	$\begin{array}{c} \rm MLH_2 \\ \rm MLH \\ \rm ML_2H_4 \\ \rm ML_2H_3 \\ \rm ML_2H_2 \\ \rm ML_2H \\ \rm ML_2 \\ \rm M_2L_2 \\ \rm M_2L_2 \end{array}$	19.9 16.1 ~39.3 ~35.8 31.0 26.0 19.2 25.2	89CVa

Table 2-4. Overal	1 Formation	Constants for	or L-Cyste	eine Metal	Complexes	(continued)
-------------------	--------------------	---------------	------------	------------	-----------	-------------

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Y ³⁺	Gl.	0.1 KCl	20	ML	4.9	74PN
Yb ³⁺	Gl.	0.1 KCl	20	ML	5.2	74PN
Zn ²⁺	Gl. (DL-) Gl. (DL-) Pol.	0.025 0.025 0.15 KNO ₃	20 20 25	ML ₂ ML ₂ ML	18.2 17.1 9.86	52A 53P 55LM
	G 1.	0.1 KNO3	25	ML ₂ ML	18.70 9.04	64LM
	G1.	0.1 NaClO ₄	20	ML ₂ ML ML ₂	9.67 18.71	65D
	Gl.	0.1 NaClO ₄	20	ML ₃ ML ₂ ML ₂ H ML ₂ H ₂ M ₃ L ₄	21.64 18.210 24.794 30.553 43.493	68PS
	Gl.	0.15 KNO ₃	37	$\begin{array}{c} M_{3}L_{4}H\\ ML_{2}\\ ML_{2}H\\ ML_{2}H_{2}\end{array}$	49.517 17.98 24.33 29.86	71HP
	Gl.	0.1 KCl	25	M ₃ L ₄ H ML ML ₂ ML-H	48.63 9.191 18.185 24.466	72RJ
	(DL-)			ML ₂ H ML ML ₂	9.150 18.177 24.500	
	NMR	0.5 NaCl	31.6	ML ₂ H ML ML ₂	8.91 17.61 22.41	73H
	G1.	3.0 NaClO ₄	25	$ML_2ML_2HML_2H_2M_3L_4M_3L_4$	19.394 25.856 31.879 46.247	76CW
	Gl.	0.15 NaClO ₄	37	$M_{3}L_{4}H$ (ML ML ₂ MLH ML ₂ H (ML ₂ H ₂ M ₃ L ₄ H M ₃ L ₄ H	52.505 8.60) 17.905 14.604 24.114 29.013) 42.278 48.313 54.082	78BM
	(less satisfactory fit)			M3L4H2 ML2 MLH ML2H M2L3 M2L3H M2L3H	17.913 14.544 23.813 29.826 36.392 41 748	
	Gl.	0.2 KCl	25	$\begin{array}{c} M_2 L_3 H_2 \\ ML \\ ML_2 \\ MLH \\ ML_2 H \\ ML_2 H_2 \\ M_2 L_3 \\ M_3 L_4 \\ M_3 L_4 H \end{array}$	8.2 18.05 14.76 24.43 29.93 29.2 42.11 49.01	79SG

 Table 2-4. Overall Formation Constants for L-Cysteine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl. Gl.	0.15 NaNO3 0.15 NaClO4	25 37	ML ₂ H ₂ ML ML ₂ ML ₂ H	24.50 9.17 17.29 23.32 20.75	79ZN 80AM
	Gl.	0.15 NaCl	37	M2L3 ML2 MLH M2L3 M2L3H M2L3H2	17.77 14.67 30.26 36.14 41.73	85CF
Zr ⁴⁺	Gl.	0.1 KNO ₃	15 30	ML ML	14.40 14.15	84ID

Table 2-4. Overall Formation Constants for L-Cysteine Metal Complexes (continued)

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry; Sol. = solubility; DPP = differential pulse polarography)

Metal ion	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Cd²⁺ (T)	0.15 NaCl	37	$\begin{array}{c} \mathrm{ML}\\ \mathrm{MLH}_{-1}\\ \mathrm{ML}_{2}\\ \mathrm{ML}_{2}\mathrm{H}\\ \mathrm{ML}_{2}\mathrm{H}_{2}\\ \mathrm{ML}_{3} \end{array}$	10.3 2.42 16.92 24.97 30.93 19.78	85CF
Co ²⁺ (T)	0.2 KCl	25	ML ML ₂ M ₂ L ₃ M ₃ L ₄ M ₃ L ₄ H	8.00 14.20 26.34 37.98 43.74	83HS
Ni ²⁺ (T)	0.1 NaClO ₄	20	ML ML ₂ MLH M ₂ L ₃	~9.0 20.156 15.426 33.005 45.710	68PS
	0.2 KCl	25	M3L4 ML ML2 MLH ML2H ML2	43.719 8.7 19.61 14.87 24.02 30.3	79SG
	0.15 NaCl	37	$M_{3}L_{4}$ ML ML_{2} $M_{2}L_{3}$	44.51 9.603 19.219 31.49	85CF
Zn²⁺ (R)	0.15	37	ML_2	17.9 (±0.1)	71HP, 78BM, 85CF

Table 2-5. Recommended (R) and Tentative (T) Overall Formation Constants for L-Cysteine Metal Complexes

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Al ³⁺	G1. G1. G1.	0.1 NaClO ₄ 0.1 NaClO ₄ 0.1 NaClO ₄	25 25 25	Phosphate Citrate NTA	MLX MLX MLX	15.66 14.90 18.89	74RM, 75RM 74RM, 75RM 75RM
Ca ²⁺	G1. G1. G1.	0.1 NaClO ₄ 0.1 NaClO ₄ 0.1 NaClO ₄	25 25 25	Phosphate Citrate NTA	MLX MLX MLX	8.49 5.58 8.44	75RM 75RM 75RM
Cd ²⁺	Gl. Gl. Gl.	0.1 NaClO ₄ 0.1 NaClO ₄ 0.1 NaClO ₄	25 25 25	Phosphate Citrate NTA	MLX MLX MLX	11.45 10.82 17.53	75RM 75RM 75RM
Co ²⁺	Gl.	0.1 NaClO ₄	24	Bipyridyl o-phen.	(MX)L (MX)L	4.45 4.30	82SD
Cr ³⁺	G1.	0.1 NaClO ₄	50	L-Aspartic acid L-Glutamic acid	MLX MLXH MLX MLXH MLXH ₂	26.03 29.74 24.82 29.53 32.55	82VN
Cu+	Sp.	1.0	20	Chloride	MLX	14.43	78BK
Cu ²⁺	Gl.	0.1 NaClO ₄	24	Bipyridyl o-phen.	(MX)L (MX)L	6.00 5.90	82SD
Hg ²⁺	Gl.	0.1 KNO ₃	30 45	Dien. Dien.	(MX)L (MX)L	4.47 4.92	87SB
Ni ²⁺	Gl.	0.1 NaClO ₄	24	Bipyridyl o-phen.	(MX)L (MX)L	5.55 5.45	82SD
Pb ²⁺	Gl. Gl. Gl.	$\begin{array}{c} 0.1 \ \mathrm{NaClO_4} \\ 0.1 \ \mathrm{NaClO_4} \\ 0.1 \ \mathrm{NaClO_4} \end{array}$	25 25 25	Phosphate Citrate NTA	MLX MLX MLX	16.53 18.27 25.53	74RMa
Pd ²⁺	Gl.	0.1 NaClO ₄	24	Bipyridyl o-phen.	(MX)L (MX)L	5.60 5.45	82SD
Pt ²⁺	Gl. Sp.	-	-	cis-diammine	(MX)L	7.55 7.43	82XL
Tb ³⁺	Sp.	-	-	EDTA	(MX)L	3.07	85SB

Table 2-6. Constants for Mixed-ligand Complexes Involving L-Cysteine

_

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Zn ²⁺	Gl.	0.15 KNO3	37	L-Histidine	MLX MLXH MLXaH	15.23 21.60 26.50	71HP
	Gl. Gl. Gl.	0.1 NaClO ₄ 0.1 NaClO4 0.1 NaClO ₄	25 25 25	Phosphate Citrate NTA	MLX MLX MLX	14.14 16.59 26.28	74RMa
	G1.	0.15 NaClO_4	37	Citrate	no ternary in evidence	complex	78BM
	Gl.	0.15 NaClO ₄	37	Histamine	MLX MLXH	14.592 21.130	80KB
	G1.	0.15 NaClO ₄	37	L-Lysine	no ternary in evidence	complex	81ABa
	G1.	0.15 NaClO ₄	37	L-Histidine	MLX MLXH	15.090 21.333	81ABb
	Gl.	0.15 NaClO ₄	37	Glycine	MLXH ML ₂ X ML ₂ XH MLX ₂	19.922 16.166 24.752 19.747	81ABb
	Gl. Gl.	0.15 NaClO ₄ 0.15 NaClO ₄	37 37	L-Phenylalanine L-Arginine	MLX ² MLX MLXH	13.110 13.652 19.999	81AB 81AB
	G1.	0.1 NaClO ₄	24	Bipyridyl o-phen.	(MX)L (MX)L	5.35 5.05	82SD
	Gl. Gl.	0.15 NaCl 0.1 KNO ₃	37 25	L-Glutamine NTA	MLXH (MX)L (MX)LH	19.66 6.51 14.02	85CF 89S

Table 2-6. Constants for Mixed-ligand Complexes Involving L-Cysteine (continued)

(G1. = glass electrode potentiometry [as exclusive or main method]; Sp. = spectrophotometry; o-phen. = orthophenanthroline; Dien. = diethylenetriamine)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	∆H° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Ce ³⁺	Pot.	→0	25	ML ML ₂	-20.8 -31.1	51 134	80SD
Dy ³⁺	Pot.	→0	25	ML ML ₂	-14.4 -23.0	116 220	80SD
Er ³⁺	Pot.	→0	25	ML ML ₂	-13.2 -37.5	108 174	80SD
Eu ³⁺	Pot.	→ 0	25	ML ML ₂	-5.7 -8.6	124 239	80SD
Gd ³⁺	Pot.	→ 0	25	ML ML ₂	-14.4 -20.1	103 220	80SD
Hg ²⁺	Pol.	0.1 KNO3	25	ML ₂ ML ₂ H ML ₂ H ₂	-228 -258 -294	67 167 184	53SK
H0 ³⁺	Pot.	→ 0	25	ML ML ₂	-14.4 -37.4	104 175	80SD
La ³⁺	Pot.	→0	25	ML	-17.3	56	80SD
Nd ³⁺	Pot.	→ 0	25	ML ML ₂	-11.2 -25.1	93 173	80SD
Ni ²⁺	Pot.	0.2 KNO ₃	25	ML_2	-57.3	188.3	73SR
Pb ²⁺	Pot.	3.0 NaClO ₄	25	ML MLH ML ₂ H	-42.4 -56.9 -111.8	110.6 142.9 147.8	76CWa
Pr ³⁺	Pot.	→ 0	25	ML ML ₂	-21.7 -32.5	52 137	80SD
Rh ³⁺	Pot.	→ 0	25	ML ML ₂ ML ₃	-61.5 -79.5 -97.0	0.0 -0.1 -0.1	85SN
Sm ³⁺	Pot.	→0	25	ML ML ₂	-17.3 -40.3	81 130	80SD
Tb ³⁺	Pot.	→0	25	ML ML ₂	-5.8 -17.3	132 238	80SD
Tm ³⁺	Pot.	→ 0	25	ML ML ₂	-23.2 -57.2	75 109	80SD

Table 2-7. Overall Thermodynamic Quantities for L-Cysteine Metal Complex Equilibria

(Pot. = potentiometry; Pol. = polarography)

3. CYSTINE - HO₂C[NH₂]CHCH₂SSCH₂CH[NH₂]CO₂H (3,3'-dithiobis(2-amino-propanoic acid), LH₂)

Cystine results from cysteine oxidation with the formation of a disulfide bridge, and displays four protonation sites whose assignment is more straightforward than that of its reduced counterpart. Clearly, the two most basic protonation steps for cystine relate to its two amino groups whereas the two most acidic steps correspond to its two carboxylate functions. Both types of donor sites are likely to participate in metal coordination. In addition, the disulfide bond may also be involved in some specific cases.

Cystine is poorly soluble in neutral aqueous media. Studies on metal complex formation and even protonation equilibria of this amino acid have thus been seriously hampered. As a consequence, corresponding data available in the literature are rather limited. In spite of this, a strong incentive for investigating metal ion - essential amino acid interactions has been the discovery that a low but significant fraction of copper(II) and zinc(II) naturally present in blood plasma occurs in the form of amino acid complexes (67NS, 68PO). In particular, cystine-containing mixed-ligand species were originally considered to represent a predominant fraction of the 1.m.m. complexes of copper(II) in this biofluid (71HP, 73PA, 77ML, 81MW, 82WF). Copper binary and ternary complex equilibria involving cystine have thus received particular attention in this context.

3-1. Protonation constants of cystine

Due to the poor solubility of cystine in aqueous solution, attempts to determine its protonation constants are not numerous. It is worth noting in this respect that solubility data were used in the past to calculate values which, although approximate, did at least refer to its four protonation steps (26S, 37BE). In contrast with these former studies, more recent investigations using potentiometric back titrations have led to limited information from which equilibrium constants for the two most acidic protonation steps were lacking (63HP, 71HP). It is only recently that all of the four protonation constants have been determined with precision from classical titrations run in such a way that precipitation of the cystine zwitterion could be avoided (81BK). Following this study, two other complete sets of constants were produced, relating to the same conditions of temperature and ionic strength (82HA, 85CF). All constants collected are reported in Table 3-1.

The paucity of the data available for 20°C and 25°C precludes any selection of recommended or tentative averages at these temperatures. In contrast, the five contributions carried out under physiological conditions provide a relatively sound basis for comparison. If we consider the first protonation step (log K_1), an initial remark is in order. When account is taken of factors developed in the preceding chapter, the mixed constant found in 71HP is logically 0.1 log unit higher than its stoichiometric counterpart, whose assessment in 81BK, 82HA and 85CF has been perfectly reproducible and from which a recommended average has been calculated (Table 3-2). This casts doubt on the result obtained by Arena et al. (80AM) which, although claimed to derive from concentration measurements, is almost exactly equivalent to that of 71HP.

The case of the second protonation step is more confused. Whereas the stoichiometric constant determined by Arena et al. (80AM) is once again almost equivalent to the mixed constant obtained in 71HP, which is again a priori abnormal but at least in line with what was observed for $\log K_1$, the values in 82HA and 85CF are lower by 0.2 log units, which seems quite surprising. The only stoichiometric constant to fall within the expected range of the mixed $\log K_2$ of 71HP is that found in 81BK, the difference between both values being exactly the same as between their $\log K_1$ counterparts. Fortunately, the average calculated from all constants -including that in 71HP corrected from its 0.12 activity coefficient increment (see 74MS, 82MS, 89SM)- is relatively close to the constant of 81BK (Table 3-2).

For the third protonation step, the values of $\log K_3$ found in 81BK, on the one hand, and in 82HA and 85CF on the other, are almost identical as was the case for $\log K_1$, whereas the value in 80AM is far higher. The average in Table 3-2 has thus been calculated from refs. 81BK, 82HA and 85CF only.

As for the last protonation step, it is particularly difficult to evaluate the reliability of log K_4 given its low value. At the acidic pH's required for such determinations, the imposed ionic strength (0.15 mol dm⁻³) is no longer in sufficient excess, and variations in activity coefficients are possible. The only study which discusses experimental details concerning this problem is 81BK. From the reported protonation curve for which the highest attainable protonation degree is 3.5, the resulting value of 1.36 appears to be a maximum. Thus, the average proposed in Table 3-2, which takes also account of the values found in 82HA and 85CF, should in no case be considered as an underestimate.

3-2. Metal complex formation constants

Primarily because of the poor solubility of the cystine zwitterion, equilibrium studies relative to the formation of metal complexes of this amino acid are extremely limited on the whole. However, on account of the potential role of cystine as a major ligand of the 1.m.m. fractions of copper(II) and zinc(II) in blood plasma (67NS, 68PO), quantitative investigations of corresponding complexes were considered a priority by bioinorganic chemists. A few sets of formation constants for cystine complexes with copper(II) and zinc(II) are thus available under physiological conditions. The nickel(II)-cystine system has also been investigated for similar reasons, although to a lesser extent. Table 3-3 reports all these results.

In the first study carried out on copper(II)-cystine interactions, Hawkins and Perrin (63HP) characterised the existence of six complexes, but drew attention to the fact that along with the free Cu^{2+} ion, MLH, ML_2H_2 and M_2L_2 accounted for more than 97% of all the copper(II) present. A careful examination of their results leads to the conclusion that M_2L_2 is largely predominant under the concentration conditions investigated, even for metal-to-ligand ratios as high as 1:3, MLH being the second species by order of decreasing importance.*

The large number of species reported by the above authors may be attributed to the well-known permissiveness (78BM, 84BB) of the SCOGS programme (68S). This interpretation is corroborated by the results later published by the same group (71HP), in which M_2L_2 and MLH are the only species mentioned. A more recent study carried out under similar experimental conditions has led to identical conclusions (81BK), but for the characterisation of an additional M_2L complex made on PSEUDOPLOT (75CM) graphical grounds. Stability constants relative to the species common to the latter two studies are in fair agreement. If one indeed recalculates the MLH constant given in reference 71HP according to the general mode of expression defined in the Introduction, one finds 16.20, compared to 16.08 (81BK), whereas 28.07 and 28.24 have, respectively, been obtained for the M_2L_2 constant (71HP, 81BK). Still more recently, the stoichiometries of the species characterised in 81BK have been confirmed (85CF), but corresponding constants have all been found to be a little lower (Table 3-3), which may be logically expected from determinations made in the NaCl medium (see Chapter 1). Recommended and tentative values have been proposed in Table 3-4.

For nickel(II), only one study has been done of its complexation equilibria with cystine (85CF). Corresponding results are reported in Table 3-3.

As for zinc(II)-cystine interactions, solubility problems made the determination of complex formation constants still more difficult than in the case of copper(II). Four studies are available under the same experimental conditions, but only two of these, issued from the same group of authors (82HA, 85CF), agree on the nature of the complexes formed. No experimental details have been given in the oldest investigation (72GH) on the way nature and stability of the proposed complexes have been determined; corresponding results should thus be considered with caution. On the other hand, the pH range investigated by Arena et al. (80AM) is so limited (5.3-6.4) and the reactant concentrations so low (~0.5 mol dm⁻³) that, without any information on the formation curve on which the calculations are based, it is difficult to lend credit to the M_2L constant proposed; this is all the more so as protonation as well as cysteine results from the same study (see Chapter 2) have not been selected as reliable.

In contrast, the other two investigations, using either indirect analysis with respect to histidine (82HA), or direct determinations (85CF), not only led to identical stoichiometries but also yielded fairly reproducible constants. The two corresponding species have thus been selected, and their average constants proposed as tentative (Table 3-4).

As a rule, mixed-ligand complexes play an important role in the distribution of metal ion 1.m.m. fractions in blood plasma (78BM, 84BP, 86BH). In particular, mixed-ligand species involving cystine

^{*} Incidentally, it may be worth noting that these results have been mistakenly cited under the cysteine heading in ref. 71SM (see section 2-3). Moreover, constants for the sole MLH and ML_2H_2 complexes have been mentioned in ref. 74MS, where they have in addition been wrongly associated with ML and M_2L_2 stoichiometries.

were originally considered to predominate in the l.m.m. fraction of copper(II) in this biofluid (71HP, 73PA, 77ML, 81MW, 82WF). With histidine definitely the main l.m.m. ligand of copper(II) in plasma (84BP, 86BH), studies on copper(II)-cystine-histidine equilibria have taken up an important part of the few investigations carried out on metal-cystine ternary systems.

Among the results of the two groups of authors cited in Table 3-5 (71HP, 84BB), fair agreement is observed for the constant of the MLXH₂ species, and a tentative average of 30.56 ± 0.13 may even be proposed. However, the agreement stops there. In particular, none of the MLX and MLXH species characterised by Hallman et al. (71HP) has been confirmed in the more recent study (84BB). The lack of experimental details in 71HP prevents any direct comparison, but data obtained on connected systems allow to reach a clearcut conclusion. In fact, the nonexistence of MLX and MLXH complexes in the copper(II)-cystine-histidine system in 84BB is in line with the lack of evidence for any ternary species in the copper(II)-histamine-cystine system (81BK). The former characterisation of the two MLX and MLXH complexes by Hallman et al. (71HP) has been suggested to result from the above mentioned permissiveness of SCOGS (84BB). In this respect, the discovery of the nonexistence of species initially considered significant by Perrin's school is not an exception. The negligibility of a series of ternary zinc(II) species (81ABb) previously reported to form (71HP) has even been acknowledged by Perrin's group itself (79SP).

The above discussion might appear somewhat superfluous if the consequences of the corresponding results were not so important. As long as the MLX and MLXH constants proposed by Hallman et al. (71HP) were present in the databank used to simulate the distributions of essential metal ions in blood plasma, no coincidence could be obtained with the experimental data formerly collected on copper(II) by Neumann and Sass-Kortsak (67NS). As stated in the introduction, this lack of coincidence had even been advanced as an argument to question the very principle of simulation models in this field (79YS, 81S). The fact that the removal of these constants from the databank in accordance with the results found in ref. 84BB led not only to the expected coincidence between experimental and simulated classifications in blood plasma (84BB) but also (86BH) in the reconstituted serum solutions investigated by Neumann and Sass-Kortsak (67NS) tends to definitely substantiate the results obtained in ref. 84BB. The nonexistence of the MLH and MLXH species mentioned by Hallman et al. has even been independently confirmed (81W).

It is finally worth noting that no determination of any thermodynamic quantity relative to complex formation equilibria with cystine was found in the literature.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	log K ₁	log K ₂	log K ₃	log K ₄	Ref.
- Mixed Thermo - Mixed Stoichio Stoichio Stoichio Stoichio	- 0.02 0.01-0.11 0.15 NaClO ₄ 0.15 KNO ₃ 0.15 NaClO ₄ 0.15 NaClO ₄ 0.15 NaCl 0.15 NaCl	25 30 25 35 20 37 37 37 37 37 37	9.85 9.02 10.25 8.71 8.80 8.69 8.71 8.596 8.602 8.604	7.86 7.48 8.00 8.02 8.03 7.95 7.93 7.855 7.754 7.752	2.21 1.70 2.05 - (1.7) 2.38 2.090 2.051 2.054	1.60 <1.0 1.04 - - 1.360 1.636 1.62	26S 27CK 37BE 39GK 63HP 71HP 80AM 81BK 82HA 85CF

Table 3-1. Protonation Constants of Cystine

Table 3-2. Recommended Values for Protonation Constants of Cystine

Type of Medium Temp. constants (mol dm ⁻³) (°C)	log K ₁	log <i>K</i> ₂	log K ₃	log K ₄	Ref.
Stoichio (R) 0.15 37	8.60	7.84	2.07	1.5	71HP, 80AM, 81BK,
	(±0.01) ((±0.09)	(±0.02)	(±0.15)	82HA, 85CF

© 1995 IUPAC, Pure and Applied Chemistry, 67, 1117-1240

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Cu ²⁺	Gl.	0.15 NaClO ₄	20	$\begin{array}{c} M(LH) \\ [MLH] \\ M_2L_2(H) \\ [M_2L_2H] \\ M(LH)_2 \\ [ML_2H_2] \\ M_2(LH)_2L \\ [M_2L_3H_2] \\ M_2L \\ M_2L_2 \end{array}$	7.00 15.80] 21.33 30.13] 13.72 31.32] 28.05 45.65] 14.00 28.05	63HP

NB: These constants have been mistakenly cited under the cysteine heading in ref. 71SM. Moreover, the M(LH) and $M(LH)_2$ constants above have only been mentioned in ref. 74MS, and wrongly attributed to ML and ML₂. Overall constants in square brackets have been calculated from protonation constants in Table 3-1.

				[MLH [M ₂ L ₂ H [ML ₂ H ₂ [M ₂ L ₃ H ₂ M ₂ L	15.80] 30.13] 31.32] 45.65] 14.00	
	G1.	0.15 KNO ₃	37	M ₂ L ₂ MLH M I	28.05 16.20 28.07	71HP
	Gl.	0.15 NaClO ₄	37	M2L2 MLH M2L	16.081 14.860 28.241	81BK
	Gl. (by referen	0.15 NaCl ce to NTA)	37	M ₂ L ₂ ML	8.22	82HA
	Gl.	0.15 NaCl	37	MLH M ₂ L M ₂ L ₂	15.788 14.61 27.803	85CF
C ₆ H₅Hg ^{II}	Solv. ext.	1.0	25	ML ₂	8.77	88KS
Ni ²⁺	Gl.	0.15 NaCl	37	MLH M ₂ L M ₂ L ₂ ML ₂	13.51 10.21 17.54 11.73	85CF
Zn ²⁺	G1.	0.15 NaCl	37?	M(LH) M(LH)a	4.64 8.62	72GH
	Gl. Gl. (by referen Gl.	0.15 NaClO ₄ 0.15 NaCl ce to histidine) 0.15 NaCl	37 37 37	M ₂ L ML MLH ML	10.07 6.688 12.802 6.65	80AM 82HA 85CF
				MLH	12.89	

(Gl. = glass electrode potentiometry [as exclusive or main method])

Metal ion		Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Cu ²⁺	(R)	0.15 NaClO ₄	37	MLH M ₂ L M ₂ L ₂	16.14 (±0.06) 14.86 28.16 (±0.09)	71HP, 81BK 81BK 71HP, 81BK
	(T)	0.15 NaCl	37	MLH M ₂ L M ₂ L ₂	15.79 14.61 27.80	85CF
Zn ²⁺	(T)	0.15 NaCl	37	ML MLH	6.67 (±0.02) 12.85 (±0.05)	82HA, 85CF

Table 3-4. Recommended (R) and Tentative (T) Overall Formation Constants for L-Cystine Metal Complexes

Table 3-5. Overall Formation Constants for Mixed-Ligand Complexes Involving L-Cystine

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Cu ²⁺	G1.	0.15 KNO ₃	37	L-Histidine	MLX MLXH MLXH ₂ MLX ₂ H	18.51 25.80 30.69 39.15	71HP
	Gl.	0.15 NaClO ₄	37	Histamine	no ternary com	plex	81BK
	Gl.	0.15 NaClO ₄	37	L-Histidine	MLXH ₂	30.437	84BB
Fe ²⁺	Kin.	0.1 LiClO ₄	25	Cyanide	(MX ₅)L	4.43	82TB
Fe ³⁺	Kin.	0.1 LiClO ₄	25	Cyanide	(MX ₅)L	4.76	82TB
Tb ³⁺	Sp.	-	-	EDTA	(MX)L	1.27	85SB
Zn ²⁺	Gl.	0.15 KNO ₃	37	L-Histidine	MLX MLXH MLXH ₂	11.62 19.55 26.35	71HP

(G1. = glass electrode potentiometry [as exclusive or main method]; Sp. = spectrophotometry; Kin. = kinetics)

4. METHIONINE - H₃CSCH₂CH₂CH₂CH₂]CO₂H (2-amino-4-(methylthio)butanoic acid, LH)

Methionine displays virtually the same two protonation sites as simple glycine-like amino acids in aqueous media since its ether sulphur undergoes protonation in strongly acidic solutions (72BL). Nevertheless, the large electron-withdrawing effect of the thioether group (75IP) renders these two protons significantly more acidic than those of the above reference ligands. Methionine metal complexes are thus expected to be less stable than those of glycine-like amino acids unless chelation through the sulphur atom can bring some compensation.

As can be anticipated from the above, many efforts have been spent to test the involvement of the thioether function of methionine in metal coordination. As already stated in the Introduction, few metal ions except those definitely classified as soft can actually bind to the sulphur atom (74MG, 79M, 86M, 87L). In this respect, the Ag^+ -methionine system has often been used as a reference for investigating the binding capacities of other ligands (75IP, 81PS, 84TS, 87SP). Within the same context, the influence of stereoselectivity on the formation of metal methionine complexes has also been assessed: no conclusive evidence was found for silver (75IP), but a small stereoselective effect has been observed for nickel, supporting the existence of a weak interaction between Ni²⁺ and the thioether sulphur atom (76SP).

4-1. Protonation constants of methionine

Investigations into the possible role of the soft thioether group of methionine and similar bioligands in metal coordination necessitated the determination of formation constants of many complexes involving this amino acid. Since proton-ligand equilibria commonly serve as a reference in such studies, it is thus no surprise that methionine protonation constants available in the literature are relatively abundant (Table 4-1), some of them being quite reliable.

For example, many stoichiometric constants have been determined at 25 °C in 0.1 mol dm⁻³ aqueous potassium nitrate (64LM, 75IP, 77BP, 81PS, 82NM). Except for the values found in 82NM - also published as apparently original data in two other articles (82NMa, 83NM)- which differ markedly from those obtained by previous authors, the corresponding results are very close to one another, and a recommended average has been calculated. Following criteria defined in the Introduction of this review, mixed or presumably mixed constants determined under the same conditions in NaClO₄ (84MCa, 86MC, 86MCa) have been discarded.

Among the remainder, the experimental conditions reported are so diverse that it is almost impossible to establish useful correlations likely to help select particular values. Nevertheless, given the specific conditions used and the previous inclusion of results by the same authors in Table 2-2, the stoichiometric constants determined in 3 mol dm⁻³ sodium perchlorate (76BH) have been proposed as tentative. Likewise, average stoichiometric values relative to the physiological medium (71HP, 84BP) have also been proposed as tentative: subtracting from the mixed constants reported in 71HP the 0.12 difference applicable between mixed and stoichiometric reference scales for I=0.15 mol dm⁻³ (see section 2-1) does indeed yield values (8.79, 2.135) which are almost identical with those obtained in 84BP (8.779, 2.170). Recommended and tentative values for the protonation constants of methionine are to be found in Table 4-2.

4-2. Thermodynamic quantities for the protonation of methionine

Among the thermodynamic quantities available for the protonation of methionine, fair agreement may be observed between the values deduced from potentiometric determinations at different temperatures in water (57PQ, 60Pc) and the results obtained by direct calorimetry (89RF). This attests to the good quality of the former. Corresponding values can be seen in Table 4-3, from which results reported in 88MA have been discarded as being too far from the others.

4-3. Metal complex formation constants

Although methionine displays only two accessible protonation steps in aqueous solution, it possesses three potential donor sites, namely the COO⁻, NH_2 and thioether groups, which may alternately

participate in metal coordination depending on the individual character of the cation involved. Since few metal ions are in fact capable of accommodating more than two of these three different sites simultaneously, methionine is expected to form tris-complexes rather easily. This may effectively be observed in Table 4-4 where all stability constants for metal binary complexes involving methionine have been reported.

As outlined above, advantage was taken of the typical properties of the Ag^+ ion as soft acceptor to use it as a reference to test the potential capacity of the thioether group of methionine towards metal coordination. Among available data relative to the silver(I)-methionine system, some do not result from sufficiently modern calculation techniques to be selected (67AM, 77PU). More surprising, however, is the discrepancy observed between the ML constant values found by the other three groups of authors (64LM, 81PS, 84TS), though it might indirectly reflect the striking variations seen in the sets of complexes characterised. For example, ML was the only species mentioned in 64LM, and though the possibility of dimeric complexes was evoked in 81PS, no quantitative information was researched in view of the practical difficulties which had to be overcome. The latest results obtained by Tombeux et al. using both glass and silver electrodes (84TS) finally appear as the most complete and reliable, although they cannot be officially recommended until they have been independently reproduced. In the latter study (84TS), the noninvolvement of the carboxylate function in silver(I) coordination previously indicated by NMR data (81PS) was confirmed, the sulphur atom acting as exclusive donor group in $M(LH_2)_n$ and $M(LH)_n$ species and in conjunction with the N atom in ML_n ones, but the M₂(LH)₂ species suggested by Pettit et al. (81PS) was not found.

With respect to the above, much better agreement is observed concerning cadmium(II)-methionine equilibria investigated at 25 °C in 0.1 mol dm⁻³ KNO₃ (64LM, 75IP, 82NMa); recommended constants have thus been calculated for both ML and ML₂ species. Unfortunately, none of the above studies provides any information on the ML₃ complex which was characterised by four other groups under different conditions (64J, 82RB, 84MR, 86SV), and whose existence tends to confirm the classification of the Cd²⁺ ion as borderline (79M). By comparison of the latter results with the above recommended constants, we have selected data reported in 86SV as tentative. They do indeed appear as the most reliable among those giving a complete description of the system.

Fair agreement is also observed for the constants of the ML and ML_2 complexes of Co²⁺ determined at 25 °C in 0.1 mol dm⁻³ KNO₃ (64LM, 75IP, 82NMa), and recommended values have been calculated.

For copper(II), four groups of authors (64LM, 75IP, 77BP, 82NMa) have used the same experimental conditions, and corresponding results are most satisfactory. The different constants found for the ML complex are particularly close to one another, and apart from that reported in 64LM, the values proposed for the ML_2 constant are also quite reproducible. Recommended values have thus been calculated. In contrast, no agreement is observed between data relative to physiological conditions (71HP, 84BP) on which new investigations are therefore advisable.

Surprisingly, the constants available for Hg^{2+} complexes are extremely different from one group of authors to another (64LM, 66TA, 83HD, 73VB). By reference to the apparent reliability of the results published in 64LM, which are amongst those selected for Cd^{2+} , Co^{2+} and Cu^{2+} complexes and undoubtedly appear as the most reliable on experimental as well as computational criteria, one is tempted to choose these as the only acceptable values in the present case. In particular, the assumption made by Van der Linden and Beers (73VB) that their mercury electrode gave a Nernstian response since it did so in the presence of DTPA, CDTA and EGTA may well not be valid considering the fact that mercury(II) complexes of such ligands are by more than ten orders of magnitude more stable than those of amino acids (71SM, 74MS, 82MS, 89SM).

The situation with Mn^{2+} complexes is quite similar to that seen above in that results published in 64LM appear as the only acceptable ones. It would now be desirable that these constants as well as those relative to the complexes of the previous metals be tested on the basis of new calibration and calculation standards.

In spite of the apparent plethora of results available for nickel, relatively few constants actually offer a real basis for comparison. This essentially stems from the large number of determinations made under different conditions of solvent or temperature (57P, 60P, 60Pa, 60Pb, 60Pc). The ML constant given by 64LM for 25 °C and 0.1 mol dm⁻³ KNO₃ is this time slightly at variance with those obtained by other authors (75IP, 76SP, 82NMa), and the fact that reference 82NMa reports values surprisingly identical with those published in 76SP without even mentioning this reference (!) does not help either. Nevertheless, average recommended constants have been calculated.

Once again, by reference to their recognized reliability regarding the above mentioned systems, Lenz and Martell's constants for lead complexes (64LM) are to be considered as acceptable. In contrast, no leading group can be selected for UO_2^+ -methionine equilibria, and the values collected are too distant from one another to permit any reasonable comparison.

For the zinc(II)-methionine system, the three groups operating under the same experimental conditions 25 °C and 0.1 mol dm⁻³ KNO₃ (64LM, 75IP, 82NMa) again report very similar results from which recommended constants have been estimated. The only data applicable to the physiological medium have been published by Hallman et al. (71HP).

All recommended and tentative values are shown in Table 4-5. With few exceptions, individual data of Table 4-4 not considered for this selection often represent orders of magnitude only, and many of these would deserve more attentive investigations. Given that stability variations due to stereospecific effects are usually well within the reproducibility range, it is also noteworthy that formation constants relative to DL-methionine (64LM) have been indiscriminately considered in the calculations of constants in Table 4-5 when necessary.

Mixed-ligand complex formation constants involving methionine are reported in Table 4-6. Concerning coordination with other amino acids, no stereospecific effect has been detected whenever investigated (73BJ, 77BP). Determinations corresponding to physiological conditions are restricted to the copper(II)-histidine-methionine system (84BP) only. This is hardly surprising given the relatively low importance of methionine as a ligand for essential metal ions in vivo.

4-4. Thermodynamic quantities for metal complex formation with methionine

Determinations of enthalpies relative to methionine metal coordination are very few, and concern Mn^{2+} , Ni^{2+} and UO_2^{2+} ions only. The great majority of values reported in Table 4-7 have been deduced from potentiometric measurements using the van't Hoff isochore. The temperature interval used is indicated, and when not available in the referenced article, entropies have been calculated at 25 °C (values in brackets). The limited reliability of such data is attested by the poor reproducibility of the values found for manganese(II) under almost identical experimental conditions (71SS, 73BS). Results relative to the dimethyltin(IV) complex formation have not even been mentioned (88SS). The only quantities to be considered as reliable are those determined calorimetrically, on which the evidence of the stereospecific effect in the nickel(II)-methionine system was based (76SP).

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	Ref.
Thermo Thermo Mixed(2)	~ 0.01 ~ 0.01 0 15 KNO-	20 18 25	9.34 9.31 9.10	2.20	50A 53P 551 M
Thermo	~ 0.05	10 15 25 30 40	9.73 9.58 9.28 9.15 8.92	2.13 2.13 2.125 2.125 2.125 2.12	57PQ, 60Pa 60Pc 57PQ, 60Pa
Mixed Mixed(?) Thermo	1.0 NaClO ₄ 1.0 KCl ~ 0.05 44.6% dioxane	20 20 10 15	9.13 9.13 10.10 9.99	2.26 3.17 3.14	58P 59P 60Pc
Thermo	~ 0.05	25 30 40 10	9.75 9.66 9.42 10.60	3.09 3.04 3.01 3.52	60Pc
	59.7% dioxane	15 25 30 40	10.46 10.19 10.07 9.84	3.52 3.51 3.50 3.49	
Thermo	~ 0.05 69.0% dioxane	15 25 30 40	11.05 10.83 10.72 10.51	3.94 3.88 3.84 3.77	60Pc
Mixed Mixed Stoichio Mixed (pol.)	0.15 NaClO ₄ 0.15 KCl 0.10 KNO ₃ 0.6	20 30 25 25	9.20 9.08 9.04 9.15	2.17 - - -	63HP 64FW 64LM 67AM
Mixed Mixed(?)	0.15 KNO ₃ 0.1 KCl	37 25 35 45	8.91 9.17 9.02 8.55	2.25 ₅ 2.24 2.09 1.62	71HP 71SS
Mixed(?) Mixed(?)	1.0 NaNO ₃ 0.1 KNO ₃	25 20 30 40 50 60	9.21 9.25 9.01 8.78 8.54 8.30	2.28 - - - -	73BJ 73BS
Mixed Stoichio Stoichio Stoichio Mixed Thermo	0.1 KCl 0.1 KNO ₃ 3.0 NaClO ₄ 0.1 KNO ₃ 0.1 KNO ₃ ~0	20 25 25 25 30 30	9.3 9.052 9.69 9.058 9.42 9.30	2.151 2.70 2.153 1.85 1.85	74PN 75IP 76BH 77BP, 81PS 77PU 77PU, 81PU
Stoichio(?) Stoichio Mixed(?)	0.5 KNO3 1.0 NaClO4 0.1 NaClO4	25 25 25	9.22 9.04 9.15	2.25 2.18 2.32	78L 81JI 81MC, 84MCb

Table 4-1. Protonation Constants of Methionine

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	log K ₁	log K ₂	Ref.
Thermo	~0 8.0% propane-2-ol 16.3% propane-2-ol 25.1% propane-2-ol 34.3% propane-2-ol 43.9% propane-2-ol 54.0% propane-2-ol 64.6% propane-2-ol 75.8% propane-2-ol	25 25 25 25 25 25 25 25 25	9.20 9.20 9.17 9.17 9.19 9.20 9.23 9.27 9.30	2.29 2.37 2.46 2.61 2.76 2.95 3.06 3.29 3.47	82DD
Stoichio	0.1 KNO3	25	8.921	2.35	82NM, 82NMa, 83NM
Stoichio Mixed Mixed Stoichio Mixed(?) Mixed(?)	0.15 NaClO ₄ 0.5 NaClO ₄ 0.1 NaClO ₄ 0.5 KNO ₃ 0.1 KNO ₃ 0.1 NaClO ₄	37 25 25 25 25 25 25	8.779 9.15 9.12 9.089 9.13 9.150	2.170 2.32 2.30 2.199 - 2.321	84BP 84MC 84MCa 84TS 85MK 86MC, 86MCa
Thermo	~0 8.0% t-BuOH 16.4% t-BuOH 25.0% t-BuOH 34.2% t-BuOH 43.8% t-BuOH 54.0% t-BuOH 64.5% t-BuOH	25 25 25 25 25 25 25 25 25 25	9.20 9.18 9.17 9.16 9.19 9.26 9.34 9.44	2.29 2.43 2.57 2.64 2.73 2.77 2.89 3.02	86PD [´]
Stoichio(?) Mixed(?) Thermo	75.8% t-BuOH 0.2 KNO ₃ 0.15 KNO ₃ ~ 0 10% methanol 20% methanol 30% methanol 40% methanol 50% methanol 60% methanol 10% ethanol 20% ethanol 30% ethanol 30% ethanol 50% ethanol 50% ethanol 60% ethanol 50% ethanol	25 25 25 25 25 25 25 25 25 25 25 25 25 2	9.53 9.06 9.12 9.02 9.01 8.98 8.98 9.00 9.02 9.05 9.08 9.11 9.15 9.14 9.15 9.14 9.15 9.14	3.39 2.18 2.29 2.33 2.42 2.60 2.75 2.90 3.00 3.20 3.50 2.36 2.40 2.61 2.76 2.92 2.98 3.20	86SV 87CJ 87CL
Stoichio Stoichio Mixed	80% ethanol 0.2 KNO ₃ 0.2 KCl 0.1 NaCl 75% dioxane	25 25 25 20 30 40	8.75 9.12 10.44 10.14 9.32	3.45 2.08 2.22 3.22 3.16 3.05	87PS 87SP 88SS
Mixed Mixed(?)	0.1 KNO ₃ 0.5 KCl	25 25	9.09	2.15	89S 89YW

Table 4-1. Protona	tion Constants	of Methionine	(continued)
--------------------	----------------	---------------	-------------

N.B. Other reference consulted but rejected: 74PN
Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	Ref.
Stoichio (R)	0.1 KNO ₃	25	9.05 (±0.01)	2.15 (±0.01)	64LM, 75IP, 77BP, 81PS
Stoichio (T)	3.0 NaClO ₄	25	9.69	2.70	76BH
Stoichio (T)	0.15	37	8.78 (±0.01)	2.16 (±0.02)	71HP, 84BP

Table 4-2. Recommended (R) and Tentative (T) Values for Protonation Constants of Methionine

Table 4-3. Thermodynamic Quantities for Methionine Protonation Equilibria

Method	Medium (mol dm ⁻³)	Temp. (°C)	ΔH° ₁ (kJ m	$\Delta H^{\circ}{}_{2}$ nol ⁻¹)	ΔS° ₁ (J K ⁻¹ 1	ΔS°2 mol ⁻¹)	Ref.
Pot. Pot.	~ 0.05 ~ 0.05 44.6% dioxane	10-40 10-40	-43.5 -38.9	-0.6 -14.6	31.4 55.2	38.9 9.6	57PQ, 60Pc 60Pc
	~ 0.05 59.7% dioxane ~ 0.05 69.0% dioxane	10-40 15-40	-42.2 -37.7	-2.7 -12.8	53.6 81.2	58.2 31.4	
Cal.	~0	20	-42.8	-	-	-	71MB
Cal. Cal.	~0 0.5 KCl	25 25	-44.1	-2.6 -3.87	28.5	34.9 28.2	89RF, 89R 89YW

(Pot. = potentiometry; Cal. = calorimetry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Ag+	Gl. (DL-) Gl. Ag el.	0.1 KNO ₃ 0.6 0.1 KNO ₃	25 25 30	ML ML ML ML ₂ M(LH)	3.17 6.45(!) 4.9 7.60 3.29	64LM 67AM 77PU
		~0	30	M(LH) ₂ ML ML ₂ M(LH) M(LH)	5.38 5.14 7.84 3.29 5.38	77PU, 81PU
	Gl.	0.1 KNO ₃	25	ML MLH MLcHa	5.22 12.22 (12.36) 24.60	81PS
	Gl. (DL-)	0.5 KNO ₃	25	ML ML M2L M2L M(LH) M(LH)2 ML(LH) M(LH2)2 M(LH2)2 M(LH)(LH2)2 M(LH)(LH2)2	(23.80) 4.8 7.88 7.46 13.49 3.37 5.88 7.38 3.11 5.40) 5.88	84TS
Au ³⁺	Gl. (DL-)	~ 0.02	25	ML ML ₂	7.23 10.19	74FA
Be ²⁺	Gl. (DL-)	0.015	18	ML ₂	12.0	53P
Ca ²⁺	Ion exch. (pH 7.2)	0.16	25	ML	-0.66	54S
Cd ²⁺	Gl. (DL-) Gl.	0.015 0.15 KNO ₃	18 25	ML ₂ ML	7.1 3.88 6.99	53P 55LM
	Paper electrophor.	0.1 KNO ₃	20	ML ML ₂ ML ₂	5.4 8.7 10.8	64J
	Gl. (DL-)	0.1 KNO3	25	ML ML	3.67	64LM
	G1.	0.1 KNO ₃	25	ML ML	3.70	75IP
	Pol.	1.0 KNO ₃	30	ML2 ML2 ML2	3.81 6.24 8.32	77RN
	G1.	0.1 KNO ₃	25	ML ML	3.71	82NMa
	(D-)			ML ² ML	3.71	
	(DL-)			ML ₂ ML ML ₂	3.70 6.97	

Table 4-4. Overall Formation Constants for L-Methionine Metal Complexes

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Pol. (DL-)	1.0 KNO ₃	30?	ML ML ₂	3.80 6.35	82RB
	Gl.	0.2	30	ML ₃ ML	4.04	84J, 84Ja
	Pol.	-	25	ML ₂ ML ML ₂	3.81 6.99	80J 84MR
	G1.	0.2 KNO ₃	25	ML ₃ ML ML ₂	8.10 3.65 6.76	86SV
	G 1.	0.2 KNO ₃	35	ML ₃ ML ML ₂	9.08 3.63 6.51	89KS, 89KV
	G1.	0.2 NaClO ₄	27	ML ML ₂	4.30 8.34	88PP
Ce ³⁺	G1.	0.1 KCl	20	ML	4.4	70RP
Co ²⁺	Gl. (DL-)	~ 0.01	20	ML_2	7.9	50A
	Paper electrophor.	0.1 KNO ₃	20	ML ML ₂	4.5 7.6	64J
	Gl. (DL-)	0.1 KNO ₃	25	ML ₃ ML	9.5 4.12 7.56	64LM
	Gl.	0.1 KNO ₃	25	ML ²	4.16	75IP
	G 1.	0.1 KNO ₃	25	ML_2 ML ML_2	4.154 7.583	82NMa
	(D-)			ML ² ML ₂	4.152 7.592 4.158	
	(DL-) Gl	0 15 KNO-	25	ML ML ₂	7.597	8701
	G1.	0.2 KNO ₃	35	ML ₂ ML ML ₂	7.62 3.98 7.50	89KS, 89KV
Cr ²⁺	Gl. (DL-)	~ 0.015	25	ML_2	7.30	70FMa
Cr ³⁺	G1.	0.4 KCl	25	ML ML ₂	8.3 14.5	63KM
	Gl. (DL-)	0.1 NaClO ₄	25	ML ₃ ML ML ₂	7.91 14.85	81MC
	Sp. (DL-)	0.1 NaClO ₄	25	ML3 ML ML2 ML3	21.28 7.45 13.90 (or 13.99?) 19.89 (or 19.98?)	81МС, 84МСь

 Table 4-4. Overall Formation Constants for L-Methionine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl. (DL-)	0.1 NaClO ₄	25	ML MLH ML ₂	8.35 11.41 15.52	86MC, 86MCa
Cu+	Sp.	1.0	20	ML	10.09	78BK
Cu ²⁺	Gl. (DL-) Pol. Gl.	~ 0.01 ~ 0.02 0.15 NaClO ₄	20 25 20	ML ₂ ML ₂ ML ML ₂	14.7 14.75 8.00 15.23	50A 54LD 63HP
	electrophor. Gl. (DL-)	0.1 KNO ₃ 0.1 KNO ₃	20 25	ML ML ₂ ML	8.1 14.8 7.87	64J 64LM
	Pol. (DL-)	orthophosphate	25	ML_2 ML_2	9.25	65PP
	Gl.	0.15 KNO_3	37	ML	7.67	71HP
	G1.	0.1 KNO ₃	25	ML ML	7.85	75IP
	G1.	0.1 KNO ₃	25	ML ² ML	7.849	77BP
	G1.	0.1 KNO ₃	25	ML ML	7.850	82NMa
	(D-)			ML ML	7.844	
	(DL-)			ML ²	7.850	
	G1.	0.15 NaClO ₄	37	ML ² ML	7.490	84BP
	Gl.	0.2 KNO ₃	25	ML ²	7.70	87PS
	G1.	0.2 KCl	25	ML ML	7.76	87SP
	G 1.	0.2 KNO ₃	35	ML ² ML	7.70	89PV
Dy ³⁺	G1.	0.1 KC1	20	ML	4.5	74PN
Fe ²⁺	Gl. (DL-) Gl.	~ 0.01 1.0 KCl	20 20	ML ₂ ML	6.7 3.24	50A 59P
Fe ³⁺	G1.	1.0 NaClO ₄	20	ML	9.1	58P
Ga ³⁺	G1.	3.0 NaClO ₄	25	ML	8.9 1 8	76BH
Gd ³⁺	G1.	0.1 KCl	20	M(LH) ML	4.6	74PN
Hg ²⁺	Gl. (DL-)	0.1 KNO ₃	25	ML MI	6.52	64LM
	Pol. Ion exch.	0.6 KNO ₃ 0.375	25 25	ML ₂ ML ₂ ML	17.62(!) 3.37(!)	66TA 83HD
	Gl.	0.1 NaNO3	25	ML	12.8(!)	73VB

Table 4-4. Overall Formation Constants for L-Methionine Metal Complexes (continued)

-

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	(Hg el.)			ML ₂ ML ₂ H ML ₂ H ₂	19.5(!) 24.6(!) 27.3(!)	
CH ₃ Hg ^{II}						
• -	PMR	-	-	ML M(IH)	7.40	75FR
	Gl.	1.0 NaNO_3	25	ML	7.17	81JI
CcHeHg∏						
-038	Solv. ext.	1.0	25	ML	8.42	88KS
In ³⁺	Gl. (DL-)	~ 0.02	24	ML	7.75	76KF
	D-1	0.1 N-010	20	ML_2	15.17	00172
	P01.	0.1 NaClO ₄	30	ML ML_2	6.76 14.38	80JK
т "3+	GI	0.1 KC1	20	- MT	4.6	74DN
	-	0.1 KCI	20		. .0	/ 41 14
Mn ²⁺	Paper electrophor	0.1 KNO ₃	20	ML MLo	3.2	64J
	Gl. (DL-)	0.1 KNO ₃	25	ML	2.77	64LM
	GL (DL-)	0 1 KCl	25	ML ₂ ML	4.57 2.89	7188
	0(22)		35	ML	2.85	100
	CI	0.1 1/10	45	ML	2.78	7200
	GI.	0.1 KNO_3	20	ML	2.87	/388
			30	ML	2.81	
				ML_2	4.87	
			40	ML	2.79	
			50	ML ₂ MI	4.83	
			50	ML	4.78	
			60	ML	2.72	
				ML_2	4.75	
Ni ²⁺	Gl. (DL-)	-	19	ML	5.59	56PC
				ML_2	10.30	
	CI		10	ML ₃	13.12	570 600 600° 600h
	01.	-	10	ML	10.64	5/r, $00r$, $00ra$, $00r0$
				ML ₃	13.44	
			15	ML	5.70	
				ML_2	10.48	
			195	ML ₃	13.21	
			10.5	ML	10.36	
				ML ₃	13.03	
			22	ML	5.67	
				ML ₂	10.26	
				ML3	12.82	

Table 4-4. Overall Formation Constants for L-Methionine Metal Complexes (continued)

cont'd

.

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
			25	ML	5.56	
				ML ₂	10.19	
			30	ML3	5 46	
			50	ML	10.05	
				ML	12.50	
			40	ML	5.39	
				ML	9.87	
				ML	12.24	
	G1.	44.6%	25	ML	6.84	60P, 60Pc
		dioxane		ML_2	12.75	
				ML_3	16.69	
			30	ML	6.81	
				ML_2	12.66	
			40	ML ₃	16.53	
			40	ML	6.70	
				ML ₂	12.40	
	C1	50 70	10	ML ₃	10.14	60D 60D-
	GI.	39.7% dioxone	10	ML	14 12	60P, 60PC
		uloxalie	15	ML ₂	7 36	
			15	ML	14 02	
			25	ML ₂ MI	7 30	
			25	ML	13.85	
			30	ML	7.25	
				ML	13.74	
				ML	19.42	
			40	ML	7.21	
				ML_2	13.62	
				ML_3	19.17	
	Gl.	69%	15	ML	8.48	60P, 60Pc
		dioxane		ML_2	15.61	
				ML ₃	20.40	
			30	ML	8.43	
			10	ML_2	15.52	
			40	ML	8.39	
				ML ₂	15.25	
	Dapar	0.1 KNO.	20	ML3	19.44	641
	electrophor	0.1 KNO3	20	ML	J.7 Q.4	04J
	ciccuopiloi.			ML ₂	11 7	
	GL (DL-)	$0.1 \mathrm{KNO}_2$	25	ML3 ML	5 19	64I.M
	OI. (<i>DL</i>)	0.1 16103	20	ML	9.84	0-12.IVI
	G1.	1.0 NaNO2	25	ML	5.41	73BJ
				ML	10.81	
				ML	13.43	
	G1.	0.1 KNO3	25	ML	5.34	75IP
		5		ML_2	9.90	
	G1.	0.1 KNO3	25	ML	5.318	76SP
		-		ML_2	9.894	
	(D-)			ML	5.330	
				ML_2	9.892	

Table 4-4.	Overall	Formation	Constants	for	L-Methionine	Metal	Complexes ((continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	(DL-)			ML ML ₂	5.340 9.990	
	Gl.	0.1 KNO ₃	25	ML [®]	5.318	82NMa
	(D-)			ML ²	5.330	
	(DL-)			ML ₂ ML	9.892 5.34 9.990	
	Gl. (DL-)	0.5 NaClO ₄	25	ML ²	5.10	84MC
	Gl. (DL-)	0.1 NaClO ₄	25	ML ₂ ML	9.88 5.08	84MCa
	Gl.	0.2 KCl	25	ML ₂ ML ML ₂	9.65 5.23 9.71	87SP
	G1.	0.2 KNO ₃	35	ML ₃ ML	12.60 5.32 9.66	89KS, 89KV
	G1.	0.2 NaClO ₄	27	ML ² ML ² ML ²	5.60 10.41	88PP
Os ⁴⁺	Gl. (DL-)	~ 0.02	28	ML ₂	6.06	74FAa
Pb ²⁺	Gl. Gl. (DL-)	0.15 KNO ₃ 0.1 KNO ₃	25 25	ML ML ML ₂	4.40 4.38 8.62	55LM 64LM
Pd ²⁺	Gl. (DL-)	~ 0.02	27	ML ₂	16.97	73FA
Rh ³⁺	Gl. (DL-)	~ 0.02	25	ML ML ₂	6.69 9.38	74FAb
Sm ³⁺	G1.	0.1 KCl	20	ML	4.6	74PN
(CH ₃) ₂ Sn ^{IV}						
	Gl. (DL-)	0.1 NaCl 75% dioxane	20 30 40	ML ML ML	7.73 7.22 7.01	88SS
Sr ²⁺	Sol.	-	20	ML	2.29	75S
Th ⁴⁺	G1.	0.1 KNO ₃	25	ML	6.88	82NMa, 83NM
	(D-)			ML ₂ ML	6.82	
	(DL-)			ML ₂ ML ML ₂	13.48 6.79 13.42	
UO ₂ ²⁺	Gl. (DL-)	0.1 KCl	25 35 45	ML ML2 ML ML2 ML ML2	6.52 11.88 6.35 11.55 6.14 11.24	71SS

Table 4-4. Overall Formation Constants for L-Methionine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl. Gl. (D-) (DL-)	0.1 NaClO ₄ 0.1 KNO ₃	30 25	ML ML ₂ ML ML ₂ ML ML ₂ ML ML ₂	7.65 13.95 6.39 13.29 6.41 13.38 6.43 13.42	73RS 82NM, 82NMa, 83NM
Y ³⁺	Gl. Gl.	0.1 KCl 0.1 KCl	25 20	ML ML	4.6 4.5	70RP 74PN
Yb ³⁺	G1.	0.1 KCl	20	ML	4.6	74PN
Zn ²⁺	Gl. (DL-) Gl. Pol. (DL-) Paper electrophor. Gl. (DL-) Gl. Gl. Gl. Gl. (D-) (DL-)	0.015 0.15 KNO ₃ 0.1 KNO ₃ 0.1 KNO ₃ 0.15 KNO ₃ 0.1 KNO ₃ 0.1 KNO ₃	18 25 20 25 37 25 25	ML ₂ ML ₂	8.3 4.38 8.47 8.3 4.9 8.5 (11.7) 4.37 8.33 4.22 6.93 4.39 8.38 4.38 8.33 4.38 8.32 4.39	53P 55LM 59MH 64J 64LM 71HP 75IP 82NMa
	Gl. Gl. Gl. Gl.	0.2 0.1 KNO ₃ 0.2 KNO ₃ 0.2 NaClO ₄	30 25 35 27	ML ₂ ML ML ₂ ML ML ML ₂ ML ML ₂	8.38 4.69 8.65 4.45 4.37 7.93 4.69 8.64	84J, 84Ja 86J 85MK 89KS, 89KV 88PP

Table 4-4. Overall Formation Constants for L-Methionine Metal Complexes (continued)

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry; Sol. = solubility)

able 4-5	. Recommer L-Methioni	ided (R) and Tone Metal Com	entative (T) plexes) Overall Fo	rmation Constants	for
Metal ion		Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Cd ²⁺	(R)	0.1 KNO ₃	25	ML	$3.69 (\pm 0.02)$	64LM, 75IP, 82NMa
	(T)	0.2 KNO ₃	25	25 ML ML ₂ ML ₃	3.65 6.76 9.08	86SV
Co ²⁺	(R)	0.1 KNO ₃	25	ML ML ₂	4.14 (±0.02) 7.28 (±0.02)	64LM, 75IP, 82NMa
Cu ²⁺	(R)	0.1 KNO ₃	25	ML ML ₂	7.85 (±0.02) 14.52 (±0.01)	64LM, 75IP,77BP, 82NMa
Ni ²⁺	(R)	0.1 KNO ₃	25	ML ML ₂	5.33 (±0.01) 9.90 (±0.01)	75IP, 76SP
Zn ²⁺	(R)	0.1 KNO ₃	25	ML ML ₂	4.38 (±0.01) 8.35 (±0.03)	64LM, 75IP, 82NMa

Т

Table 4-6. Constants for Mixed-ligand	d Complexes Involving L-Methionine
---------------------------------------	------------------------------------

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Cd ²⁺	Gl. Pol.	0.2 1.0 KNO ₃	30 30?	NTA Glycine	(MX)L MLX ML ₂ X MLX ₂	3.14 6.00 9.10 9.50	82J 82RB
	Gl. Gl. Gl. Pol.	0.2 0.2 0.2	30 30 30 25	Iminodiacetate Iminodiacetate 2,2'-Bipyridyl Ethylenediamine	(MX)L (MX)L (MX)L MLX MLX ML ₂ X MI X-	3.20 3.1 ± 0.1 3.89 9.52 10.82 12.00	84J 86J 84Ja 84MR
	G1. G1.	0.2 NaClO ₄ 0.2 KNO ₃	27 35	Di-2-pyridylamine Bis(imidazol-2- yl)methane	(MX)L (MX)L	3.85 3.09	88PP 89KV
Co ²⁺	Gl.	0.15 KNO ₃	25	Iminodiacetic	MLX	10.53	87CJ
	Gl.	0.2 KNO ₃	35	Bis(imidazol-2-	(MX)L	3.57	89KV
	Gl.	0.1 KNO ₃	25	ATP	(MX)L	4.05	89MA
Cr ³⁺	Gl. (DL-)	0.1 NaClO ₄	25	L-Aspartate	MLX	19.75	86MC
	Gl. (DL-)	0.1 NaClO ₄	25	L-Glutamate DL-α-Amino- n-butyrate L-Serine L-Threonine	MLXH MLX MLXH MLX MLXH MLX MLXH MLX MLXH	23.90 18.75 22.68 16.25 20.06 15.72 19.64 15.52 19.35	86MCa
Cu+	Sp.	1.0	20	Chloride	MLX	14.49	78BK

 $\ensuremath{\textcircled{\sc c}}$ 1995 IUPAC, Pure and Applied Chemistry, 67, 1117–1240

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Cu ²⁺	Gl. Sp.	0.1 KNO3 0.5 NaClO4	25	L- or D-Histidine Salicylic acid 5-sulfo-	MLX MLX MLX	17.271 18.30 16.17	77BP 77MG
	G1. G1. G1.	0.15 NaClO ₄ 0.2 KNO ₃ 0.2 KNO ₃	37 25 35	L-Histidine 2,2'-Bipyridyl 2,2'-Bipyridyl Bis(imidazol-2-	MLX (MXL) (MX)L (MX)L	16.731 7.19 7.19 7.10	84BP 87PS 88PS
	G1.	0.2 KNO ₃	35	Imidazole	(MX)L (MX ₂)L	7.16 6.93	89PV
	G1.	0.1 KNO ₃	25	Diethylene- triamine	(MX)L	3.90	89SH
Fe ²⁺	Kin.	0.1 LiClO ₄	25	Cyanide	(MX ₅)L	6.08	82TB
Fe ³⁺	Kin.	0.1 LiClO ₄	25	Cyanide	(MX ₅)L	2.61	82TB
In ³⁺	Pol. Pol.	0.1 NaClO ₄ 0.1 NaClO ₄	30 30	L-Glutamine L-Glutamic acid	MLX MLX	14.28 16.78	80JK 86Ja
Nd ³⁺	G1.	0.2 NaClO ₄	40 50	Hydroxyquinoline	(ML)X	6.52 6.18	88AG
Ni ²⁺	G1.	1.0 NaNO3	25	Histidine Aspartate	MLX MLX	13.40 11.95	73BJ
	Gl. (DL-)	0.5 NaClO ₄	25	DL-Ethionine	MLX MLXH	9.50 12.07	84MC
	G1. G1. G1.	0.2 NaClO ₄ 0.1 KNO ₃ 0.2 KNO ₃	27 25 35	Di-2-pyridylamine ATP Bis(imidazol-2- yl)methane	(MX)L (MX)L (MX)L	5.38 4.90 4.72	88PP 89MA 89KV
Pd ²⁺	Gl.	0.5 KNO ₃	25	Ethylenediamine	(MX)L (MX)LH	9.14 0.74	78L
Pr ³⁺	Gl.	0.2 NaClO ₄	30 40 50	Hydroxyquinoline	(ML)X	7.04 6.17 5.92	88AG
Pt ²⁺	Gl. Sp.	-	-	cis-Diammine	(MX)L	8.70 8.60	82XL
Tb ³⁺	Sp.	-	-	EDTA	(MX)L	1.56	85SB
Zn ²⁺	G1. G1. G1. G1. G1.	0.2 0.2 0.2 0.1 KNO ₃	30 30 30 25	ATP NTA Iminodiacetate 2,2'-Bipyridyl ATP	(MX)L (MX)L (MX)L (MX)L (MX)L	3.72 3.27 3.59 4.59 3.56	80MS 82J 84J 84Ja 85MK
	Gl. Gl. Gl.	0.2 0.2 NaClO ₄ 0.2 KNO ₃	30 27 35	Iminodiacetate Di-2-pyridylamine Bis(imidazol-2-	(MX)L (MX)L (MX)L	4.29 3.5±0.1 4.54 3.81	86J 88PP 89KV
	Gl.	0.1 KNO ₃	25	yl)methane NTA	(MX)L	2.94	89S

Table 4-6. Constants for Mixed-ligand Complexes Involving L-Methionine (continued)

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry; Kin. = kinetics)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	ΔH° (kJ mol ⁻¹)(J	ΔS° V K ⁻¹ mol ⁻¹)	Ref.
Mn ²⁺	Pot.	0.1 KC1	25 (25-45)	ML	-9.9	(22.1)	71SS
	Pot.	0.1 KNO ₃	25 (20-60)	ML ML ₂	-7.1 -7.9	29.3 66.9	73BS
Ni ²⁺	Pot.	-	25 (10-40)	ML ML ₂ ML ₂	-21.6 -43.3 -70.1	33.9 50.2 10.5	57P, 60Pa, 60Pb, 60Pc
		44.6% dioxane	25 (25-40)	ML ML ₂ ML ₃	-16.7 -41.8 -64.8	74.9 103.8 102.1	60Pc
		59.7% dioxane	25 (10-40)	ML ML	-12.6 -29.7	97.5 28.0	60Pc
	Cal.	0.1 KNO ₃	25	ML ML ₂ ML	-13.1 -35.17 -13.2	(57.9) (73.3) (57.8)	76SP
	(DL-)			ML ₂ ML ML ₂	-35.13 -13.3 -36.09	(71.7) (57.7) (70.3)	
UO2 ²⁺	Pot.	0.1 KCl	25 (25-45)	ML ML ₂	-34.5 -58.0	(9.2) (32.9)	7188

Table 4-7. Overall Thermodynamic Quantities for L-Methionine Metal Complex Equilibria

(Pot. = potentiometry; Cal. = calorimetry)

.

5. SERINE - HOCH₂CH[NH₂]CO₂H (2-amino-3-hydroxypropanoic acid, LH)

In aqueous solution, the dissociation of the hydroxy group of serine occurs well beyond the basic limit of the pH range accessible to glass electrode measurements. As far as protonation equilibria are concerned, serine thus virtually behaves in a glycine-like manner apart from the lesser stability of its protonated forms with respect to alanine due to the electron-withdrawing effect of the -OH substituent. Proton dissociation of the latter may, however, be made easier by metal coordination in some specific cases such as in the presence of copper(II) (73GM, 87KS).

Among all studies carried out on the potential role of functional side chain groups in the metal coordination of substituted amino acids, many have been devoted to the hydroxy group of serine (67SS, 68RM, 70LB, 72GM, 72GMa, 72IN, 76PS, 79M, 87KS). Although these have often resulted in controversial interpretations, the relatively large number of complex stability constants determined on this occasion offers a sound basis of data for the comparisons of the present evaluation.

Concerning the particular point raised above, conclusions originally drawn from incomplete or imprecise thermodynamic quantities (mainly derived from the van't Hoff equation) led some to argue in favour of the involvement of the lateral hydroxy group of serine in metal coordination (67SS, 68RM, 72GM, 72GMa, 76PS), others against it (70LB, 72IN). However, the small but significant stereoselectivity characterised using complete and precise (calorimetrically determined) enthalpies relative to copper(II)-serine interactions (76PS) put an end to this discussion by definitely confirming this involvement. So did the discovery of the participation of the hydroxy group in the complexation of copper(II) by the serine zwitterion (76PS). The only question remaining was whether it was associated to the inner (72GMa) or the outer coordination sphere (68RM, 76PS). This point has been clarified in a more recent study which suggests that the -OH group hydrogen-bonded to an axially coordinated water molecule at acidic pH enters the inner coordination sphere of copper(II) on deprotonation (81SH).

In this debate, crystal structure determinations indicated that nickel(II) (69VH), copper(II) (69VF) and zinc(II) (70VN) coordinated with serine in a glycine-like manner. Except for the structure assigned to $Cu(Ser)_2$, which was effectively in line with the indirect binding of the hydroxy group -later shown to take place through a hydrogen bond on thermodynamic grounds (76PS)-, this case once more illustrates how misleading it can be to infer conclusions regarding metal coordination in solution from solid state considerations (88LD).

5-1. Protonation constants of serine

As stated above, numerous investigations have been carried out on the formation of metal serine complexes in which protonation equilibria were used as a reference. The number of data available for the present evaluation is thus relatively important. Unfortunately however, most of these refer to distinct experimental conditions or are poorly reproducible (Table 5-1), so that comparisons are more difficult than expected.

For example, all available data at 25 °C and 0.05 mol dm⁻³ KCl have been obtained by a single group of authors (70GN, 71GN, 72GM, 72GMa, 72GS) under standard conditions not well defined. Moreover, the above articles do not necessarily refer to different works; as is frequently the case with this group, references 71GN and 72GMa seem to be English versions of 70GN and 72GM, respectively. Derived averages introduced in Table 5-2 are thus only tentative.

Of some fifteen independent studies performed at 25 °C with an ionic strength of 0.1 mol dm⁻³ in aqueous medium, only six (70HM, 74KU, 76PS, 77BP, 82NM/83NM, 86MCa) report constants defined on the stoichiometric scale, and the dispersion of these is such that corresponding averages are log $K_1 = 9.12 \pm 0.14$ and log $K_2 = 2.12 \pm 0.23$. Nevertheless, considering mixed constants (65PG, 72IN, 75HV, 81L, 86MCa, 89S) and reducing them by the 0.11 variation applicable to the appropriate ionic strength (74MS, 82MS, 89SM) leads, after discarding the most extreme values, to more acceptable averages which are considered as tentative (Table 5-2). It is worth noting in this respect that Sillén and Martell's tables (71SM) wrongly report 9.83 in place of 9.17 for the constant obtained in 65PG, this mistake being copied in 73W.

The situation is not more favourable for the stoichiometric constants determined at 25 °C at an ionic strength of 1.0 mol dm⁻³ (73GM, 81JI), and correction of the mixed values (79FD, 86FA) does not significantly improve it. No average has thus been calculated. The agreement among constants

referring to 25 °C and 3.0 mol dm⁻³ ionic strength (73W, 76BH, 78VV, 85BP) is not much more satisfactory, and corresponding averages have been proposed as only tentative.

Fortunately, protonation constants determined at 37 °C are much more reliable. Indeed, if we correct the mixed constants proposed in references 67PS and 67S by the appropriate 0.12 increment to turn them into stoichiometric values (74MS, 82MS, 89SM), one obtains respectively $\log K_1 = 8.721$ and $\log K_2 = 2.06$, and $\log K_1 = 8.719$ and $\log K_2 = 2.06$, which almost exactly corresponds to the constants reported in 82BK (8.712 and 2.081). The more recent pairs of values obtained in 91DB and 93BA under identical conditions (Table 5-1) also compare favorably with these, and a recommended value has thus been calculated (Table 5-2).

5-2. Thermodynamic quantities for the protonation of serine

Almost all enthalpic determinations relative to the protonation of serine have been made using the calorimetric technique (Table 5-3). Corresponding results are thus reliable a priori. In particular, formation enthalpies for the first protonation step reported in refs. 72IN and 76PS are surprisingly close compared to the related constants (Table 5-1). As well, no apparent difference is noticeable in derived entropies. This similarity stems from the distinct standard states to which formation constants refer, and if these are made identical (see above), corresponding entropies actually differ by more than 2 units.

5-3. Metal complex formation constants

Formation constants for the binary metal complexes of serine are collected in Table 5-4. Once again, the most striking feature is the large diversity of the experimental conditions used, and except for copper(II) and to a lesser extent nickel(II) and zinc(II), it seems at first sight very difficult to extract reliable averages from the available data.

The first illustration of this is given by the cadmium(II)-serine system for which the experimental conditions are so diverse that no comparison is allowed. Corresponding constants are thus left to the responsibility of the involved authors. A majority of these have characterised the existence of a triscomplex. Accordingly, ML_2 constants reported by other groups may be significantly affected by the missing equilibrium and should thus be taken with caution (75HV, 84SC).

A comparable situation is encountered with cobalt(II), for which results cited under refs. 73W for 3 mol dm⁻³ at 25 °C and 67S for 0.15 mol dm⁻³ at 37 °C should be considered as the most reliable a priori and have been accepted as tentative.

The number of constants available for the copper(II)-serine system is exceptionally large, a situation that stems mainly from the interest raised by the possible chelation of copper(II) through the lateral hydroxy group of the ligand, from the facilities offered by Cu^{2+} ion properties to investigate it, and from the biological relevance of copper.

Within the general diversity of the experimental conditions reported, three standard states have been used by two groups of authors at least: 0.05 mol dm⁻³ KCl or KNO₃ (64S, 70GN, 71GN, 72GM, 72GMa, 72GS) and 0.1 mol dm⁻³ KNO₃ or NaClO₄ (64S, 72IN, 76PS, 77BP, 81SH, 84BP, 88LG) at 25 °C, and 0.15 mol dm⁻³ NaClO₄ or KNO₃ at 37 °C (67PS, 67S, 82BK).

For the data in 0.05 mol dm⁻³ KCl or KNO₃ at 25 °C, only ML and ML₂ have been mentioned, and since (i) MLH (76PS, 82BK) as well as hydroxo¹ species (73GM, 82BK, 87KS) have later been characterised, (ii) MLH has been shown to display an anomalously high stability claimed to result from the participation of the hydroxy group in chelate formation (76PS), the corresponding constants may be altered. In the same manner, the ML₃ species mentioned in 80RR has probably been mistaken for a hydroxo complex. If we nevertheless compare the constants relative to the above conditions, the values found by the same group of authors (70GN, 71GN, 72GM, 72GMa, 72GS) are identical for ML and very similar for ML₂. They are thus to be considered as much more reliable than those reported in 64S whose difference is too large to be interpreted in terms of distinct background electrolytes. Accordingly, average constants derived from the five above references have been proposed as tentative.

¹The term hydroxo is used here in its most general sense, materializing in fact the loss of a proton regardless of its actual origin. Whether the complex really results from the dissociation of a water molecule or from that of the -OH group of the amino acid is equivalent from the numerical point of view.

In 0.1 mol dm⁻³ KNO₃ at 25 °C, comparable results have been obtained for ML and ML₂ by the authors of refs. 72IN on the one hand and 76PS (and 77BP) on the other hand in spite of the discrepancy affecting their protonation constants.² In 76PS, the fact that MLH has also been characterised should logically interfere with the constants of the above species, but this influence has been overlooked in the present case since the MLH constant has been calculated from separate titrations and refinements. The proposed averages, which also take into account the results in 88LG, should nevertheless be considered as tentative only. The constants found in 64S have this time been rejected as very different from those determined in 72IN, 76PS and 77BP, though relating to the same ionic background.

A particular problem was met with the formation of copper(II)-serine complexes under biological conditions. In spite of the excellent agreement of parent protonation constants (see above), a clear discrepancy was noted between complex formation constants reported in 67PS and 67S, and in 82BK (present author involved). As a matter of fact, the ML complex in the latter reference was found to be about three times more stable than that in 67PS and 67S. The high value of the ML constant was all the more surprising as it was also higher than all those obtained at lower temperatures under similar conditions of ionic strength, while the enthalpy of the corresponding equilibrium is known to be negative (70LB, 72IN). The fact that MLH (as well as ML_2H_{-1}) was characterised along with ML and ML_2 might be at the origin of this effect, but this interpretation proved insufficient. Indeed, while ignoring MLH in the pertinent calculations did effectively reduce the ML constant to 7.92, the latter value still looked too high and neglecting ML_2H_{-1} did not change it further. Given the lack of other data under physiological conditions, reinvestigating the copper(II)-serine system was advisable. This has been done recently (93BA).

From comparisons with the copper(II)-threonine system (see next chapter), the constant calculated in 82BK for the ML copper(II)-serine complex was expected to be overvalued by about 0.3 log units. The value obtained in 93BA is effectively 0.29 lower. Incidentally, this indicates at the same time that the values determined in 67PS and 67S were undervalued, which presumably stems from the fact that no account was taken of MLH (see above). Finally, the results found in 93BA appear as the most reliable and have thus been proposed as tentative.

For Fe^{2+} and Mn^{2+} coordination equilibria, no average constant can be proposed given the paucity of the data available. By reference to the above examinations, the results in 73W should be taken as the most reliable.

Although the number of data relative to nickel(II) is appreciably larger, no result has been independently tested under identical experimental conditions and hence no average can be calculated. From the above considerations, refs. 73W and 76PS seem to offer the best standard of quality in the present case. Corresponding constants have thus been accepted as tentative. In the latter reference, it is to be noted that its Table I reports for ML a value of 5.137 for L-serine but a value of 5.320 for DL-serine while both are considered to be identical. By comparison with values relative to threonine in the same reference, 5.137 has been transcribed into the more logical 5.317(?) in Table 5-4.

The situation with lead(II) is still more complicated since available results not only refer to different experimental conditions, but also differ as to the stoichiometry of the complexes formed (73CT, 79KC). No selection can thus be proposed.

The case of zinc(II) is a priori more favourable, because three sets of experimental conditions have been investigated, each of these by at least two groups of authors: 0.05 mol dm⁻³ KNO₃ or KCl (64S, 72GM, 72GMa) and 0.2 mol dm⁻³ KCl or NaNO₃ (68RM, 81G) at 25 °C, and 0.15 mol dm⁻³ KNO₃ or NaClO₄ at 37 °C (67S, 69PS, 82BK). No conclusion can be drawn from the first results (64S, 72GM, 72GMa) since they refer to ML and ML₂ complexes only while additional species have been shown to exist (67S, 69PS, 73W, 79SS, 81G, 82BK), but a comparison of all the data available for this

²This is an example among others that protonation constants may be imprecise in absolute terms without the precision of metal complex formation constants determined with respect to them being significantly affected, provided measurements made in the presence of metal express differences relative to the same internal reference (see introduction). Of course, this does not imply that determinations of metal complex formation constants do not depend on protonation constants, and differences between the protonation constants used for the calculations and those to which measurements implicitly refer are directly reflected in the values obtained, hence the necessity to redefine new protonation references every time formation

system indicates that the constants in 72GM and 72GMa should definitely be preferred in case of necessity.

For the second set of conditions, the results obtained in 68RM would seem reliable if ML and ML_2 were the sole species formed (the corresponding constants are very close to those cited for 30 °C in 81RSa and 81RSb), but more recent works (81G, 82BK) clearly show that it is not so. On the other hand, the ML and ML₂ constants reported in 81G seem too low relative to the values obtained at 37 °C with a 0.15 mol dm⁻³ ionic strength (67S, 69PS, 82BK), at 40 °C in 0.2 mol dm⁻³ KNO₃ (68RM) and at 35 °C in 0.05 mol dm⁻³ KCl (72GM, 72GMa). No definite value can thus be selected at 25 °C.

Under physiological conditions, perfect agreement is observed between ML and (to a lesser extent) ML_2 constants found in 67S and 69PS on the one hand, and in 82BK on the other hand. However, the results in 82BK seem more reliable since (i) hydroxo species have also been characterised in 81G, (ii) the ML_3 complex proposed in 67S and 69PS was tested and proved nonexistent in 82BK. Average values of ML and ML_2 constants have been recommended, $\beta_{ML_2H_1}$ from 82BK being accepted as tentative.

All constants selected for metal serine complexes are shown in Table 5-5. Constants for complex equilibria reported in Table 5-4 but not mentioned in the above discussion should usually be considered accurate to orders of magnitude only.

Numerous mixed-ligand complex formation constants involving serine have been determined (Table 5-6). Nevertheless, sound bases of comparison are extremely scarce. For example, the copper(II)-serine-histidine system has been investigated by two groups of authors in 0.1 mol dm⁻³ KNO₃ at 25 °C (77BP, 79YS) but the average calculated for the MLX constant (17.15±0.06) can only be considered as tentative since other ternary species have been characterised since then (86BH, 93BA). Among the constants obtained in these studies performed under physiological conditions, the values reported in reference 86BH should logically be rejected since they result from the erroneous binary copper(II)-serine values calculated in 82BK (see above). Those found in 93BA should thus be preferred.

No better agreement is observed between results relative to MLX in the copper(II)-serinehistamine system under physiological conditions (67PS, 82BK). This, which might a priori stem from the additional characterisation of MLXH and MLXH₋₁ in 82BK, is more probably attributable to the erroneous copper(II)-serine binary constants (see above).

More surprising, however, is the discrepancy observed between the results obtained by the same two groups of authors on the zinc(II)-serine-histamine system (69PS, 82BK) while parent ML and ML₂ zinc(II)-serine constants have been found almost identical (see Table 5-4). The discrepancy presumably arises from the presence of ML₂X and MLX₂ species in the SCOGS refinement carried out in 69PS.

5-4. Thermodynamic quantities for metal complex formation with serine

The number of available thermodynamic quantities for metal serine interactions is appreciably large, especially as far as copper(II), nickel(II) and zinc(II) are concerned (Table 5-7). In particular, parallel enthalpic determinations by potentiometry and calorimetry relative to the formation of cobalt(II), copper(II), nickel(II) and zinc(II) complexes stress the limits to be expected from the application of the van't Hoff isochore (72GM, 72GMa).

Within calorimetric results, excellent agreement is observed between those obtained for copper(II) in 70LB and 72IN (and even 72GM and 72GMa) under relatively close experimental conditions. It is also the case for nickel, although to a lesser extent (70LB, 72GM, 72GMa). Unfortunately, no such comparison is possible for zinc(II).

Let us finally note that studies on copper(II)-serine interactions are so numerous that calorimetric measurements have even been made on ternary equilibria involving alanine, glycine, valine (72IN), and N-acetyl-glycine (88LG). Corresponding results are to be found in Table 5-8.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	Ref.
Thermo	→0	1	9.880	2.296	42SG
		12.5	9.542	2.232	
		25	9.208	2.180	
		50	8 628	2.134	
Thermo	~0.01	20	9.24	2.20	50A
Mixed	0.06 KH ₂ PO₄	25	9.14	-	52LD
Thermo	~0.01	20	9.34	-	53P
Mixed	1.0 NaClO ₄	20	9.12	2.26	58P
Stoichio	0.15 KCl	25	9.02	2.12	59FO
Mixed(?)	1.0 KCl	20	9.12	-	59P
Thermo	~0.05	10	9.57	2.27	oupa
		19.5	9.55	2.25	
		30	9.02	2.19	
		40	8.78	2.17	
Mixed	0.1 NaNO3	25	9.17	-	65PG
Mixed	0.6	25	9.24	-	67AM
Mixed	0.15 KNO ₃	37	8.841	2.180	67PS, 68PSa
Mixed	0.15 KNO_3	37	8.839	2.180	67S
?	0.2 KNO3	15	9.34	2.30	68RM
		25	9.12	2.29	
Mixed(?)	0 1 KC1	40	0.70 Q 21	2.21	6822
Stoichio(?)	0.05 KCl	25	9.10	2.15	70GN 71GN
Stoichio	0.1 KCl	25	9.260	-	70HM
		37	8.977	-	
		50	8.685	-	
Mixed(?)	0.16 KNO ₃	25	9.18	-	70LB
Stoichio(?)	0.05KCl	20	9.23	2.14	72GM, 72GMa
		25	9.10	2.15	
		30 35	8.97	2.10	
Stoichio(?)	0.05 KCl	25	9.03	2.17	72GS
Mixed	0.1 KNO2	25	9.15	2.55	72IN
	0.2 KNO3	25	9.12	2.29	
Mixed(?)	0.1 KNO_3	20	9.18	-	73BS
	-	30	8.95	-	
		40	8.78	-	
		50	8.3/	-	
Stoichio	1.0 NoClO.	25	0.30	2 27	73GM
Stoichio	0.15 NaCl	25	8 954	2.27	73KS 77S
Mixed(?)	0.5	25	8.99	2.24	73SK
Stoichio	3.0 NaClO ₄	25	9.574	2.559	73W
Mixed	0.5 KNO3	20	9.26	2.80	74KH
Stoichio(?)	0.1 LiClO_4	25	9.01	2.12	74KU
Mixed	0.1 KCl	20	9.0	-	74PN
Mixed(?)	U.I KNU3	25	9.14	-	/энү
Stoichio	$3.0 \text{ N}_2\text{ClO}$	23 25	9.00	2 60	76BH
Stoichio	0.1 KNO_{2}	25	9,074	1.95	76PS
Stoichio	0.1 KNO2	25	9.073	1.951	77BP
					· · <u> </u>

Table 5-1. Protonation Constants of Serine

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	$\log K_2$	Ref.
Thermo	→0 100% formic acid	25	1.09		78KA
Stoichio(?)	3.0 KCl	25	9.452	2,405	78VV
Mixed(?)	1.0 KCl	25	9.15	-	79FD
Thermo	~0	25	8.98	-	79FM
	50% ethanol				
Thermo	~0	25	9.04		80KT
	formic acid: ethyl methyl ketone (1:24				
Stoichio	0.1 KNO3	25	9.16	2.44	80YT
	20% dioxane				
Stoichio	0.1	20	9.07	2.13	81CD
	0.1	20	7.67	-	
	100% trifluoroethano	1			
Thermo	~0	25	9.15	-	81FP
Stoichio	1.0 NaNO ₃	25	8.97	2.19	81JI
Mixed(?)	0.1 KNO3	25	9.17	2.27	81L
Mixed	0.25 KNO3	30	8.81	2.17	81RK
Mixed	0.2 NaNO_3	30	8.95	2.25	81RSa, 81RSb
Stoichio	0.15 NaClO ₄	37	8.712	2.081	82BK
Thermo	~0	25	8.97	2.22	82DD
	8.0% propan-2-ol	25	8.96	2.33	
	16.3% propan-2-ol	25	8.99	2.43	
	25.1% propan-2-ol	25	8.99	2.55	
	34.3% propan-2-ol	25	8.99	2.65	
	43.9% propan-2-ol	25	9.04	2.72	
	54.0% propan-2-ol	25	9.06	2.82	
	64.6% propan-2-ol	25	9.07	2.90	
a	75.8% propan-2-ol	25	9.09	3.11	
Stoichio	0.1 KNO_3	25	9.16	2.349	82NM, 83NM
Stoichio	0.25 NaCI	25	9.03	2.173	84A0
Mixed	1.0 KNO_3	30	9.10	-	84CG
Mixed	0.5 KNO_3	30	9.18	2.21	84KB
Mixed		35	9.0	2.1	845Y, 855Y
Stoicnio	3.0 NaCl	25	9.50	2.45	85BP
Mixed(?)	0.1 KNO_3	25	9.05	-	85MK
Mixea	0.1 KNO_3	27	9.18	-	82M8
Minad	0.7 NoClO	20	0 00		9500
Mixed(?)	0.7 NaClO ₄	20	8.98 0.19	-	858C
Mixed(2)	1 0 VCI	20	9.10	-	03 V D 96 E A
Stoichio	0.1 NeClO	25	9.24	- 2 211	OULA Semco
Mired(2)	0.1 NaClO	25	9.1/1	2.211	8600
Mixed (1)	0.7 NaClO_4	25	0.90		00C3 96VD
Thermo		25	9.50	2.44	96DD
Thermo		25	0.57	2.22	OULD
	16 4% t-BuOH	25	0.20	2.40	
	25 0% t-BuOH	25	9.20	2.52	
	34 2% t-BuOH	25	9.22	2.57	
	43.8% t-BuOH	25	9.24	2.63	
	54 0% t-BuOH	25	9 37	2.03	
	64 5% t-BuOH	25	0 38	2.73	
	75 8% t-BuOH	25	9.38	3 18	
	75.8% t-BuOH	25	9.38 9.38	3.18	

Table 5-1. Protonation Constants of Serine (continued)

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	$\log K_2$	Ref.
Stoichio(?)	0.2 KNO2	25	9.04	2.25	86SV
Mixed(?)	0.15 KNO2	25	9.14	-	8701
Thermo	~0	25	8.99	2.23	87CL
	10% methanol	25	8.97	2.29	0,02
	20% methanol	25	8.97	2.39	
	30% methanol	25	9.00	2.51	
	40% methanol	25	9.00	2.68	
	50% methanol	25	9.04	2.82	
	60% methanol	25	9.08	3.96	
	70% methanol	25	9.10	3.19	
	80% methanol	25	9.11	3.51	
	10% ethanol	25	9.00	2.29	
	20% ethanol	25	8.99	2.39	
	30% ethanol	25	9.00	2.53	
	40% ethanol	25	9.02	2.67	
	50% ethanol	25	9.05	2.83	
	60% ethanol	25	-	2.91	
	70% ethanol	25	-	3.10	
	80% ethanol	25	-	3.37	
Stoichio	0.2 KCl	25	9.04	2.13	87KS
Mixed	0.1 NaCl	25	9.24	-	875M
?	0.1 NaClO	25	9.02	2.29	88LG
Mixed	2.25 NaNO2	25	9.274	2.322	89CV
Thermo	0	25	9.32	-	89TA
	20% ethanol	25	9.27	-	0,011
	40% ethanol	25	9.30	-	
	60% ethanol	25	9.40	-	
	80% ethanol	25	9 71	-	
Mixed	0.1 KNO_2	25	9.15	-	895.905
Stoichio	0.15 NaCl	37	8.708	2,107	91DB
Stoichio	0.15 NaClO ₄	37	8.728	2.158	93BA

Table 5-1. Protonation Constants of Serine (continued)

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	log K ₁	$\log K_2$	Ref.
Stoichio? (T)	0.05 KCl	25	9.09 (±0.01)	2.16 (±0.01)	70GN, 71GN, 72GM, 72GMa, 72GS
Stoichio (T)	0.1 KNO ₃	25	9.05 (±0.04	2.1 (±0.2)	65PG, 72IN, 74KU, 75HV, 76PS, 77BP, 81L, 86MCa, 89S
Stoichio (T)	3.0 NaClO ₄	25	9.53 (±0.08)	2.5 (±0.1)	73W, 76BH, 78VV, 85BP
Stoichio (R)	0.15	37	8.72 (±0.01)	2.09 (±0.07)	67PS, 67S, 82BK, 91DB, 93BA

Table 5-2. Recommended (R) and Tentative (T) Values for Protonation Constants of Serine

Table 5-3. Thermodynamic Quantities for Serine Protonation Equilibria

Method	Medium (mol dm ⁻³)	Temp. (°C)	ΔH° ₁ (kJ m	$\Delta H^{\circ}{}_{2}$	ΔS°1 (J K-1	$\frac{\Delta S^{\circ}_{2}}{\text{mol}^{-1})}$	Ref.
Pot.	→0	1 12.5 25 37.5 50	-43.72 -43.89 -43.53 -42.68 -41.17	-8.29 -7.20 -5.71 -3.90 -1.72	29.4 29.1 30.1 33.0 38.1	13.8 17.6 22.6 28.4 35.5	42SG
Pot.	0.1 KCl	25	-42.42	-	35.1	-	70HM
Cal.	0.16 KNO3	25	-42.05	-	34.7	-	70LB
Cal.	~0	20	-41.5	-	-	-	71 MB
Cal.	0.05 KCl	25	-42.68	-5.02	33.9	24.3	72GM, 72GMa
Cal.	0.1 KNO3	25	-43.76	-	28.3	-	72IN
Cal.	0.1 KNO3	25	-43.28	-	28.5	-	76PS
Cal.	0.2 KC1	25	-43.6	-1.9	26.9	34.3	87KS
Cal.	~0	25	-40.6	-1.34	40.0	37.3	87RF, 89R, 89RM
Cal.	0.1 NaClO ₄	25	-45.5	-3.99	20.1	30.5	88LG

(Pot. = potentiometry; Cal. = calorimetry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Ag+	Pol.	0.6	25	ML ML	3.40 6.67	67AM
	Ag el. (DL-)	0.1 (KNO ₃	25	ML ² MLH MLH ₂	4.1 7.4 9.9 (?)	81UP
Al ³⁺	G1.	0.15 NaCl	37	ML	5.97	91DB
Au ³⁺	Gl. (DL-)	~ 0.02	25	ML ML ₂	6.54 9.34	74FA
Be ²⁺	Gl. (DL-)	0.015	20	ML_2	12.1	53P
Ca ²⁺	Sol. Ion exch.	→0 0.16 (pH 7.2)	25 25	ML ML	1.43 ~0.5	50DW 54S
	Gl.	3.0 NaCl	25	ML	1.00	85BP
Cd ²⁺	Gl. (DL-) Gl.	0.015 3.0 NaClO ₄	20 25	ML ₂ ML ML ₂ ML ₄	7.4 4.154 7.863 10.221	53P 74WW
	G1.	0.1 KNO ₃	25	ML ML	4.0	75HV
	Pol. (DL-)	1.0 NaClO ₄	30	ML ML ₂ ML ₂	4.69 6.77 8.85	79PG
	Pol. (DL-)	0.5 KNO ₃	25	ML ML ₂ ML ₃	4.00 7.15 9.22	79SGa
		15% DMF(v/v)	ML	4.08 ML ₂ ML ₃	7.62 9.71	
		15% DMSO(v/v) ML	4.30 ML ₂	7.90	
	Pol.	1.0 KNO ₃	30	ML ₃ ML ML ₂	9.98 4.10 7.10	82CG, 84CG
	G1.	0.2	30	ML ₃ ML	3.95	84J, 84Ja
	G1.	0.7 NaClO ₄	20	ML ₂ ML	3.731	80) 84SC
	Pol.	0.7 NaClO ₄	20	ML ₂ ML	3.45	
	Pol.	0.5 KNO ₃	30	ML ₂ ML ML ₂	0.80 4.78 7.29 9.45	84KB
		20% methanol	30	ML ML ₂ ML ₂	5.00 7.89 10.18	
		40% methanol	30	ML ML ₂ ML ₃	5.35 7.95 10.45	

Table 5-4. Overall Formation Constants for L-Serine Metal Complexes

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
		40% ethanol	30	ML	4.78	
				ML ₂ ML ₂	8.20 11 74	
		20% aceto-	30	ML	4.61	
		nitrile		ML_2	7.30	
				ML_3	9.56	
		40% aceto-	30	ML	4.78	-
		nitrile		ML ₂ ML	10 30	
	Pol.	1.0 KNO2	30	ML 3	4.00	85KC
	2 0 1	(pH 8-9)		ML ₂	7.10	86KC
		- · · · · ·		ML ₃	9.30	
	Gl.	0.7 NaClO_4	20	ML	3.728	85SC
				ML ₂	7.02	
	DPP			MLn_1	-3.85	
	DII			ML	6.80	
	Gl.	0.2 KNO3	25	ML	3.77	86SV
		-		ML_2	7.03	
		0.2 MaCIO	77	ML ₃	9.33	99DD
	GI.	0.2 Naci04	21	ML	3.95 7.25	OOFF
	Gl.	0.2 KNO2	35	ML	3.78	89KS, 89KV
		j		ML_2	6.80	,
Ce ³⁺	Gl.	0.1 KCl	22	ML	3.4	68RP
Co^{2+}	GL (DL-)	~ 0.01	20	MLa	8.0	50A
	Gl. (DL-)	→0	25	ML	4.90	64S
				ML_2	9.10	
		0.01 KNO3	25	ML	4.84	
		0.02 KNO.	25	ML ₂ MI	0.90 1 71	
		0.02 KH03	25	ML	8.86	
		0.05 KNO3	25	ML	4.47	
				ML_2	8.25	
	Gl.	0.15 KNO ₃	37	ML	4.20	67S, 69PS
				ML ₂	7.30 Q 81	
	GL (DL-)	0.2 KNO2	15	ML ₃ ML	4.37	68RM
	0(22)			ML ₂	7.75	
			25	ML	4.33	
			40	ML ₂	7.66	
			40	ML ML	4.25	
	Gl	0.05 KCl	20	ML ₂ ML	4.42	72GM, 72GMa
				ML ₂	8.08	·, ·
			25	ML	4.38	
			~~	ML ₂	8.00	
			30	ML ML	4.54	
			35	ML ²	4.30	
			55	ML ₂	7.84	
				2		

Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	G1.	3.0 NaClO ₄	25	ML ML ₂ ML ₂	4.584 8.568 11.554	73W
	G1.	3.0 NaCl	25	ML ML ₂ ML ₂	4.32 7.90 10 2	85BP
	G1.	0.15 KNO ₃	25	ML ML	4.36	87CJ
	Gl.	0.2 KNO ₃	35	ML ² ML ₂	4.19 7.71	89KS, 89KV
Cr ²⁺	Gl. (DL-)	~ 0.015	25(?)	ML	7.21	70FM
Cr ³⁺	Gl.	0.4 KCl	25	ML ML ₂ ML ₃	8.0 14.2 19.4	63KM
	G1.	0.1 NaClO ₄	25	ML ³ ML ₂ ML ₃	8.31 11.27 15.44	86MCa
Cu ²⁺	Gl. (DL-)	~ 0.01	20	ML ₂	14.6	50A
	Gl. (DL-)	$\rightarrow 0$	25 25	ML ₂ ML	8.40	64S
		0.01 KNO ₃	25	ML ₂ ML	14.50 8.20	
		0.02 KNO ₃	25	ML ₂ ML	8.00	
		0.05 KNO ₃	25	ML ₂ ML	14.02 7.65	
		0.10 KNO ₃	25	ML ₂ ML	13.50 7.57	
	G1.	0.15 NaClO₄	37	ML ₂ ML	13.32 7.57	67PS
	G1.	0.15 KNO2	37	ML ₂ ML	14.02	678
			15	ML ₂	14.01	())) (
	GI. (DL-)	0.2 KNO_3	15	ML ML ₂	8.02 14.64	08KM
			25	ML MLo	7.89 14 40	
			40	ML	7.73	
	G1.	0.05 KCl	25	ML ₂ ML	14.06	70GN, 71GN
	Gl. (DL-)	0.16 KNO ₃	25	ML ₂ ML	14.67 7.85	70LB
	Gl.	0.05 KCl	20	ML ₂ ML	14.50 7.97	72GM, 72GMa
			25	ML ₂ ML	14.62 7.93	
			30	ML ₂	14.48 7.88	
				ML ₂	14.37	
			35	ML ML ₂	7.80 14.19	

 Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl.	0.05 KCl	25	ML.	7.93	72GS
	Gl.	0.1 KNO ₃	25	ML ML	7.92	72IN
	G1.	1.0 NaClO ₄	25	ML ML ₂ ML ₂ H ₋₁	7.95 14.68 4.43	73GM
	Gl.	0.15 NaCl	25	$\begin{array}{c} \mathrm{ML}_{2}\mathrm{H}_{-2}\\ \mathrm{ML}\\ \mathrm{ML}_{2}\\ \mathrm{ML}_{2}\mathrm{H}_{-1}\\ \mathrm{ML}_{0}\mathrm{H}_{-2}\end{array}$	-6.83 8.010 14.585 4.772 -6.18	73KS, 77S
	G1.	3.0 NaClO ₄	25	ML ML	8.950 16.230	73W
	G1.	0.1 KNO ₃	25	ML2 ML ML2 MLH	7.858 14.428 11.41	76PS
	(DL-)			ML MLo	7.862 14 437	
	G1.	0.1 KNO ₃	25	ML ML	7.858	77BP
	Sp.	~0 50% othered	25	ML ² ML	7.77	79FM
	Pol. (DL-)	0.5 KNO_3	25	ML ML	7.88	79SS
			35	ML ML	7.75	
	Gl.	0.1 NaClO ₄	30	ML ML	7.85	80AS
	Pol. (DL-)	0.1 NaClO ₄	30	ML ₂ ML ₂	14.8(4)	80RR
	Gl.	0.1 KNO ₃ 20% dioxane	25	ML	8.14	80YT
	Gl.	~0	25	ML	8.66	81FP
	Gl.	0.25 KNO ₃	30	ML ML2	7.56 14.01	81RK
	Gl.	0.2 NaNO ₃	30	ML ²	7.84 14.31	81RSa, 81RSb
	Gl.	0.1 KNO ₃	25	ML ML ₂ ML ₂ H ₋₁ ML ₂ H ₋₁	7.92 14.73 4.37	81SH
	G1.	0.15 NaClO ₄	37	ML ₂ II ₋₂ ML ML ₂ MLH	8.034 14.366 10.645	82BK
	Gl.	0.25 NaCl	25	$ML_{2}H_{-1}$ ML_{2} $ML_{2}H_{-1}$ $ML_{2}H_{-1}$	4.652 7.781 14.295 4.375 -6 525	84AO
	Cu(Hg) el.	0.1 KNO ₃	25	ML ₂ H-2 ML ML ₂	8.11 14.69	84PB

Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl.	0.2 KCl	25	ML ML ₂ ML ₂ H ₋₁ ML ₂ H ₋₁	7.81 14.24 4.09	87KS
	G1.	0.1 NaClO ₄	25	ML	7.95	88LG
	Pol.	1.0 KNO3	30	ML ² ML	7.80	88SKa
	Gl.	0.15 NaClO ₄	37	ML2 ML ML2 MLH ML2H-1	7.748 14.083 10.030 4.285	93BA
Dy ³⁺	G1.	0.1 KCl	20	ML	3.4	74PN
Er ³⁺	G1.	0.1 NaNO3	25	ML	3.89	65PG
Fe ²⁺	Gl. (DL-) Gl. Estim. Gl. (DL-)	~ 0.01 1.0 KCl →0 0.2 KNO ₃	20 20 25 15 40	ML ₂ ML ML ML ML ₂ ML	7.0 3.43 7.7 3.67 6.45 3.62	50A 59P 64S 68RM
	G1.	3.0 NaClO ₄	25	ML2 ML ML2 ML2	4.299 7.377 10.299	73W
Fe ³⁺	Gl. Ox. Pot.	1.0 NaClO ₄ 1.0 NaNO ₃	20 25	$ML_3 ML ML_2H ML_2H_2$	9.2 18.78 22.06	58P 88SP
Ga ³⁺	G1.	3.0 NaClO ₄	25	ML M(LH)	9.0 1.8	76BH
Gd ³⁺	G1. G1.	0.1 NaNO ₃ 0.1 KCl	25 20	ML ML	3.59 3.2	65PG 74PN
HfOCl ₂	Color.	-	25	ML	1.25	71KP
Hg ²⁺	Gl. (DL-) Pol. Hg el.	0.015 0.5 KNO ₃ 0.1 NaNO ₃	20 25 25	ML ₂ ML ₂ ML ML ₂	17.5 17.34 11.7 19.1	53P 66TA 73VB
	Ion exch.	0.375 (pH 7.8)	25	ML	4.53(!)	83HD
CH ₃ Hg ^I	I Gl.	1.0 NaNO3	25	ML	6.93	81Л
Ho ³⁺	G1.	0.1 NaNO3	25	ML	4.00	65PG
In ³⁺	Gl. (DL-)	~ 0.02	24	ML ML ₂	7.53 14.58	76KF
La ³⁺	G1.	0.1 KCl	20	ML	3.0	74PN

 Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Lu ³⁺	Gl.	0.1 NaNO3	25	ML	3.92	65PG
Mg ²⁺	Gl. Gl. (DL-)	3.0 NaCl 0.15 NaCl	25 20	ML ML	1.03 1.47	85BP 85VD
Mn ²⁺	Estim. (DL-)	→ 0	25	ML ML2	3.4 6.7	64S
	Gl. Gl. (DL-)	0.15 NaClO ₄ 0.2 KNO ₃	37 15	ML ² ML	2.32 2.51	67S 68RM
			40	ML ₂ ML ML	4.00 2.48 3.95	
	Gl.	0.1 KNO ₃	20	ML ² ML ₂	3.91 6.31	73BS
			30	ML ML ₂	3.87 6.27	
			40 50	ML ML ₂ MI	3.81 6.22 3.77	
			60	ML ML ₂ ML	6.18 3.72	
	G1.	3.0 NaClO ₄	25	ML ₂ ML	6.15 2.893	73W
	Gl. (DL-)	0.15 NaCl	20	ML ₂ ML	4.791 2.38	85VD
Nd ³⁺	G1. NMR	0.2 KCl 0.2 KCl	25 25	ML ML	0.99 1.10	73SY
Ni ²⁺	Gl. (DL-)	-	20	ML ML ₂	5.44 10.06	56PC
	G1.	-	10	ML ₃ ML ML ₂	13.17 5.66 10.37	57P, 60P, 60Pa, 60Pb
			19.5	ML3 ML ML2	13.68 5.58 10.12	
			25	ML3 ML ML2	13.20 5.48 9.94	
			30	ML ² ML ML ₂	12.97 5.44 9.82	
			40	ML ₃ ML ML ₂	12.79 5.27 9.57	
	Estim. (DL-)	~0	25	ML ML	6.0 10.6	64S
	Ġ1. ´	0.15 KNO ₃	37	ML ² ML ₂	5.21 9.59	67S, 68PSa
				ML ₃	12 .49	

,

Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl. (DL-)	0.2 KNO ₃	15	ML ML ₂	5.50 9.94	68RM
			25	ML	5.42	
			40	ML ₂	9.76	
			40	ML	9.47	
	Gl. (DL-)	0.16 KNO3	25	ML	5.45	70LB
		2		ML_2	9.98	
	CI	0.05 701	20	ML ₃	13.52	70016 700164
	GI.	0.05 KCI	20	ML	5.48 10.07	/2GM, /2GMA
			25	ML	5.43	
				ML_2	9.96	
			30	ML	5.40	
			25	ML ₂	9.87	
			33	ML	9.30 9.71	
	G1.	0.05 KCl	25	ML	5.43	72GS
				ML_2	9.96	
	Gl.	3.0 NaClO ₄	25	ML	5.626	73W
				ML ₂	10.621	
	Gl.	0.1 KNO2	25	ML ₃	5.317(2)	76PS
		•••••		ML ₂	9.743	
				ML ₃	12.73	
	(DL-)			ML	5.320	
				ML ₂	12.68	
	G1.	0.2 NaNO_3	30	ML	5.40	81RSa, 81RSb
		5		ML_2	9.68	
	G 1.	1.0 KCl	25	ML	5.42	83FA
	GI	3 0 NoCl	25	ML ₂	9.76	85DD
	01.	5.0 NaCi	23	ML	9.94	0JDP
				ML ₃	13.02	
	G 1.	0.2 NaClO ₄	27	ML	5.69	88PP
	CI	0 2 KNO	25	ML_2	10.45	00120 001212
	01.	0.2 knO_3	33	ML	5.42 9.76	89KS, 89KV
				milly	2.70	
Os ⁴⁺	Gl. (DL-)	~ 0.02	28	ML	5.60	74FAa
D 4 2⊥	C1	0.15 7070				(a a
Pb≁⊤	GI.	0.15 KNO_3	37	ML	4.41	67S
	Gl	3 0 NaClO	25	ML ₂ ML	7.51	73CT
	U 1.	5.0 1140104	40	ML	8.265	/501
				ML ₃	9.957	
	G1.	1.0 NaClO ₄	25	ML	4.86	79KC
				MLH	11.00	
	Pol. (DL-)	0.5 KNO2	25	ML ^{ri} -1	-3.13	798Ga
		0.0 11103	20	ML ₂	8.00	7200u
				ML3	10.69	
				-		

 Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
		15% DMF(v/v)	15% DMF(v/v)		4.78 8.48 10.91	
		15% DMSO(v/*	v)	ML ML ₂ ML	5.18 8.81 11.25	
	Pol.	0.7 NaClO ₄	25	ML	4.71	86CS
	Pol.	1.0 KNO ₃	30	ML ² ML ML ₂	4.80 7.90	89SC
Pd ²⁺	Gl. (DL-)	0.5 KNO ₃	20	ML ML a	9.7 18 8	74KH
	Gl. (DL-) Gl.	~ 0.02 0.1 NaCl	27 25	ML ML	16.88 8.66	73FA 87SM
Pu ³⁺	Ion-exch.	1.0 KCl	18	ML	3.42	73RK
Rh ³⁺	Gl. (DL-)	~ 0.02	25	ML ML ₂	6.92 9.95	74FAb
Sm ³⁺	Gl.	0.1 KCl	20	ML	3.4	74PN
Sr ²⁺	Ion exch. Sol.	0.16 (pH 7.2)	25 20	ML ML	~0.4 2.69	54S 75S
Tb ³⁺	Gl.	0.1 NaNO3	25	ML	3.77	65PG
Th ⁴⁺	Gl. Ion exch. Gl. (D-)	0.5 0.5 0.1 KNO ₃	25 20 25	ML ML ML ML ₂	8.07 8.10 8.25 16.75	73SK 80S 83NM
Ti ³⁺	Gl. (DL-)	~ 0.02	25?	ML	7.54	70FMb
Tl+	G 1.	0.1 LiClO ₄	25	ML	1.53	74KU
U ⁴⁺	Sp.	0.5	20	ML	9.70	74SK
UO ₂ ²⁺	Solv. extr. Gl. (DL-) Gl.	0.45 NaCl ~ 0.02 0.1 NaClO ₄	25 25? 30	M(LH) ML ML	0.87 6.86 7.60	57LW 70FMb 73RS
	Gl. Sp. Gl. (D-)	0.5 0.5 0.1 KNO ₃	25 25 25	ML ML ML ML	6.04 5.90 8.66	73SKa 82NM, 83NM
	Gl. (DL-)	0.1 KNO ₃ 50% methanol	27	ML ₂ ML	14.66 7.92	85MS
V3+	G1.	0.2 KCl	25	ML	11.82	86KD

Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
VO ²⁺	Gl. (DL-) Gl.	~ 0.02 2.25 NaNO ₃	25? 25	ML MLH ML2H2 ML2H ML2H ML2H_1 ML2H_1 M_2L2H_3 ML2H_2 MLH_2 MLH_2 MLH_3	7.54 10.37 6.38 19.9 16.44 11.70 4.99 4.45 -1.23 -5.0 -6.0 -18.0	70FMb 89CV
¥3+	Gl. Gl. Gl.	0.1 NaNO ₃ 0.1 KCl 0.1 KCl	25 22 20	ML ML ML	3.49 3.5 3.3	65PG 68RP 74PN
Yb ³⁺	Gl. Gl.	0.1 NaNO ₃ 0.1 KCl	25 20	ML ML	3.92 3.7	65PG 74PN
Zn ²⁺	Gl. (DL-) Gl. (DL-)	0.015 →0	20 25	ML ₂ ML ML2	8.6 5.30 9.75	53P 64S
		0.01 KNO ₃	25	ML ML	5.22 9.68	
		0.02 KNO ₃	25	ML ML ₂	5.19 9.64	
		0.05 KNO ₃	25		5.08 9.48	
		0.10 KNO3	25	ML MLo	4.94	
	Gl.	0.15 KNO ₃	37	ML ML ₂ ML ₂	4.47 8.31 10.56	67S, 69PS
	Gl. (DL-)	0.2 KNO ₃	15	ML ML ₂	4.71 8.48	68RM
			25	ML ML_2	4.66 8.38	
			40	ML MLo	4.58 8.22	
	Gl.	0.15 NaCl	37?	ML	4.62	72GH
	Gl.	0.05 KCl	20	ML ₂ ML	8.48 4.69 8.76	72GM, 72GMa
			25	ML	4.65	
			30	ML ₂ ML	8.68 4.61 8.61	
			35	ML ₂ ML	4.58	
	Gl.	3.0 NaClO ₄	25	ML ₂ ML ML ₂ ML ₂	8.54 4.898 9.279 11.909	73W
	Pol. (DL-)	0.5 KNO3	25	ML ML ₂	4.60 8.30	79SS
			35	ML3 ML ML2 ML3	4.52 8.13 10.77	

Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	G1.	0.2 KCl	25	ML ML ₂ MLH ₋₁ ML ₂ H 1	4.45 8.16 -3.73 -2.4	81G
	Gl.	0.2 NaNO ₃	30	ML ML	4.68	81RSa, 81RSb
	Gl.	0.15 NaClO ₄	37	ML ² ML ₂ ML ₂ H ₁	4.475 8.262 -1.140	82BK
	G1.	0.2	30	ML ²¹ ML ₂	5.06 9.16	84J, 84Ja 86J
	Gl.	0.1 KNO2	25	ML	4.62	85MK
	G1.	0.2 NaClO ₄	27	ML ML2	5.06 9.17	88PP
	G1.	0.2 KNO ₃	35	ML ² ML ₂	4.66 8.49	89KS, 89KV

Table 5-4. Overall Formation Constants for L-Serine Metal Complexes (continued)

(G1. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry; Sol. = solubility; DPP = differential pulse polarography)

Metal ion	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Co ²⁺ (T)	3.0 NaClO ₄	25	ML ML ₂ ML ₃	4.58 8.57 11.55	73W
Cu²⁺ (T)	0.05 KCl	25	ML	$7.93 (\pm 0.01)$	71GN, 70GN, 72GM,
(T)	0.1	25	ML ² ML	$7.90 (\pm 0.05)$	720Ma, 720S 72IN, 76PS, 77BP, 88LG
(T)	0.15 NaClO ₄	37	ML ₂ ML ML ₂ MLH ML ₂ H ₋₁	$\begin{array}{c} 14.49 (\pm 0.08) \\ 7.75 \\ 14.08 \\ 10.03 \\ 4.28 \end{array}$	93BA
Ni ²⁺ (T)	0.1 KNO ₃	25	ML ML ₂	5.32 9.74	76PS
(T)	3.0 NaClO ₄	25	ML ₃ ML ML ₂ ML ₃	5.63 10.62 14.2	73W
Zn²⁺ (T)	0.2 KCl	25	ML ML ₂ MLH_1	4.45 8.16 -3.73	81G
(R)	0.15 NaClO ₄	37	ML ₂ H ₋₁ ML	-2.4 4.47 (±0.01)	67S, 69PS, 82BK
(T)			ML_2 ML_2H_{-1}	-1.14	

Table 5-5. Recommended (R) and Tentative (T) Overall Formation Constants for L-Serine Metal Complexes

© 1995 IUPAC, Pure and Applied Chemistry, 67, 1117-1240

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Cd ²⁺	Gl.	0.2 NaNO ₃	30	Diethylene-	MLX	11.55	81RS
	Pol.	1.0 KNO ₃	30	Malonic acid	MLX MLX ₂ ML ₂ X	5.45 6.69 7.69	82CG
	Gl. Pol.	0.2 1.0 KNO ₃	30 30	NTA N-(2-Hydroxy- ethyl)ethylene-	(MX)L MLX ML ₂ X	3.21 9.02 11.20	82J 84CG
	Gl.	0.2	30	Iminodiacetic	(MX)L	3.05	84J
	Gl. Pol.	0.2 1.0 KNO ₃ (pH 8-9)	30 30	2,2'-Bipyridyl Pyridoxine	(MX)L MLX ML ₂ X MLX	3.76 5.05 7.98 6.00	84Ja 85KC
	Pol.	1.0 KNO ₃ (pH 8.5)	30	Ascorbic acid	MLX ML ₂ X MLX	4.99 7.52 5.20	86KC
	Gl.	0.2	30	Iminodiacetic acid	(MX)L	3.0 ± 0.1	86J
	G1. G1.	0.2 NaClO ₄ 0.2 KNO ₃	27 35	Di-2-pyridylamine Bis(imidazol-2-	(MX)L (MX)L	3.76 3.21	88PP 89KV
	Gl.	0.1 KNO ₃	25	NTA	(MX)L	3.22	90S
Co ²⁺	G1. G1.	0.1 NaClO ₄ 0.15 KNO ₃	25 37	NTA Ethylene- diamine Histamine	(MX)L MLX ML ₂ X MLX ₂ MLX	3.18 9.04 11.18 11.87 8.61	68IC 69PS
	G1.	1.0 KCl	25	Ascorbic acid	MLX ₂ (ML)XH (ML ₂)XH MLX	11.01 0.66 -0.18 3.00	86FA
	Sp.	-	25	Gluconic acid	ML ₂ X (ML)XH	3.07 1.01	86FD
	Gl.	0.15 KNO ₃	25	Iminodiacetic	MLX	10.52	87CJ
	Gl.	0.2 KNO ₃	35	Bis(imidazol-2-	(MX)L	3.71	89KV
	Gl.	0.1 KNO ₃	25	ATP	(MX)L	4.20	89MA
Cr ³⁺	Gl.	0.1 NaClO ₄	25	DL-Methionine DL-Ethionine	MLX MLXH MLX MLXH	15.72 19.64 15.80 19.82	86MCa
Cu ²⁺	G1.	0.15 NaClO ₄	37	Ethylene- diamine Histamine	MLX MLX	16.87 16.27	67PS
	Gl.	0.1 NaClO ₄	25	Salicylic acid NTA	MLX (MX)L	16.55 5.01	68IC

Table 5-6. Constants for Mixed-ligand Complexes Involving L-Serine

 Metal ion	Method	Medium (mol dm ⁻³)	Гетр. (°C)	Extra ligand (X)	Complex	log β	Ref.
	Gl.	0.05 KCl	25	Alanine α-Amino- butyric acid	MLX MLX	15.12 15.06	72GS
				Glycine	MLX	15.10	
				Norvaline	MLX	15.13	
				Phenylalanine	MLX	15.00	
				Threonine	MLX	14.95	
		0.1 12010	25	Tyrosine	MLX	14.96	7 073 7
	GI.	0.1 KNO_3	25	α -Alanine	MLX	14.91	72IN
				Glycine	MLX	14.00	
	C1	0.15 NoCl	25	Valine L Uistidino		14.84	7210
	01.	0.15 Maci	25	L-misuallie		17.340	/3N3, 778
						21.705	//5
	GI	0 24 KC1	25	n-Amino-	MLAII-1	10.20	7451
	01.	0.24 ACI	25	p-Annio- benzoic acid	WILA	10.56	/4FL
				Rihoflavin	MLX	14 94	
	Gl.	0.2 KCl	25	L-Asparagine	MLX	14.62	75GN
	Gl.	0.1 KNO ₂	25	L- or D- Histidine	MLX	17.20	77BP
	Gl.	0.2 KCl	25	Glycylglycine	MLXH 1	4.94	77NG
				Glycyl-DL- α-alanine	MLXH ₋₁	5.07	
				DL-α-Alanyl- DL-α-alanine	MLXH-1	4.86	
	Sp.	0.5 NaClO ₄ (pH 5)	25?	2,4-Dihydroxy- benzoic acid	MLXH ₂	19.26	78MG, 78MGa
	Sp.	~ 0 50% ethanol	25	Acetoacetic	MLX	14.81	79FM
	Gl.	0.1 KNO3	25	L-Histidine	MLX	17.09	79YS
	G1.	0.1 NaClŎ₄	30	Glycylsarcosine	MLX	19.07	80AS
	Gl.	0.25 KNO3	30	Lactic acid	MLX	10.02	80RK
	Sp.	0.25 KNO_3	30		MLX	9.76	
	Sp.	0.25 KNO ₃	30	Oxalic acid	MLX	11.99	80RKa
	Gl.	0.1 KNO ₃	25	L-Histidine	MLX	17.51	80YT
	<u></u>	(20% dioxane)	~ ~	D-Histidine	MLX	17.54	
	GI.	~0	25	Thymine	MLX	13.31	81FP
	Pol.	0.25 KNO_3	30	Malonic acid	MLX	11.41	81RK
	GI.	0.2 Nan 0_3	30	triamine Dipropylene-	MLX MLX	19.89	8185
	Gl.	0.2 NaNO2	30	triamine Iminodiacetic	MLX	15.86	81 R Sa
				acid		10100	oradu
	G1.	0.2 NaNO_3	30	DL-Aspartic acid	MLX	15.30	81RSb
	Gl.	0.15 NaClO ₄	37	Histamine	MLX MLXH	16.776 20.630	82BK
	Gl.	0.1 NaClO ₄	30	Glycyl-L-	MLXH ₋₁ MLXH ₋₁	6.665 5.47	82S
	Gl. (DL-)	0.1 NaClO ₄	30	Glycyl-DL-	MLXH ₋₁	4.78	83S
	Sp. Gl.	0.15 NaCl 0.1 KNO3	20 25	Orotic acid NTA	MLX (MX)L	15.85 4.96	83VD 84PB

Table 5-6. Constants for Mixed-ligand Complexes Involving L-Serine (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
	Gl.	0.2 NaNO ₃	30	Thiodiglycolic acid	MLX	11.35	84RS
	Sp.	0.6 NaNO ₃	30	Thiodiglycolic	MLX	11.24	
	Gl.	0.1 NaClO ₄	30	Alanyl-L-	MLXH ₋₁	4.60	84S
	Gl.	0.15 NaClO ₄	37	EDTA	MLX MLXH	20.6 29.3	85AM
	Sp. Gl.	-	25	Gluconic acid	(ML)XH [MLX][H]/ [ML][XH]	1.73 4.12	85FD, 86FD
	Sp. Gl.			Pangamic acid	(ML)XH [MLX][H]/ [ML][XH]	1.84 3.72	
	G1.	0.5 NaClO ₄	25	5-Nitro- salicylic acid	MLX	15.46	85MG
	Gl.	0.1 NaClO ₄	30	Glycyl- L-Asparagine	MLXH ₋₁	10.57	86AJ
	G1.	0.15 NaClO ₄	37	L-Histidine	MLX MLXH MLXH 1	17.126 21.003 6.786	86BH
	G1.	0.1 NaClO ₄	25	DL-α-Alanyl- DL-methionine DL-Alanyl-	(ML)X (?) (ML)X (?)	5.41 5.86	88JA
	Gl. Pol. Sp.	0.1 NaClO ₄ 1.0 KNO ₃ -	25 30 25?	DL-norvaline N-Acetylglycine Pyridoxine Butyric acid γ-hydroxybutyric acid	MLX MLX (ML)X (ML)X	10.30 9.07 1.44 1.25	88LG 88SKa 89DF
	G1.	0.1 KNO3	25	Pantoic acid Diethylene-	(ML)X (MX)L	1.17 4.07	89SH
	G1.	0.15 NaClO ₄	37	triamine L-Histidine MLXH MLXH ₋₁ ML ₂ X ML ₂ XH	MLX 20.873 6.852 19.971 28.446	16.972	93BA
Fe ²⁺	Kin.	0.1 LiClO ₄	25	Cyanide	(MX ₅)L	3.32	82TB
Fe ³⁺	Sp.	0.5 NaClO_4	-	5-Nitro-	ML ₃ X	19.62	81MG
	Kin.	0.1 LiClO ₄	25	Cyanide	(MX ₅)L	3.58	82TB
Mg ²⁺	Gl. (DL-)	0.15 NaCl	20	Orotic acid	MLX	5.55	85VD
Mn ²⁺	Gl. Gl. (DL-)	0.1 NaClO ₄ 0.15 NaCl	25 20	NTA Orotic acid	(MX)L MLX	1.28 6.90	68IC 85VD
Ni ²⁺	G1. G1.	0.1 NaClO4 0.15 KNO3	25 37	NTA Ethylene- diamine	(MX)L MLX MLX ₂ ML ₂ X	4.14 11.78 16.08 14.58	68IC 68PSa

Table 5-6. Constants for Mixed-ligand Complexes Involving L-Serine (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
				Histamine	MLX MLX ₂	10.99 14.19 13.60	
	Gl.	0.05 KC1	25	Alanine α-Amino- butyric acid	ML22X MLX MLX	10.29 10.21	72GS
				Glycine Norleucine Norvaline Phenylalanine Threonine	MLX MLX MLX MLX MLX	10.63 10.21 10.27 10.07 10.34	
	Gl.	1.0 KNO ₃	25	N-Carboxymethyl- β -(2-pyridyl)- L- α -alanine	MLX (MX)L	2.71	77BR
	(D-)	1.0			(MX)L	2.92	-
	Sp.	1.0 KCl	25	Ascorbic acid	(MX)L (MX)LH	0.48 7.88	79FD
	Gl.	0.2 NaNO ₃	30	Diethylene- triamine Dipropylene-	MLX MLX	15.31 12.84	81RS
	G1.	0.2 NaNO3	30	triamine Iminodiacetic	MLX	12.58	81RSa
	Cl	0.2 NoNO	20	acid A sportio poid	MIV	11 46	91DCL
	Gl.	1.0 KCl	25	Aspartic acid	(ML)X	3.67	83FA
	Sp.				(ML ₂)X (ML)XH (ML ₂)XH	3.35 0.48 0.24	
	Sp.	-	25	Gluconic acid	(ML)XH	1.19	86FD
	Gl	0.2 NaClO	27	Di-2-pyridylamine	(ML)AR	5 21	88PP
	G1.	0.2 KNO ₃	35	Bis(imidazol-2- yl)methane	(MX)L	4.88	89KV
	Gl.	0.1 KNO ₃	25	ATP	(MX)L	4.94	89MA
Pb ²⁺	G1.	0.1 NaClO ₄	25	NTA	(MX)L	1.15	68IC
	Pol.	1.0 KNO ₃	30	Pyridoxine	MLX	5.43	89SC
Pd ²⁺	Gl.	0.1 KNO ₃	25	Ethylenediamine	(MX)L	11.01	81L
	Gl.	0.1 NaCl	25	Diethylene- triamine	(MXL)H ₋₁ (MX)L	5.10	87SM
Tb ³⁺	Sp.	-	-	EDTA	(MX)L	2.57	85SB
UO22-	F						
2	Gl. (DL-)	0.1 KNO ₃ 50% methanol	27	2-Hydroxy- 1-naphthaldehyde	MLX	13.31	85MS
Zn ²⁺	G1. G1.	0.1 NaClO ₄ 0.15 KNO ₃	25 37	NTA Ethylene- diamine	(MX)L MLX ML ₂ X MLX ₂	3.18 9.86 12.47 12.96	68IC 69PS

Table 5-6. Constants for Mixed-ligand Complexes Involving L-Serine (continued)

Metal Metho	d Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
			Histamine	MLX ML ₂ X MLX2	9.67 12.18 13.04	
Gl. Gl.	0.2 KCl 0.2 NaNO ₃	25 30	L-Histidine Diethylene- triamine	MLX MLX MLX	10.14 13.37	81G 81RS
G1.	0.2 NaNO_3	30	Iminodiacetic acid	MLX	10.56	81RSa
Gl.	0.2 NaNO_3	30	Aspartic acid	MLX	9.68	81RSb
G1.	0.15 NaClO ₄ 0.2	30	NTA	MLX (MX)L	3.37	82BK 82J
Gl.	0.2	30	Iminodiacetic acid	(MX)L	4.00	84J
G1. G1.	0.2 0.1 KNO ₃	30 25	2,2'-Bipyridyl ATP	(MX)L (MX)L (MLX)OH	4.79 3.84 4.23	84Ja 85MK
G1.	0.2	30	Iminodiacetic acid	(MX)L	4.0 ± 0.1	86J
G1. G1.	0.2 NaClO ₄ 0.2 KNO ₃	27 35	Di-2-pyridylamine Bis(imidazol-2- yl)methane	(MX)L (MX)L	4.71 4.13	88PP 89KV
G1.	0.1 KNO ₃	25	NTA	(MX)L	2.99	89S

Table 5-6. Constants for Mixed-ligand Complexes Involving L-Serine (continued)

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry; Kin. = kinetics)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	∆H° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Co^{2+}	Pot (DL-)	0.2 KNO2	25	MI .	-16.7	92.0	68DM
00	Pot	0.05 KCl	25	ML ²	-13.22	A1 8	72GM 72GM
	100.	0.05 1101	<i>2</i> .3	ML	-15.22	4 1.0	720101, 720101a
	Cal	0.05 KCl	25	ML2	-11 30	46.0	
	Cur.	0.05 1101	23	MI -	-20.50	83.7	
				ML2	-20.00	05.7	
Cu ²⁺	Cal. (DL-)	0.1 KNO ₂	21.9	MIa	-59 0	79.5	6788
	Pot. (DL-)	0.2 KNO_2	25	ML	-40.2	142.2	68RM
	Cal.	0.05 KCl	25	ML	-23 01	75 3	70GN
		0100 1101	20	MIA	-49.37	113.0	/0011
	Cal. (DL-)	0.16 KNO ₂	25	ML	-23.05	73.2	701 B
	()			ML	-48.70	114.2	
	Cal.	0.05 KC1	25	ML	-28.45	54.4	71GN
				ML	-51.46	121.3	
	Pot.	0.05 KCl	25	ML	-17.99	92.0	72GM, 72GMa
				ML	-46.86	121.3	
	Cal.	0.05 KCl	25	ML	-23.01	75.3	
				ML	-49.37	112.9	
	Cal.	0.1 KNO3	25	ML	-23.01	74.5	72IN
		,		ML	-48.53	116.3	
	Cal.	0.1 NaClO	24	ML	-54.39		72ST
	Cal. (DL-)	0.1 KNO ₃	25	ML	-53.59	96.3	76PS
	, ,	5		ML2	-52.76	98.9	·
	Pol.	0.5 KNO3	25	ML	-22.84	74.2	79SS
		5		ML	-56.23	108.0	

Table 5-7. Overall Thermodynamic Quantities for L-Serine Metal Complex Equilibria

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	∆H° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Cu ²⁺	Cal.	0.2 KCl	25	ML ML ₂ ML ₂ H ₋₁ ML ₂ H ₂	-22.6 -52.1 -19.7 -0.6	74 98 12 -137	87KS
	Cal.	0.1 NaClO ₄	25	ML ML ₂	-26.1 -53.4	65 99	88LG
Fe ²⁺	Pot. (DL-)	0.2 KNO ₃	25	ML ₂	-6.3	100.4	68RM
Mn ²⁺	Pot. (DL-) Pot.	0.2 KNO3 0.1 KNO3	25 (20-60)	ML2 ML ML2	-3.3 -8.8 -7.5	62.8 46.0 92.0	68RM 73BS
Ni ²⁺	Pot.	-	(10-40)	ML ML ₂ ML ₂	-21.8 -45.6 -71.8	32.6 39.3 9.2	57P, 60Pa, 60Pb
	Cal. (DL-)	0.1 KNO3	22	ML_2	-33.5	79.5	67SS
	Pot. (DL-)	0.2 KNO_3	25	ML_2	-32.6	79.5	68RM
	Cal. (DL-)	0.16 KNO ₃	25	ML ML ₂ ML ₂	-15.73 -33.60 -55.69	51.5 78.2 72.0	70LB
	Pot.	0.05 KCl	25	ML ML	-14.22	58.6	72GM, 72GMa
	Cal.	0.05 KCl	25	ML ML ₂	-15.90 -35.14	50.2 75.3	
Zn ²⁺	Cal. (DL-)	0.1 KNO3	22	ML ₂	(-28.0)		67SS
	Pot. (DL-)	0.2 KNO_3	25	ML_2	-18.0	100.4	68RM
	Pot.	0.05 KCl	25	ML^{-} ML_{2}	-12.55 -25.52	46.0 83.7	72GM, 72GMa
	Cal.	0.05 KC1	25	ML [°]	-9.62 -20.50	54.4 96.2	
	Pol.	0.5 KNO ₃	25	ML ² ML ₂ ML ₃	-14.06 -29.87 -40.42	40.9 58.7 75.0	7988

Table 5-7. Overall Thermodynamic Quantities for L-Serine Metal Complex Equilibria (continued)

(Pot. = potentiometry; Cal. = calorimetry)

Table 5-8. Thermodynamic Quantities for Mixed-ligand Complexes Involving L-Serine

Metal Method ion	Medium Ter (mol dm ⁻³) (°	mp. Extra C) (X)	ligand Complex	ΔH° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹	Ref.
Cu ²⁺ Cal.	0.1 KNO ₃ 2	25 α-Ala	nine MLX (MX)L (ML)X	-48.95 -25.52 -25.94	121.3 43.9 46.9	72IN
		Glycin	ne MLX (MX)L (ML)X	-48.95 -23.85 -25.94	116.3 43.5 42.2	
		Valine	e MLX (MX)L (ML)X	-48.74 -25.48 -25.73	120.5 43.1 46.0	
Cal.	0.1 NaClO ₄ 2	5 N-Ace glycin	etyl- MLX e	-24.2	116	88LG

(Cal. = calorimetry)

© 1995 IUPAC, Pure and Applied Chemistry, 67, 1117–1240

6. THREONINE - CH₃CH[OH]CH[NH₂]CO₂H (2-amino-3-hydroxybutanoic acid, LH)

Like serine, threonine contains a hydroxy group whose dissociation in aqueous solution takes place well beyond the basic limit of the pH range commonly investigated. Threonine is thus usually considered a glycine-like monoacid. However, the involvement of the oxygen atom of its hydroxy group in metal chelation can make it lose its proton at more accessible pH values (69FM, 73GM, 84AO).

As with serine, many of the investigations on threonine metal complex equilibria have been undertaken to test the possible participation of the side-chain hydroxy group in chelation (68RM, 69FM, 70LB, 72GM, 76PS, 79M). Since stereoselective effects may accompany metal coordination of tridentate amino acids, a few studies were also devoted to that problem. Contrary to what was observed with serine, no significant stereoselective effect was detected in the formation of ML_2 copper(II)threonine complexes on the basis of enthalpy determinations (76PS). Nevertheless, a slight effect of this kind was characterised in the formation of ML_2H_2 following deprotonation of the hydroxyl group (84AO).

6-1. Protonation constants of threonine

Among the relatively numerous determinations of threonine protonation constants, most are difficult to evaluate given the diversity of the experimental conditions used. Nevertheless, average values derived from the three sets of constants successively reported by the same group of authors in 0.05 mol dm⁻³ KCl at 25 °C (70GN, 71GN, 72GM, 72GMa, 72GS, with 71GN and 72GM reporting the same results as 70GN and 72GMa, respectively - see Chapter 5) are proposed as tentative.

Acceptable agreement has also been observed between the results found in refs. 69FM, 76PS, 77BP, 77DO and 83NM relative to 0.1 mol dm⁻³ KNO₃ at 25 °C, and corresponding averages are recommended in spite of the poor reproducibility of the more acidic constant. These averages almost exactly coincide with the values published in 88LG for which no experimental information has unfortunately been given, but which seem to be considered as stoichiometric. They are also relatively close to those of 81IS, 82KP and 84SP determined under the same experimental conditions except for the nature of the background electrolyte. It should also be noted that for reasons developed in preceding chapters, values reported in 86MCa have been excluded from this evaluation.

Under physiological conditions, if we once more apply the difference of 0.12 (74MS, 82MS, 89SM) between the distinct standard states used in references 67S and 82KB, excellent accordance is obtained. Recommended stoichiometric averages are thus proposed. All recommended and tentative protonation constants are to be found in Table 6-1.

6-2. Thermodynamic quantities for the protonation of threonine

All determinations of thermodynamic quantities for threonine protonation except two have been made calorimetrically (Table 6-3). Fairly good agreement is observed between enthalpies obtained in 64IC and 72GM under relatively close experimental conditions. More generally, all values relative to the first protonation step lie within acceptable limits of variation. The most amazing observation about these data is the precision of the enthalpies and entropies for both protonation steps derived from potentiometric determinations in 42SG, which compare well with values determined up to 30 years later with modern calorimetric techniques (64IC, 72GM).

6-3. Metal complex formation constants

Overall formation constants relative to threonine metal complexes are collected in Table 6-4. Experimental conditions used for studying cadmium(II) equilibria are too different to allow any quantitative comparison. The situation is basically similar for cobalt(II), but from other examinations made in the present evaluation, results reported by references 67S, 68RM, 72GM and 82KP are to be recommended.

As was the case for serine (cf Chapter 5), copper(II) complex determinations are the most numerous, and results contained in Table 6-4 call for a few remarks.

First of all, in contrast with Pettit and Swash's study which only reports the existence of MLH in addition to ML and ML_2 (76PS), all thorough investigations on copper(II)-threonine interactions concur in establishing the existence of hydroxo complexes: MLH₋₁ (82KB), ML₂H₋₁ (69FM, 73GM,
77DO, 82KB, 82KP), and ML_2H_2 (69FM, 73GM, 77DO, 82KP). This is reminiscent of the situation encountered with the copper(II)-serine system: except for refs. 76PS and 82BK, no mention was made of MLH whereas both ML_2H_{-1} (73GM, 82BK, 87KS) and ML_2H_2 (73GM, 87KS) were characterised. Such discrepancies may arise from the extent of the pH interval investigated (pH < 8.5 in 76PS) as well as from the frequent difficulty in ascertaining the formation of acidic complexes of glycine-like amino acids (76PS, 86BH). In any event, since hydroxo species reach noticeable levels at high pH only, neglecting them in the calculations should not significantly affect the values of ML and even ML_2 constants. All data relative to these two complexes are thus worth comparing.

In particular, the sets of constants relative to 0.1 mol dm⁻³ KNO₃ (69FM, 76PS, 77BP, 77DO), NaNO₃ (82KP) or NaClO₄ (88LG) at 25 °C are quite comparable, and average values have been recommended for KNO₃ (Table 6-5). The reliability of these values is confirmed by the close similarity of those found by Sarkar (77S) using a slightly different ionic strength (0.15 NaCl).

Of the three results successively produced by the same group of authors in 0.05 mol dm⁻³ KCl (70GN, 71GN, 72GM, 72GMa, 72GS), the first (70GN, 71GN) has been discarded as too distant from the latter two, and average constants from these have been proposed as tentative.

If we now compare the constant of the ML copper(II)-threonine complex to that of its serine homologue in works common to the same groups of authors (67S, 68RM, 70LB, 70GN, 71GN, 72GM, 72GMa, 72GS, 73GM, 76PS, 77BP, 82KB), one may notice a systematic increase in stability from serine to threonine which varies from 0.04 (93BA at 37 °C) to 0.14 (68RM at 25 °C). Three sets of results only are at variance with this observation: 67S (-0.02, which tends to indicate that the constant of threonine is too low; indeed, this unexpected decrease cannot be due to a too high constant of serine since that constant has been shown to be underevaluated in the preceding chapter), 70GN and 71GN (-0.03, which justifies its above rejection) and 82KB (-0.23). In the latter reference at 37 °C (present author involved), the above comparisons led to the conclusion that its copper(II)-serine ML constant should be overvalued by about 0.3 log units. This was recently confirmed and corrected (93BA - see Chapter 5). Similarly, it seems that all constants obtained in 67S on the copper(II)-threonine system under physiological conditions are appreciably too low (see above). Finally, given that the ML copper(II)-threonine constant in 82KB (7.79) is of the order of magnitude of that reported at 40 °C in 68RM (7.87), the data on this system in 82KB should be regarded as the most reliable.

The only other two metals for which the number of determinations is sufficiently high to allow reasonable comparisons are nickel(II) and zinc(II). For nickel(II), no average constant can, in principle, be calculated since all determinations refer to different experimental conditions. However, all the constants obtained in KNO₃ from 0.1 to 0.2 mol dm⁻³ at 25 °C display such a good homogeneity (68RM, 70LB, 76PS) that a tentative average of ML and ML₂ constants is proposed for the corresponding interval of ionic strengths (Table 6-5).

For zinc(II), the constants obtained by Gergely (81G) for zinc(II) L-threonine, zinc(II) D-threonine, and zinc(II) L/D-threonine complexes may be considered as fairly reproducible since there is most probably no stereoselective effect in these systems. However, any average derived from such data determined by the same author under presumably identical technical conditions would have no significance, and the results reported in 68RM on the same system are too distant to allow such a calculation.

By contrast, the results obtained in 67S and 80KB under physiological conditions are more comparable, at least as far as the ML constant is concerned. There is indeed no agreement about the stoichiometry of other species, but since ML_2H_{-1} has been definitely characterised at the expense of ML_3 on a graphical basis (80KB), the constants appearing in the latter reference are worth selecting as tentative.

Constant determinations for mixed-ligand complexes are fairly numerous. In particular, the copper(II)-threonine-histidine system has been investigated by three groups of authors in 0.1 mol dm⁻³ KNO₃ at 25 °C (69FM, 77BP, 79YS). The former two found a similar value for MLX, but their agreement stops there since the constant they calculated for MLXH differs by about half a log unit. Furthermore, Brookes and Pettit (77BP) failed to characterise the MLXH₋₁ species reported in 69FM (as well as in 77S and 84BB under different experimental conditions). As was discussed above, the absence of this complex in the refinement may not entail serious bias in the MLX constant, but it may be of some importance for speciation calculations relative to this system (see introduction). The third

group of authors (79YS) only characterised the MLX species, and found a very low constant which compares better to the value corresponding to physiological conditions (84BB) than to those of the two former studies (69FM, 77BP); it has thus been discarded. Finally, average constants for MLX and MLXH calculated from 69FM and 77BP (respectively, 17.51 ± 0.05 and 21.65 ± 0.25) can be proposed as tentative along with the MLXH₋₁ one taken from 69FM (7.0). It is noteworthy that the values determined by Sarkar in 0.15 mol dm⁻³ NaCl at 25 °C (77S) fall within the limits of error of the above results, and lend more support to 69FM than to 77BP.

Under physiological conditions, comparisons of the MLX, MLXH and MLXH₋₁ constants calculated in 84BB with the values obtained in 77S (and 69FM) at 25 $^{\circ}$ C show that the former can be considered as reliable.

Due to the lack of data, no other direct comparison is possible concerning mixed-ligand complexes involving threonine. However, a qualitative evaluation is allowed for the zinc(II)-threonine-histidine system. In the study reporting results obtained under physiological conditions (81ABa), it was pointed out that the poor stability observed for the MLX species presumably arose from "antagonistic interactions of the carboxy group of histidinate and the hydroxy group of threoninate". This stereoselective effect was later investigated and confirmed by Gergely (81G), which indirectly gives credit to the two corresponding sets of constants (81ABa, 81G).

6-4. Thermodynamic quantities for metal complex formation with threonine

Among the systems on which thermodynamic quantities have been determined, copper(II)-threonine has been the most investigated. Concerning this system, it is somewhat surprising that very close results have been found in 70LB and 70GN/71GN/72GM/72GMa for different ionic strengths whereas the values obtained under identical experimental conditions (76PS, 78IS, 88LG) differ to a significant extent. Of the latter three sets of data, the values reported in 78IS are not expected to be very reliable since their cobalt(II) counterparts differ from the results of 72GM/72GMa by almost equal amounts. The data mentioned in 88LG for which copper(II)-serine determinations were at variance with other reproducible results (see Chapter 5) appear to be similar. Thus, the existence of a discrepancy between the thermodynamic quantities relative to ML_2 in 76PS and those in 78IS and 88LG is not a surprise, but the important difference between these values and those found in 70LB and 70GN/71GN seems more difficult to explain.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	$\log K_2$	Ref.
Thermo	→0	1	9.748	2.200	42SG
		12.5	9.420	2.132	
		25	9.100	2.088	
		37.5	8.812	2.070	
		50	8.548	2.055	
Mixed	0.06 KH ₂ PO₄	25	9.00	-	52LD
Thermo	~0.01	20	9.12	-	53P
Mixed	1.0 NaClO₄	20	8.86	2.24	58P
Mixed(?)	1.0 KC1	20	8.86	-	59P
Thermo	→ 0	20	9.26	2.21	64IC
		30	9.01	2.14	
Mixed	0.1 KCl	20	9.16	2.29	64KW
Mixed	0.15 KNO2	37	8.709	2.20	678
?	0.2 KNO_2	15	9.26	2.32	68RM
•		25	9.03	2.32	001212
		40	8.71	2.30	
Stoichio	0.1 KNO2	25	8 95	2 21	69FM
Mixed(?)	0.16 KNO_{2}	25	9.07	-	70LB
Stoichio(?)	0.05 KCl	25	8 98	2 12	71GN
Stoichio(?)	0.05 KC1	20	9 11	2.12	72GM 72GMa
510101110(1)	0.05 Kei	25	8 98	2.20	720m, 720ma
		30	8 87	2.27 2.14	
		35	0.02 9.71	2.14	
Staichia(2)	0.05 KC1	25	0.71	2.10	7205
Stoichio	1.0 NeClO	25	0.70	2.17	7205 72CM
Mired	0.05 VCl	25	9.11	2.30	730M
IVITACU	0.03 ACI	25 45	9.10	2.20	7550
	0 15 KC1	45	0.73	2.15	
	0.13 KCI	23	9.07	2.17	
	0 25 KC1	45	0.70	2.15	
	0.23 KCI	25	9.03	2.15	
Cine 4(9)	0.5	43	8.00	2.11	72017
Mixed(?)		23	0.92	2.21	/35K
Mixed	0.5 KNO_3	20	9.14	2.75	/4KH 74DN
Mixed		20	8.7	-	74PN
Mixed(?)	0.1 KNO_3	25	9.00	-	75HV
0. 1 1 1	0.5 KNO_3	25	8.98	-	5/20
Stoichio	0.1 KNO_3	25	8.974	1.98	76PS
Stoichio	0.1 KNO_3	25	8.974	1.979	T/BP
Stoichio	0.1 KNO_3	25	8.93	2.20	77DO
Stoichio	0.15 NaCl	25	8.954	2.209	77S
Thermo	$\rightarrow 0$	25	2.25		78KA
	100% formic acid				
Stoichio(?)	3.0 KCl	25	9.346	2.406	78VV
Thermo	~0	25	10.08		80KT
	formic acid:				
	ethyl methyl ketone				
	(1:24)				
	acetic acid:		10.73		
	ethyl methyl ketone				
	(1:8)				
	$\dot{0}$ 1 KNO.	35	9 52(2)	-	80TH
Mixed	0.1 MIQ3	55	J.J.L(i)		00111
Mixed Stoichio	0.1 KNO_3 0.1 KNO_3	25	9.07	2.50	80YT

Table 6-1. Protonation Constants of Threonine

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	log K ₁	log K ₂	Ref.
Stoichio	0.1 0.1 100% trifluoro-	20 20	8.98 7.50	2.21	81CD
Stoichio Mixed(?) Mixed(?) Stoichio Thermo	ethanol 0.1 NaNO_3 0.1 KNO_3 0.1 0.15 NaClO_4 ~ 0	25 25 30 37 25	8.980 9.07 9.20 8.573 9.00	2.098 2.25 2.148 2.21	81IS 81L 81R 82KB 82DD
	8.0% propan-2-ol 16.3% propan-2-ol 25.1% propan-2-ol 34.3% propan-2-ol 43.9% propan-2-ol 54.0% propan-2-ol 64.6% propan-2-ol	25 25 25 25 25 25 25 25 25	8.98 9.02 9.02 9.03 8.95 9.02 9.04	2.30 2.40 2.52 2.59 2.73 2.87 3.00	
Stoichio Stoichio Stoichio Mixed Stoichio(?)	0.1 NaNO ₃ 0.1 KNO ₃ 0.25 NaCl 1.0 KNO ₃ 0.1 NaClO ₄	25 25 25 30 25 35 45	9.04 8.89 9.035 8.92 9.12 8.96 8.71 8.47	2.20 2.480 2.174 - 2.26 2.22 2.17	82KP 83NM 84AO 84CG 84SP
Mixed Mixed(?)	20% DMSO 20% DMF 20% acetonitrile 20% propan-2-ol 20% ethanol 20% methanol 20% acetone 0.25 NaClO ₄ 0.5 NaClO ₄ 1.0 NaClO ₄ 0.1 0.1 KNO ₃	35 35 35 35 35 35 35 35 35 35 35 35 25	8.82 8.76 8.72 8.67 8.64 8.59 8.44 8.84 8.89 8.98 8.98 8.99 9.07	2.37 2.31 2.28 2.17 2.14 2.09 2.06 2.24 2.28 2.33 2.2	84SY, 85SY 85MK
Mixed Mixed Stoichio Thermo	0.1 KNO ₃ 50% methanol 0.15 NaCl 0.2 KCl 0.1 NaClO ₄ ~0 8.0% t-BuOH 16.4% t-BuOH 25.0% t-BuOH 34.2% t-BuOH 34.2% t-BuOH 54.0% t-BuOH 54.0% t-BuOH 64.5% t-BuOH	27 20 25 25 25 25 25 25 25 25 25 25 25 25 25	9.04 9.08 9.12 9.103 9.00 9.16 9.21 9.27 9.31 9.34 9.40 9.46 9.47	- 2.30 2.162 2.21 2.26 2.40 2.44 2.51 2.57 2.62 2.79 3.08	85MS 85VD 86KD 86MCa 86PD

Table 6-1. Protonation Constants of Threonine (continued)

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	$\log K_2$	Ref.	
Thermo Stoichio(?) Mixed Stoichio(?) Mixed Stoichio	\sim 0 10% methanol 20% methanol 30% methanol 40% methanol 50% methanol 60% methanol 70% methanol 80% methanol 10% ethanol 20% ethanol 30% ethanol 50% ethanol 60% ethanol 70% ethanol 80% ethanol 0.1 0.1 NaCl 0.1 NaCl 2.25 NaNO ₃ 0.15 NaCl	25 25 25 25 25 25 25 25 25 25 25 25 25 2	8.99 8.94 8.97 8.99 8.97 8.92 9.00 9.02 9.01 9.02 9.01 9.02 9.01 9.09 9.08 9.11 9.15 - - - - - - - - - - - - - - - - - - -	2.21 2.29 2.38 2.56 2.72 - 2.95 3.20 3.54 2.32 2.39 2.55 2.68 2.83 2.93 3.08 3.37 2.13 - 2.20 2.326 2.123	87CL 87MT 87SM 88LG 89CV 91DB	

Table 6-1. Protonation Constants of Threonine (continued)

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	Ref.
Stoichio? (T)	0.05KC1	25	8.98 (±0.01)	2.18 (±0.06)	71GN, 72GM, 72GS
Stoichio (R)	0.1KNO ₃	25	8.97 (±0.06)	2.2 (±0.3)	69FM, 76PS, 77BP, 77DO, 83NM
Stoichio (R)	0.15	37	8.59 (±0.02)	2.12 (±0.04)	67S, 82KB, 91DB

Table 6-2. Recommended (R) and Tentative (T) Values for Protonation Constants of Threonine

Table 6-3. Thermodynamic Quantities for Threonine Protonation Equilibria

Method	Medium (mol dm ⁻³)	Temp. (°C)	ΔH° ₁ (kJ n	$\Delta H^{\circ}{}_{2}$ nol ⁻¹)	ΔS° ₁ (J K ⁻¹	$\Delta S^{\circ}{}_{2}$ mol ⁻¹)	Ref.
Pot.	→ 0	1 12.5 25 37.5 50	-42.15 -42.20 -41.67 -40.63 -38.99	-7.63 -6.48 -4.94 -3.04 -0.80	33.5 32.6 34.3 37.7 43.1	14.2 18.4 23.4 29.7 36.8	42SG
Cal.	→0	25	-42.00	-5.69	33.5	20.9	64IC
Cal.	0.16 KNO3	25	-40.92	-	36.4	-	70LB
Cal.	~0	20	-40.8	-	-	-	71MB
Cal.	0.05 KCl	25	-41.84	-5.02	31.6	26.0	72GM, 72GMa
Cal.	0.1 KNO ₃	25	-42.24	-	30.2	-	76PS
Cal.	0.1 KNO ₃	25	-41.6	-	-	-	78IS
Pot.	0.1 NaClO ₄	35	-45.86	-9.54	17.4	11.1	84SP
Cal.	~0	25	-41.1	-1.55	36.4	34.9	87RF, 89R, 89RM
Cal.	0.1 NaClO ₄	25	-43.9	-3.99	24.7	28.7	88LG

(Pot. = potentiometry; Cal. = calorimetry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Al ³⁺	Gl.	0.15 NaCl	37	ML	5.71	91DB
Au ³⁺	Gl. (DL-)	~ 0.02	25	ML ML ₂	6.74 10.19	74FA
Be ²⁺	Gl. (DL-)	0.015	20	ML_2	11.9	53P
Cd ²⁺	Gl. (DL-) Pol.	0.015 0.5 KNO ₃ 20% DMF 20% DMSO	20 20	ML ₂ ML ML ML	7.2 6.3 8.44 8.33	53P 73RG
	G1.	0.1 KNO_3	25	ML ML	3.9 7 1	75HV
	Pol.	1.0 KNO ₃	30	ML2 ML ML2	4.06 7.06	84CG
	Pol.	1.0 KNO ₃ (pH 8-9)	30	ML ₃ ML ML ₂	9.02 4.00 6.70	85KC, 86KC
	G1.	0.2 KNO ₃	35	ML ₃ ML	3.89	89KS, 89KV
	Gl.	0.2 NaClO ₄	27	ML ₂ ML ML ₂	4.02 7.22	88PP
Ce ³⁺	Gl.	0.1 KCl	20	ML	3.7	70RP
C0 ²⁺	G1. G1.	0.1 KC1 0.15 KNO ₃	20 37	ML ML ML2	4.58 4.16 7.45	64KW 67S
	Gl. (DL-)	0.2 KNO ₃	15 25	ML ₃ ML ML ₂ ML	8.82 4.50 7.98 4.43	68RM
			40	ML ₂ ML ML ₂	7.84 4.37 7.72	
	G1.	0.05 KCl	20	ML^{2} ML_{2}	4.39 8.03	72GM, 72GMa
			25	ML ML ₂	4.38 8.01	
			30	ML ML ₂	4.35 7.92	
	C1	0.1 N. NO	35	ML ML ₂	4.33 7.83	7070 0170
	GI.	0.1 NaNO_3	25	ML ML ₂	4.25	/815, 8115
	GI.	U.1 NaNO ₃	25	ML ML ₂ ML ₂ H_1	4.298 7.762 -1.94	82KP
	G 1.	0.2	30	ML ML	4.02 7.22	84J, 84Ja, 86J
	Gl.	0.1	20	ML ML	4.31	87MT
	G1.	0.2 KNO ₃	35	ML ML ₂	4.13 7.91	89KS, 89KV

 Table 6-4. Overall Formation Constants for L-Threonine Metal Complexes

1195

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Cr ³⁺	Gl.	0.1 NaClO ₄	25	ML ML ₂ ML ₃	8.17 11.04 15.30	86MCa
Cu ²⁺	Pol. Gl.	0.06 KH ₂ PO ₄ →0	25 20	ML2 ML	14.54 8.44 15.40	52LD 64IC
			30	ML ²	8.41	
	Gl.	0.1 KC1	20	ML ML	8.34	64KW
	Gl.	0.15 KNO ₃	37	ML ₂ ML	7.55	67S
	Gl. (DL-)	0.2 KNO ₃	15	ML ₂ ML	8.20	68RM
			25	ML ₂ ML	8.06	
			40	ML ₂ ML	7.87	
	G1.	0.1 KNO ₃	25	ML2 ML ML2 ML2H_1	14.34 8.00 14.71 4.78	69FM
	Sp. (DL-)	1.0 NaClO ₄	22	$ \begin{array}{c} ML_{2}H_{-2} \\ ML \\ ML_{2} \\ ML_{2} \end{array} $	-6.14 7.85 14.71	70JP
	GI.			ML_2H_{-1} ML_2H_{-2}	4.82 -6.37	
	Gl. (DL-)	0.16 KNO ₃	25	ML ML ₂	7.95 14.69	70LB
	Gl.	0.05 KCl	25	ML ML ₂	7.90 14.50	71GN
	Gl.	0.05 KCl	20	ML ² ML2	8.10 14.89	72GM, 72GMa
			25	ML ²	8.02 14.72	
			30	ML ML	7.95	
			35	ML ML	7.88	
	Gl.	0.05 KC1	25	ML ML	8.03	72GS
	Gl.	1.0 NaClO4	25	ML ₂ ML ML ₂	8.06 14.92	73GM
	Gl.	3.0 NaClO4	25	$\frac{ML_2H_{-1}}{ML_2H_{-2}}$ ML	4.88 -6.17 8.597	75BW
	G1.	0.1 KNO ₃	25	ML ₂ ML	16.031 7.947	76PS
				ML ₂ MLH	14.613 11.54	
	(DL-)			ML ML ₂	7.940 14.601	
	Gl.	0.1 KNO ₃	25	ML ² ML ₂	7.946 14.612	77BP

Table 6-4. Overall Formation Constants for L-Threonine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl. (DL-)	0.1 KNO ₃	25	ML ML ₂ ML ₂ H ₋₁	7.99 14.68 4.84	77DO
	G1.	0.15 NaCl	25	$ML_{2}H_{-2}$ ML_{2} $ML_{2}H_{-1}$ $ML_{2}H_{-1}$	-5.94 8.006 14.688 4.750 -6.17	775
	G1.	0.1 NaNO3	25	ML ₂ II ₋₂ ML ML ₂	8.05 14.94	78IS, 81IS
	G1.	0.1 NaClO ₄	30	ML ML	7.95	80AS
	Pol. (DL-)	0.1 NaClO ₄	30	ML_2 ML_2	14.90	80RR
	Pol.	-	-	ML ML	7.80	80SG
	G1.	0.1 KNO ₃ 20% dioxane	25	ML ML	8.28	80YT
	G1.	0.1	30	ML ₂ ML ₂	14.77 18.07	81R
	Gl.	0.15 NaClO ₄	37	ML ML ₂ MLH ₋₁ ML+H	7.789 14.299 1.599 4.693	82KB
	G1.	0.1 NaNO ₃	25	$\begin{array}{c} \text{ML}_{2}\text{ML}_{1}\\ \text{ML}_{2}\\ \text{ML}_{2}\text{H}_{-1}\\ \text{ML}_{2}\text{H}_{-1} \end{array}$	7.893 14.538 4.79	82KP
	Gl.	0.25 NaCl	25	$ML_{2}H_{-2}$ ML ML_{2} $ML_{2}H_{-1}$ $ML_{2}H_{-1}$	-5.78 7.888 14.504 4.684 -6.096	84AO
	G1.	0.1	20	ML	8.26 14.54	87MT
	G1.	0.1 NaClO ₄	25	ML ML	8.02	88LG
	Pol.	1.0 KNO ₃	30	ML ML ₂	7.80 14.15	88SKa
Dy ³⁺	Gl.	0.1 KCl	20	ML	3.3	74PN
Fe ²⁺	Gl. Estim. Gl. (DL-)	1.0 KCl →0 0.2 KNO ₃	20 25 15 40	ML ML ML ₂ ML ML ₂	3.30 7.7 3.76 6.62 3.69 6.50	59P 64S 68RM
Fe ³⁺	Gl. Ox. Pot.	1.0 NaClO4 1.0 NaNO3	20 25	ML ML ₂ H ML ₂ H ₂	8.6 18.66 21.32	58P 88SP
Gd ³⁺	Gl.	0.1 KCl	20	ML	3.1	74PN

Table 6-4. Overall Formation Constants for L-Three	onine Metal Complexes (continued)
--	-----------------------------------

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Hg ²⁺	Gl. (DL-) Gl. (Hg el.)	0.015 0.1 NaNO3	20 25	ML ₂ ML ML ₂	17.5 11.7 18.7	53P 73VB
La ³⁺	G1.	0.1 KCl	20	ML	2.8	74PN
	G1.	0.05 KC1	25	ML	4.05	75SC
		0.15 KCl	25	ML ₂ ML	3.72	
		0.25 KCl	25	ML ₂ ML	0.08 3.55	
		0.05 KCl	45	ML ₂ ML	6.40 3.70	
				\overline{ML}_2	6.65	
		0.15 KCl	45	ML	3.57	
		0.25 KC1	45	ML ₂	0.40 3.42	
		0.25 KCI	45	ML ML ₂	5.95	
Mg ²⁺	Gl. (DL-)	0.15 NaCl	20	ML	1.45	85VD
Mn ²⁺	G1.	0.15 NaClO ₄	37	ML	2.07	67S
	Gl. (DL-)	0.2 KNO_3	15	ML	2.59	68RM
			40	ML ₂	3.98	
			40	ML	3.93	
	Gl. (DL-)	0.15 NaCl	20	ML	2.17	85VD
Nd ³⁺	NMR	0.2 KCl	25	ML	0.88	73SY
Ni ²⁺	Gl.	0.1 KCl	20	ML	5.66	64KW
	CI	0.15 KNO.	37	ML ₂	10.20	678
	01.	0.15 KN03	51	ML	9.37	0/3
				ML ₃	11.84	
	Gl. (DL-)	0.2 KNO3	15	ML	5.62	68RM
			05	ML_2	10.17	
			25	ML ML	5.51	
			40	ML ₂ ML	5.38	
				ML ₂	9.68	
	Gl. (DL-)	0.16 KNO3	25	ML	5.46	70LB
				ML ₂	9.97	
	CI	0.05 201	20	ML ₃	13.42	72CM 72CM
	01.	0.05 KCI	20	ML	10 11	7201v1, 7201v1a
			25	ML	5.42	
			-	ML_2	9.95	
			30	ML	5.41	
			25	ML ₂	9.89	
			22	ML ML	J.38 9 87	
	Gl.	0.05 KCl	25	ML	5.50	72GS
				ML ₂	9.98	
<u> </u>						

Table 6-4. Overall Formation Constants for L-Threonine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl.	0.1 KNO ₃	25	ML ML ₂	5.467 10.040	76PS
	(DL-)			ML ₃ ML ML ₂	5.45 10.02	
	G1.	0.1	20	ML ₃ ML	5.59 10.30	87MT
	Gl.	0.2 KNO ₃	35	ML ²	5.52	89KS, 89KV
	G1.	0.2 NaClO ₄	27	ML_2 ML_2	5.96 10.89	88PP
Os ⁴⁺	Gl. (DL-)	~ 0.02	28	ML	5.60	74FAa
Pb ²⁺	G1.	0.15 KNO ₃	37	ML ML	4.43	67S
	Pol.	0.5 KNO3 20% DMF 20% DMSO	20	ML2 ML ML ML	2.61 2.75 2.92	73RG
	Pol.	1.0 KNO ₃	30	ML ML ₂	4.74 7.80	89SC
Pd ²⁺	Gl. (DL-)	0.5 KNO ₃	20	ML ML ₂	9.4 18.6	74KH
Rh ³⁺	Gl. (DL-)	~ 0.02	25	ML ML ₂	6.86 9.88	74FAb
Sm ³⁺	Gl.	0.1 KCl	20	ML	3.1	74PN
Th ⁴⁺	Gl. Ion exch. Gl. (DL-)	0.5 0.5 0.1 KNO ₃	25 20 25	ML ML ML ML ₂	7.97 8.00 7.21 14.01	73SK 80S 83NM
Tl+	Pol.	0.1 NaClO ₄	25	ML ML ₂	0.90 1.95	86SP
U ⁴⁺	Sp.	0.5	20	ML	9.72	74SK
UO ₂ ²⁺	Gl.	0.1 NaClO ₄	30	ML MI	7.30	73RS
	G1.	0.05 KCl	25	ML ₂ ML	6.35	73SC
			45	ML ₂ ML	6.12	
		0.15 KCl	25	ML ML ₂	6.30 12.40	
			45	ML ML ₂	6.08 11.90	
		0.25 KC1	25 45	ML ML ₂ ML ML ₂	6.22 12.26 5.95 11.65	

Table 6-4. Overall Formatio	Constants for L-Threonine Metal	Complexes (continued)
-----------------------------	---------------------------------	-----------------------

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl. Sp. Gl. (DL-)	0.5 0.5 0.1 KNO2	25 25 25	ML ML ML	6.00 5.95 6.65	73SKa 83NM
	Gl. (DL-)	0.1 KNO ₃ 50% methanol	27	ML ₂ ML	12.08 8.53	85MS
VO ²⁺	G1.	2.25 NaNO ₃	25	MLH ML ML ₂ H ₂ ML ₂ H ML ₂ H ₋₁ M ₂ L ₂ H ₋₂ ML ₂ H ₋₂ MLH ₋₂ MLH ₋₃	10.30 6.41 20.0 16.43 11.93 4.98 4.80 -1.35 -4.8 -6.0 -18.0	89CV
Y ³⁺	Gl. Gl.	0.1 KCl 0.1 KCl	20 20	ML ML	3.7 3.0	70RP 74PN
Yb ³⁺	G1.	0.1 KCl	20	ML	3.5	74PN
Zn ²⁺	Gl. (DL-) Gl. Gl.	0.015 0.1 KCl 0.15 KNO ₃	20 20 37	ML ₂ ML ML ML ₂	8.6 4.87 4.43 8.14	53P 64KW 67S
	Gl. (DL-)	0.2 KNO3	15 25 40	ML3 ML ML2 ML ML2 ML	4.79 8.62 4.74 8.51 4.67	68RM
	G1.	0.15 NaCl	37?	ML ₂ ML	8.35 4.72	72GH
	G1.	0.05 KCl	20	ML ₂ ML	8.08 4.71	72GM, 72GMa
			25	ML ₂ ML	8.73 4.67	
			30	ML ₂ ML	8.66 4.64	
			35	ML ₂ ML	4.60	
	G1.	0.15 NaClO ₄	37	ML ² ML ML ²	8.32 4.467 8.279	80KB
	G1.	0.2 KCl	25	$\begin{array}{c} ML_{2}H_{-1}\\ ML\\ ML_{2}\\ MLH_{-1}\\ ML_{2}H_{-1} \end{array}$	4.53 8.38 -4.09 -1.5	81G

 Table 6-4. Overall Formation Constants for L-Threonine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
••••••••••••••••••••••••••••••••••••••	(D-)			ML ML ₂ MLH ₋₁	4.54 8.40 -4.0	
	(DL-)			ML ₂ H ₋₁ ML ML ₂ MLH 1	-1.5 4.54 8.45 -4.2	
	G1.	0.2	30	ML ₂ H ₋₁ ML	-1.4 5.16 9.35	84J, 84Ja 861
	Gl. Gl.	0.1 KNO3 0.2 KNO3	25 35	ML ₂ ML ML	4.66 4.69 8.53	85MK 89KS, 89KV
	Gl.	0.2 NaClO ₄	27	ML ML ₂	5.16 9.35	88PP

Table 6-4. Overall Formation Constants for L-Threonine Metal Complexes (continued)

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry)

Metal	Medium	Temn	Complex	log ß	Ref
ion	(mol dm ⁻³)	(°C)	Complex	10E b	ACI.
Cu²⁺ (T)	0.05 KCl	25	ML ML ₂	8.02 (±0.01) 14.75 (±0.03)	71GN, 72GM, 72GMa, 72GS
(R)	0.1 KNO ₃	25	ML ML ₂ ML ₂ H ₋₁ ML ₂ H ₋₂	7.98 (± 0.04) 14.66 (± 0.05) 4.81 (± 0.03) -6.04 (± 0.10)	69FM, 76PS, 77BP, 77DO 88LG
(T)	0.15 NaClO ₄	37	ML ML ₂ MLH ₋₁ ML ₂ H ₋₁	7.79 14.30 1.60 4.69	82KB
Ni ²⁺ (T)	0.1-0.2 KNO ₃	25	ML ML ₂	5.47 (±0.04) 9.99 (±0.03)	68RM, 70LB, 76PS
Zn²⁺ (T)	0.15 NaClO ₄	37	ML ML ₂ ML ₂ H ₋₁	4.47 8.28 -1.16	80KB

Table 6-5. Recommended (R) and Tentative (T) Overall Formation Constants for L-Threonine Metal Complexes

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Al ³⁺	Gl.	0.1 KNO ₃	35	Tripolyphosphate	MLX	7.55	80TH
Cd ²⁺	Gl. Pol.	0.2 1.0 KNO ₃	30 30	NTA N-(2-Hydroxy- ethyl)ethylene- diamine	(MX)L MLX ML ₂ X MLX2	3.32 9.00 11.16 12.20	82J 84CG
	G1.	0.2	30	Iminodiacetic	(MX)L	3.25	84J
	Gl. Pol.	0.2 1.0 KNO ₃ (pH 8-9)	30 30	2,2'-Bipyridyl Pyridoxine	(MX)L MLX ML ₂ X MLX	3.86 5.00 7.75 5.80	84Ja 85KC
	Pol.	1.0 KNO ₃ (pH 8.5)	30	Ascorbic acid	MLX2 MLX ML2X MLX2	4.80 7.35 5.11	86KC
	Gl.	0.2	30	Iminodiacetic acid	(MX)Ĺ	3.2 ± 0.1	86J
	Gl. Gl.	0.2 NaClO ₄ 0.2 KNO ₃	27 35	Di-2-pyridylamine Bis(imidazol-2- yl)methane	(MX)L (MX)L	3.72 3.38	88PP 89KV
Co ²⁺	Gl.	0.2 KNO ₃	35	Bis(imidazol-2-	(MX)L	3.64	89KV
	G1.	0.1 KNO ₃	25	ATP	(MX)L	4.00	89MA
Cr ³⁺	Gl.	0.1 NaClO ₄	25	DL-Methionine DL-Ethionine	MLX MLXH MLX MLXH	15.52 19.35 15.62 19.53	86MCa
Cu ²⁺	G1.	0.1 KNO ₃	25	L- or D- Histidine	MLX MLXH MLXH	17.56 21.90 7.00	69FM
	Gl.	0.05 KCl	25	α-Amino- butyric acid Alanine Glycine Norvaline Phenylalanine Serine Tyrosine	MLX MLX MLX MLX MLX MLX MLX	15.16 15.23 15.24 15.09 15.00 14.95 15.06	72GS
	G1.	0.1 KNO ₃	25	N-Carboxymethyl-	(MX)L	5.30	73SA
	(D-)			N-Carboxymethyl- L-serine	(MX)L (MX)L	5.17 5.27	
	(D-)			N-Carboxymethyl- L-valine	(MX)L (MX)L	5.25 5.14	

Table 6-6. Constants for Mixed-ligand Complexes Involving L-Threonine

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
	(D-)			N-Benzyl- N-carboxymethyl- L-alanine	(MX)L (MX)L	5.07 5.53	
	(D-)			N-Benzyl- N-carboxymethyl- L-leucine	(MX)L (MX)L	5.28 5.28	
	(D-) Gl.	3.0 NaClO ₄	25	L-Asparagine L-Histidine	(MX)L MLX MLX MLXH	5.09 16.471 18.613 23.426	75BW
	Gl.	0.1 KNO ₃	25	L- or D-Histidine	MLX MLXH	17.464	77BP
	Gl. (DL-)	0.1 KNO ₃	25	Glycine Sarcosine	MLX MLXH ₋₁ MLX	15.17 5.29 14 70	77DO
	Sp.	0.5 NaClO4	-	Salicylic acid 5-sulfo-	MLXH ₋₁ MLX MLX	4.68 18.34 16.22	77MG, 78MGa
	Gl.	0.2 KCl	25	Salicylic acid Glycylglycine Glycyl-DL- α-alanine	MLXH-1 MLXH-1	4.95 4.98	77NG
				DL-α-Alanyl- DL-α-alanine	MLXH-1	4.81	
	G1.	0.15 NaCl	25	L-Histidine	MLX MLXH MLXH	17.55 21.831 6.96	77S
	Sp.	0.5 NaClO ₄ (pH 5)	25?	2,4-Dihydroxy- benzoic acid	MLXII-1 MLXH ₂	20.92	78MG
	G1.	0.1 KNO ₃	25	L-Histidine	MLX	17.08	79YS
	Gl.	0.1 NaClO_4	30	Glycylsarcosine	MLX	19.45	80AS
	Pol.	-	-	Malonic acid		11.50	80SG
	Gl.	0.1 KNO3	25	L-Histidine	MLX	17.57	80YT
		(20% dioxane))	D-Histidine	MLX	17.59	
	Gl.	0.1	30	Glycine	MLX	15.71	81R
					ML ₂ X	19.78	
				Phenylalanine	MLX2	15.01	
				- nong lucuino	ML_2X	19.01	
	~	0.15 17 010			MLX ₂	18.30	
	GI.	0.15 NaClO ₄	37	Histamine	MLX MLXH MLXH	16.433 20.360 6.464	82KB
	Gl.	0.1 NaClO ₄	30	Glycyl-L- phenylalanine	MLXH ₋₁	5.34	82S
	Gl.	0.1 NaClO ₄	30	Glycyl-DL- serine	MLXH ₋₁	4.73	83S
	G1.	0.15 NaClO ₄	37	L-histidine	MLX MLXH MLXH ₋₁	17.030 20.656 6.818	84BB

Table 6-6. Constants for Mixed-ligand Complexes Involving L-Threonine (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
	Gl.	0.1 NaClO ₄	30	Alanyl-L- phenylalanine	MLXH-1	4.40	84S
	Gl.	0.1 NaClO ₄	30	Glycyl- L-asparagine	MLXH ₋₁	10.98	86AJ
	Gl.	0.1 NaClO ₄	25	DL-α-Alanyl- DL-methionine	(ML)X (?)	5.37	88JA
				DL-Alanyl- DL-norvaline	(ML)X (?)	5.90	
	Gl.	0.1 NaClO_4	25	N-Acetyl-glycine	MLX	10.35	88LG
	Pol.	1.0 KNO ₃	30	Pyridoxine	MLX	9.28	88SKa
	Gl.	0.1 KNO3	25	triamine	(MX)L	3.60	89SH
Mg ²⁺	Gl. (DL-)	0.15 NaCl	20	Orotic acid	MLX	5.36	85VD
Ga ³⁺	G1.	0.1 KNO ₃	35	Tripolyphosphate	ML	7.21	80TH
Mn ²⁺	Gl. (DL-)	0.15 NaCl	20	Orotic acid	MLX	6.64	85VD
Ni ²⁺	G1.	0.05 KCl	25	α-Amino- butyric acid	MLX	10.27	72GS
				Alanine	MLX	10.37	
				Glycine	MLX	10.70	
				Norleucine	MLX	10.30	
				Norvaline	MLX	10.29	
				Phenylalanine	MLX	10.09	
				Senne	MLA	10.34	
	GI	0.2 NaClO_{4}	27	Di-2-pyridylamine	(MX)I	5 35	88DD
	Gl.	0.2 KNO_3	35	Bis(imidazol-2- vl)methane	(MX)L	4.94	89KV
	Gl.	0.1 KNO ₃	25	ATP	(MX)L	4.30	89MA
Pb ²⁺	Pol.	1.0 KNO ₃	30	Pyridoxine	MLX	5.39	89SC
Pd ²⁺	G 1.	0.1 KNO ₃	25	Ethylenediamine	(MX)L (MXL)H 1	10.96 -8.05	81L
	Gl.	0.1 NaCl	25	Diethylene- triamine	(MX)Ĺ	4.15	87SM
Tb ³⁺	Sp.	-	-	EDTA	(MX)L	2.48	85SB
UO_2^{2}	+						
_	Gl. (DL-)	0.1 KNO ₃ 50% methanol	27	2-Hydroxy- 1-naphtaldehyde	MLX	13.08	85MS
Zn ²⁺	Gl.	0.15 NaClO	37	Histamine	MLX	9 311	80KB
	Ğl.	0.15 NaClO	37	L-Histidine	MLX	9.863	81ABa
	Gl. (D-)	0.2 KCl	25	L-Histidine	MLX	10.10	81G
	<u> </u>		-		MLX	10.48	
	G1.	0.15 NaClO ₄	37	Citrate	M ₂ LXH ₋₂	-2.299	82BB

 Table 6-6. Constants for Mixed-ligand Complexes Involving L-Threonine (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
	Gl. Gl.	0.2 0.2	30 30	NTA Iminodiacetic	(MX)L (MX)L	3.40 4.08	82J 84J
	Gl. Gl.	0.2 0.1 KNO ₃	30 25	acid 2,2'-Bipyridyl ATP	(MX)L (MX)L	4.89 3.80	84Ja 85MK
	Gl.	0.2	30	Iminodiacetic acid	(MLX)OH (MX)L	4.39 4.0±0.1	86J
	G1. G1.	0.2 NaClO ₄ 0.2 KNO ₃	27 35	Di-2-pyridylamine Bis(imidazol-2- yl)methane	(MX)L (MX)L	4.85 4.21	88PP 89KV

Table 6-6. Constants for Mixed-ligand Complexes Involving L-Threonine (continued)

(G1. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	∆H° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Co ²⁺	Pot. (DL-) Pot.	0.2 KNO ₃ 0.05 KCl	25 25	ML ₂ ML	-18.0 -7.53	92.0 58.6 71.1	68RM 72GM, 72GMa
	Cal.	0.05 KCl	25	ML ₂ ML	-4.60 -23.01	66.9 75.3	
	Cal. (L- or DL-)	0.1 KNO ₃	25	ML2 ML2 ML2	-10.8 -18.9	45 93	78IS
Cu ²⁺	Cal.	→0	25	ML ML ₂	-22.2 -47.7	87.9 133.9	64IC
	Pot. (DL-)	0.2 KNO3	25	ML_2^2	-44.4	142.2	68RM
	Cal. (DL-)	0.16 KNO ₃	25	ML MLo	-23.26 -48.74	74.0 117.6	70LB
	Cal.	0.05 KC1	25	ML	-23.01	75.3	71GN
	Pot.	0.05 KCl	25	ML ₂ ML	-48.53 -25.52 53.55	66.9	72GM, 72GMa
	Cal.	0.05 KCl	25	ML ₂ ML	-23.01	75.3	
	Cal.	3.0 NaClO ₄	25	ML ₂ ML	-48.33 -18.0	104.2	75BW
	Cal. (DL-)	0.1 KNO ₃	25	ML ₂ ML ₂ ML ₂	-53.13	101.3	76PS
	Cal.	0.1 KNO ₃	25	ML ₂ ML	-25.6	68 130	78IS
	Cal.	0.1 NaClO ₄	25	ML2 ML2 ML2	-27.5 -55.5	61 95	88LG
Fe ²⁺	Pot. (DL-)	0.2 KNO ₃	25	ML_2	-8.4	96.2	68RM
La ³⁺	Pot.	0.05 KCl	25	ML ML ₂	-31.8 -36.3	-29.3 13.0	75SC

Table 6-7. Overall Thermodynamic Quantities for L-Threonine Metal Complex Equilibria

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	ΔH° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Mn ²⁺	Pot. (DL-)	0.2 KNO ₃	25	ML_2	-3.3	62.8	68RM
Ni ²⁺	Pot.	-	(10-40)	ML ML ₂	-21.8 -45.6 -71.8	32.6 39.3	57P, 60Pa, 60Pb
	Pot. (DL-)	0.2 KNO ₃	25	ML_2	-33.9	79.5	68RM
	Cal. (DL-)	0.16 KNO ₃	25	ML ML ₂ ML ₂	-15.94 -34.18 -55.94	51.0 76.1 69.5	70LB
	Pot.	0.05 KCl	25	ML	-14.22	54.4	72GM, 72GMa
	Cal.	0.05 KCl	25	ML ₂ ML ₂	-13.39 -35.56	58.6 71.1	
UO2 ²⁺	-				A A AA		7 0 <i>2 2</i>
	Pot.	0.05 KCI	25	ML ML ₂	-20.88 -41.76	51.5 99.2	73SC
Zn ²⁺	Pot. (DL-) Pot. Cal.	0.2 KNO3 0.05 KCl 0.05 KCl	25 25 25	ML ₂ ML ML ₂ ML ML ₂	-18.8 -12.13 -23.01 -10.46 -22.17	100.4 50.2 87.9 54.4 92.0	68RM 72GM, 72GMa

Table 6-7. Overall Thermodynamic Quantities for L-Threonine Metal Complex Equilibria (continued)

(Pot. = potentiometry; Cal. = calorimetry)

Table 6-8. Thermodynamic Quantities for Mixed-ligand Complexes Involving L-Threonine

Metal 1 ion	Method	Medium 7 (mol dm ⁻³)	ſemp. (°C)	Extra ligand (X)	Complex	ΔH° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol	Ref. -1)
Cu ²⁺ (Cal.	3.0 NaClO ₄	25	L-Aspa- ragine	MLX	-50.0	147.7	75BW
				L-Histidine	MLX MLXH	-67.4 -103.5	130.3 101.3	
(Cal.	0.1 NaClO ₄	25	N-Acetyl- glycine	MLX	-25.2	114	88LG

(Cal. = calorimetry)

7. ASPARAGINE - H₂NCOCH₂CH[NH₂]CO₂H (2-aminobutanedioic acid 4-amide, LH)

Like the -OH group of serine and threonine, the amide group of asparagine releases a proton well above the limit of pH attainable with a glass electrode in aqueous solution. Even at high ligand concentrations, no dissociation can be detected (75GN). In the presence of metal ions however, the amide group can deprotonate and participate in the coordination process (75GN). Thus, contrary to glutamine whose potential chelate ring displays a less favourable size (see introduction), asparagine can act as a tridentate ligand and give rise to hydroxo complexes with copper(II) (75GN, 86BH). Like the unionized hydroxyl group of serine (76PS), the amide group of asparagine also interacts as such with the carboxylate oxygen of histidine in the corresponding mixed-ligand copper(II) species. However, this does not induce any stereoselective effect around the central metal ion (70BP, 71BP, 79YS).

7-1. Protonation constants of asparagine

Comparatively to serine and threonine, the number of determinations devoted to proton-asparagine interactions is significantly smaller (Table 7-1), which makes data selection more difficult. The constants found by 65RW and 73TS are the only ones determined under identical experimental conditions (25 °C, 0.1 mol dm⁻³). Fortunately they are quite reproducible and if we assume, as Martell and Smith apparently did (82MS, 89SM), that those in 73TS can be classified as stoichiometric, average values can be calculated (Table 7-2). These values seem all the more reliable as they are almost equivalent to those found by Gergely et al. in 0.2 mol dm⁻³ aqueous KCl at the same temperature (75GN). They are thus recommended.

Apart from this example, the number of determinations is insufficient to allow the calculation of any recommended average. Nevertheless, the constants obtained in refs. 72GW, 75GN, 81JI and 86BH appear sufficiently reliable to be proposed as tentative for the corresponding experimental conditions.

7-2. Thermodynamic quantities for the protonation of asparagine

Determinations of thermodynamic quantities for proton-asparagine interactions are relatively scarce. Nevertheless, the four sets of data obtained from direct calorimetric measurements can be considered as reliable (Table 7-3). In comparison, the values deduced from the van't Hoff equation within the 25-45 °C interval (85SS) should be regarded with caution, especially those relative to the first protonation step.

7-3. Metal complex formation constants

Formation constants for the binary metal complexes of asparagine are collected in Table 7-4. From a general point of view, the number of independent determinations for each metal ion is appreciably smaller than for previous amino acids, which makes the evaluation of the corresponding constants less easy. Complexes of cadmium(II), copper(II) and nickel(II) are the only ones to have been investigated by several groups of authors. In addition, most of the data available refer to distinct experimental conditions.

For cadmium(II) for example, all determinations have been made at different temperatures or under different conditions of ionic strength except for the two relative to 3.0 mol dm⁻³ at 25 °C (74WW, 81M). Unfortunately, corresponding constants are too distant to offer a sound basis of comparison. It seems unlikely that such a discrepancy can be due to the different nature of the background electrolytes used, the more so as protonation constants from the same groups of authors (72GW, 81M) already differed considerably, the one from reference 81M being much too low for that ionic strength. Because of this and also from comparisons made in preceding chapters, the values obtained by Walker and Williams (74WW) are to be preferred and have thus been proposed as tentative.

The experimental conditions under which copper(II) complexes have been investigated are extremely diverse, and no direct comparison is possible. The most complete results refer to physiological conditions (86BH), but other data can also be considered as reliable (65RW, 74BW, 75GN). All of these can be taken as tentative.

Similarly, constants for cobalt(II) and nickel(II) complexes reported in refs. 65RW and 74BW can also be selected as tentative, as is also the case for zinc(II) complexes in 74BW. All these values can be

found in Table 7-5.

For mixed-ligand complexes (Table 7-6), few data are available except for copper(II), for which the results obtained in refs. 75BW, 79YS and 86BH are to be considered as the most reliable.

7-4. Thermodynamic quantities for metal complex formation with asparagine

The number of studies devoted to determinations of thermodynamic quantities is relatively limited. Nevertheless, all values derived from direct calorimetric measurements, reported in Tables 7-7 and 7-8, are worth recommending since they have been obtained by authors whose results have regularly been selected in previous evaluations.

A series of data deduced from the van't Hoff equation have also been mentioned in Table 7-7. These have been obtained by a same group of authors under identical experimental conditions, and may provide a useful basis for comparison within the lanthanide series (86SS). Other values relative to cerium(III) (86K), also obtained from potentiometric determinations, have been rejected as too imprecise.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	log K ₁	$\log K_2$	Ref.
Thermo	~0.01	20	8.85	2.14	50A
Thermo	~0.01	15	9.13	-	53P
Mixed	0.15 KNO_3	25.15	8.84	-	53TS
Mixed	0.15	25	8.71	-	58LD
Mixed	1.0 NaClO_4	20	8.79	2.09	58P
Mixed(?)	1.0 KCl	20	8.79	-	59P
Mixed	0.15 KCl	30	8.72	-	64FW
Mixed(?)	1.0 KNO_3	30	8.88	-	64RS
Stoichio	0.1 KNO_3	25	8.72	2.14	65RW
Mixed	0.6	25	9.04	-	67AM
Stoichio	3.0 NaClO_4	25	9.303	2.586	72GW
Stoichio(?)	0.1 NaClO_4	25	8.70	2.16	73TS
Stoichio	0.2 KCl	25	8.74	2.14	75GN
Mixed	0.5 KNO_3	25	8.79	2.26	77La
Stoichio(?)	$3.0 \operatorname{LiClO_4}$	25	8.83	-	77M, 81M
Stoichio	0.2 NaClO_4	30	8.555	2.085	77MS, 78MS
Mixed	0.1 NaClO ₄	31	8.725	2.140	77RR
Thermo	→ 0	25	1.42		78KA
	100% formic acid				
Thermo	~0	25	8.76	-	79FM
	50% ethanol				
Thermo	~0	25	9.52		80KT
	formic acid:				
	ethyl methyl ketone				
	(1:24)				
	acetic acid:	9.87			
	ethyl methyl ketone				
	(1:8)				

Table 7-1. Protonation Constants of Asparagine

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	log K ₁	log K ₂	Ref.
Stoichio	0.1 KNO ₃	25	8.89	2.46	80YT
Stoichio		20	8 76	2 40	81CD
Stotemo	0.1	20	7 08	2.40	OICD
	100% trifluoro-	20	/.00		
	ethanol				
Stoichio	1.0 NaNO3	25	8.69	2.15	81JI
Thermo	~0	30	9.01	2.02	81PU
Thermo	~0	25	8.69	2.28	82DD
	8.0% propan-2-ol	25	8.68	2.40	
	16.3% propan-2-ol	25	8.68	2.51	
	25.1% propan-2-ol	25	8.67	2.65	
	34.3% propan-2-01	25	8.09	2.78	
	43.9% propan-2-01	25	8.70 8.78	2.92	
	54.0% propan-2-ol	25	8.85	3.07	
	75.8% propan-2-01	25	8 91	3 46	
Mixed(?)	0.1 NaClO ₄	21	8.91	2.01	83L.W
Mixed(?)	0.1 NaClO ₄	25	8.79	2.18	85SS
		35	8.64	2.15	
		45	8.52	2.12	
	0.2 NaClO_4	35	8.60	2.10	•
	0.5 NaClO_4	35	8.52	2.06	
	1.0 NaClO_4	35	8.45	2.00	
	0.1 NaClO ₄	35			
	20.0% DMSO		8.74	2.29	
	20% DMF		8.68	2.25	
	20.0% acetonitrile		8.61	2.19	
	20.0% methanol		8.58	2.14	
	20.0% ethanol		8.33	2.09	
Mixed(?)	20.0% propan-2-01	35	0.47 8 73	2.03	858Va
Stoichio	0.15 NaClO	37	8 458	2.10	86BH
Thermo	~0	25	8.70	2.29	87CL
	10% methanol	25	8.66	2.35	••••=
	20% methanol	25	8.67	2.44	
	30% methanol	25	8.66	2.59	
	40% methanol	25	8.68	2.74	
	50% methanol	25	8.74	2.88	
	60% methanol	25	8.78	2.94	
	70% methanol	25	8.85	3.16	
	80% methanol	25	8.90	3.42	
	10% ethanol	25	8.0/ 9.47	2.37	
	20% ethanol	25	8.07	2.40	
	40% ethanol	25	8.68	2.01	
	50% ethanol	25	8.75	2.86	
	60% ethanol	25	-	2.98	
	70% ethanol	25	-	3.07	
	80% ethanol	25	-	3.27	
Mixed(?)	0.15 KNO3	25	8.82	-	87CJ
Mixed(?)	0.2 KCl	25	8.73	2.27	88KD
Mixed(?)	1.0 KNO_2	25	8.80	2.02	89KN 89NK

Table 7-1. Pr	rotonation C	Constants o	of Asparag	gine (continued)	į
---------------	--------------	-------------	------------	------------------	---

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	Ref.
Stoichio? (T)	0.05 KCl	25	8.98	2.18	71GN, 72GM, 72GS
Stoichio (R)	0.05 KCl	25	(± 0.01) 8.71 (± 0.01)	(± 0.06) 2.15 (± 0.01)	65RW, 73TS
Stoichio (T)	3.0 NaClO ₄	25	9.30	2.59	72GW
Stoichio (T)	0.2 KC1	25	8.74	2.14	75GN
Stoichio (T)	1.0 NaNO3	25	8.69	2.15	81JI
Stoichio (T)	0.15 NaClO ₄	37	8.46	2.15	86BH

Table 7-2. Recommended (R) and Tentative (T) Values for Protonation Constants of Asparagine

Table 7-3. Thermodynamic Quantities for Asparagine Protonation Equilibria

Method	Medium (mol dm ⁻³)	Temp. (°C)	ΔH° ₁ (kJ n	$\Delta H^{\circ}{}_{2}$ nol ⁻¹)	ΔS° ₁ (J K ⁻¹	ΔS°_{2} mol ⁻¹)	Ref.
Cal.	0.1 KNO ₃	25	-40.79	-	-	-	71BP
Cal.	3.0 NaClO ₄	25	-50.5	-5.10	8.9	32.4	72GW, 74BW
Cal.	0.2 KC1	25	-41.4	-4.72	28.0	25.0	75GN
Cal.	~0	25	-41.2	-3.10	16.4	28.3	89RF, 89R
Pot.	0.1 NaClO ₄	35	-25.8	-5.9	81.7	22.0	85SS

(Pot. = potentiometry; Cal. = calorimetry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Ag+	Pol.	0.6	25	ML	3.30	67AM
	A a el	~1	30	ML ₂	6.45 3.64	81 P []
	Ag ci.		50	ML_2	6.64	511 0
Al ³⁺	G 1.	0.1 NaClO ₄	25	ML ML ₂	~6.65 10.30	73TSb
Au ³⁺	G 1.	~ 0.02	25	ML	6.18	74FA
	GL	0.1 NaClO	25	ML ₂ ML	9.28	74TS
	01.	0.11140104		ML ₂	17.02	
				ML_3	24.62	
Be ²⁺	Gl. (DL-)	0.015	15	ML_2	11.7	53P
	Gl.	0.1 NaClO ₄	25	ML	~5.87	73TSb
				ML ₂	10.70	
Bi ³⁺	Gl.	0.1 NaClO ₄	25	ML	9.76	74TS
				ML_2	18.64	
Cd ²⁺	Gl.	~ 0.01	20	ML	3.87	50A
	GL (DL-)	0.015	15	ML ₂ ML ₂	7.1	53P
	Pol.	1.0	30	ML ₃	8.60	62RS
	Pol.	1.0 KNO ₃	30	ML ₂	6.90	64RS
				ML ₃	8.58	
	Gl.	3.0 NaClO	25	ML3(OII) ML	4.071	74WW
				ML ₂	7.581	
	<u></u>	0.0 T CO	05	ML ₃	9.610	013 (003 (77
	GI.	$3.0 \operatorname{LiClO}_4$	25	ML ML	3.89 7.06	81M, 82MH
	Pol.	0.5 KNO2	20	ML ²	4.81	84GN
	1 011	010 12103		ML ₂	7.86	
				ML_3	9.50	
			30	ML ML	4.38	
				ML ₂ ML ₂	8.78	
			30	ML	3.93	
				ML_2	6.70	
	Pol	0.1 KNO-	25	ML ₃	8.40 6.26	86552
	101.	0.1 10103	35	ML ₂	5.92	00554
			45	ML_2	5.58	
	Pol.	1.0 KNO ₃	25	ML	4.07	89KN, 89NK
				ML ₂ ML ₃	9.10	
Ce ³⁺	G1.	0.1 NaClO ₄	25	ML	~3.80	73TSa
	GI	0.2 NoCIO	20	ML ₂	7.17 3 775	77148 78148
	01.	0.2 Mac104	50	INIT?	5.115	//1413, /01413

Table 7-4. Overall Formation Constants for L-Asparagine Metal Complexes

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Pol.	1.0 KCl	25 35	ML ML	3.52 3.00	86K
	Gl.	0.1 KNO ₃	45 25	ML ML	2.60 3.85 7.25	86SS
			35	ML2 ML ML2	3.99 7.52	
			45	ML^2 ML_2	4.17 7.87	
Co ²⁺	Gl. Gl.	~ 0.01 0.15 KNO2	20 25.15	ML ₂ ML	8.4 4.55	50A 53TS
				ML ₂ ML ₃	8.13 9.96	
	Gl.	0.1 KNO3	25	ML ML ₂ ML	4.45 7.99 4.51	65RW
	Gl.	3.0 NaClO4	25	ML ₂ ML	8.01 4.903	74BW
		0 15 KNO	25	ML ₂ ML ₃	9.029 11.855	9701
	GI.	0.15 KNO3	25	ML ML ₂	4.51 8.01	8/01
Cr ²⁺	Gl.	~ 0.015	25(?)	ML	6.97	70FM
Cr ³⁺	Gl.	0.4 KCl	25	ML ML ₂ ML ₃	7.7 13.6 18.5	63KM
Cu ²⁺	G1. G1.	~ 0.01 0.15	20 25	ML ₂ ML	14.9 7.78	50A 58LD
	(D-, L-, of Gl. (DL-)	0.1 KCl	25	$[ML_2]/[ML]$	6.45 6.24	59B
	G1.	0.1 KNO ₃	25	ML ML ₂	7.90 14.45	65RW
	(DL-)			ML ² ML ₂	7.86 14.42	
	Gl.	3.0 NaClO ₄	25	ML ² ML ₂	8.677 16.052	74BW
	Gl.	0.2 KCl	25	ML ² ML ² ML ² H 1	7.79 14.29 3.84	75GN
	Sp. (D-)	~0 (50% ethanol)	25	ML ₂ H ₋₂ ML	-8.16 8.12	79FM
	Gl.	0.1 NaClO ₄	30	ML ₂ ML	7.805	80AS
	Gl.	0.1 KNO ₃	25	ML ₂ ML	14.50 8.20	80YT
	Gl.	0.1 NaClO_4	21	ML ₂ ML ML ₂ ML ⁴	14.95 7.69 14.38 2.33	83LW

Table 7-4. Overall Formation Constants for L-Asparagine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	G1.	0.2 NaClO ₄ (pH 6)	25	ML ML ₂	7.50 13.50	84KW
	G1.	ð.15 NaClO4	37	ML ² ML ₂ ML ₂ H ML ₂ H ₂ MLH ₋₁ ML ₂ H ₋₁	7.714 14.210 17.417 20.186 0.675 3.941	86BH
Dy ³⁺	G1.	0.1 KNO ₃	25	ML MLo	4.53 8.58	86SS
			35	ML ML	4.70	
			45	ML ML ₂	4.86 9.23	
Fe ²⁺	Gl.	~ 0.01	20 20	ML ₂	6.5 3.40	50A 59P
	G1.	3.0 NaClO ₄	25	ML ML	4.366	74BW
				ML ₃	10.259	
Fe ³⁺	Gl.	1.0 NaClO ₄	20	ML	8.6	58P
Ga ³⁺	G1.	0.1 KNO ₃	22	ML	11.17	68ZK
Gd ³⁺	G1.	0.1 KNO ₃	25	ML MLo	4.33 8.19	86SS
			35	ML	4.48	
			45	ML ML	4.66	
П ~2+	Ha al	0.1 NoNO.	25	ML ₂	0.04 11 <i>4</i>	73VB
ng-	ng ei.	0.1 11/03	23	ML ₂	18.6	
CH ₃ Hg	л Сl	1.0.NoNO	25	М	6 3 2	91 TT
T3+	GI.	1.0 Natio	25	M	0.52	81J1 72TSb
In ³ '	GI.	0.1 NaClO ₄	25	ML ML ₂	14.55	75130
	GI.	~ 0.02	24	ML ML ₂	14.38	/OKF
La ³⁺	G1.	0.1 NaClO ₄	25	ML	~3.50	73TSa
	G1.	0.2 NaClO ₄	30	ML ₂ ML	3.525	77MS, 78MS
	GI.	0.1 KNO_3	25	ML ML ₂	3.75 7.07	8022
			35		3.89 7.34	
			45	ML ML	4.04 7.67	

Table 7-4. Overall Formation Constants for L-Asparagine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Mg ²⁺	G1.	~ 0.01	20	ML ₂	4	50A
Mn ²⁺	Gl. Gl.	~ 0.01 3.0 NaClO ₄	20 25	ML ₂ ML ML ₂	4.5 3.102 5.222	50A 74BW
Mo ^{VI}	Gl.	0.1 NaClO ₄	25	ML ML ₂ ML ₃	8.06 15.29 18.74	73TS
Nd ³⁺	Gl.	0.1 NaClO ₄	25	ML MLa	~4.15	73TSa
	Gl.	0.2 NaClO	30	ML	4.260	77MS, 78MS
	G1.	0.1 KNO ₃	25	ML	4.14	86SS
		5		ML_2	7.81	
			35	ML ⁻	4.28	
			15	ML ₂	8.09	
			45	ML ML	4.40	
				WIL2	0.44	
Ni ²⁺	G1.	~ 0.01	20	ML	10.6	50A
	Gl.	0.15	25	ML	5.58	58LD
				ML_2	9.96	
	Gl.	0.1 KNO3	25	ML	5.64	65RW
				ML ₂	10.20	
	(DL-)			ML	5.08 10.22	
	GI	3.0 NaClO	25	ML ₂	6 152	74BW
	01.	5.0 140104	23	ML	11.163	
				ML ₃	14.545	
A 1	~	a a a	•		<i></i>	
Os4+	GI.	~ 0.02	28	ML	5.17	74FAa
Pb^{2+}	G1.	3.0 NaClO4	25	ML	4.914	73CT
	0.1	010 1 1 1 2 2 4		ML	7.815	
				ML	8.815	
	Pol.	0.1 KNO3	25	ML_2	6.42	86SSa
			35	ML_2	6.09	
			45	ML ₂	5.75	
Pd2+	Gl	~ 0.02	27	MI .	15 11	73FA
14	Gl.	3.0 NaClO4	25	MLH	12.11	74GW
				MLH_1	9.1	
	Gl.	0.1 NaClO ₄	25	ML -	9.15	74TS
				ML_2	17.65	
$\mathbf{p_r}3+$	GI	0.1 NaClO.	25	МТ	~4.05	73752
TT	01.	0.1 1940104	23	ML	7.65	/J13a
	Gl.	0.2 NaClO	30	ML	4,085	77MS, 78MS
	G 1.	0.1 KNO3	25	ML	4.05	86SS
		0		ML_2	7.60	
			35	ML	4.18	
				ML ₂	7.90	
			45	ML MI	4.30	
				IVIL2	0.23	
			_			<u> </u>

 Table 7-4. Overall Formation Constants for L-Asparagine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Pt ⁴⁺	G1.	0.1 NaClO ₄	25	ML ML ₂	7.98 11.50	74TS
Rh ³⁺	Gl.	~ 0.02	25	ML ML ₂	6.86 9.73	74FAb
Sc ³⁺	G1.	0.2 NaClO ₄	30	ML	7.083	77MS, 78MS
Sm ³⁺	G1.	0.1 KNO ₃	25 35	ML ML ₂ ML	4.24 8.00 4.38	86SS
			45	ML ₂ ML ML ₂	8.29 4.56 8.64	
Sr ²⁺	Ion exch.	0.16 (pH 7.2)	25	ML	-0.43	54S
Tb ³⁺	Gl.	0.1 KNO3	25 35 45	ML ML ₂ ML ML ₂ ML ML ₂	4.43 8.38 4.59 8.69 4.70 8.98	86SS
Ti ³⁺	G1.	~ 0.02	25?	ML	6.95	70FMb
UO ₂ ²	G1. G1.	~ 0.02 0.1 NaClO ₄	25? 31	ML ML	6.88 7.23	70FMb 77RR
V3+	G1.	0.2 KCl	20	ML ML ₂	8.08 15.33	88KD
VO ²⁺	G1. G1.	~ 0.02 0.1 NaClO ₄	25? 25	ML ML ML ₂ ML ₃	7.25 ~7.50 14.50 18.54	70FMb 73TS
WVI	G1.	0.1 NaClO ₄	25	ML ML ₂ ML ₃	5.84 10.95 14.25	73TS
Y ³⁺	G 1.	0.1 NaClO ₄	25	ML ML	~4.25	73TSa
	Gl. Gl.	0.2 NaClO ₄ 0.1 KNO ₃	30 25 35 45	ML ML ML ₂ ML ML ₂ ML	4.425 4.63 8.78 4.78 9.07 4.96	77MS, 78MS 86SS
				ML_2	9.43	

 Table 7-4. Overall Formation Constants for L-Asparagine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.	
Zn ²⁺	Gl. Gl. (DL-) Gl.	~ 0.01 0.015 3.0 NaClO ₄ 0.1 NaClO ₄	20 15 25 21	ML ₂ ML ML ML ₂ ML ₃ ML ML ₂	8.7 8.5 5.070 9.426 12.300 4.52 7.86	50A 53P 74BW 83LW	

Table 7-4. Overall Formation Constants for L-Asparagine Metal Complexes (continued)

(G1. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry)

Table 7-5.	Recommended	(R) an	d Tentative	(T)	Overall	Formation	Constants 1	for L-4	Asparagine	Metal
	Complexes									

Metal ion		Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Cd ²⁺	(T)	3.0 NaClO ₄	25	ML ML ₂ ML ₃	4.07 7.58 9.61	74WW
Co ²⁺	(T)	0.1 KNO ₃	25	ML ML	4.45	65RW
	(T)	3.0 NaClO ₄	25	$\frac{ML_2}{ML}$ $\frac{ML_2}{ML_3}$	4.90 9.03 11.86	74BW
Cu ²⁺	(T)	0.1 KNO ₃	25	ML ML	7.90 14 45	65RW
	(T)	3.0 NaClO ₄	25	ML ML	8.68	74BW
	(T)	0.2 KCl	25	ML ₂ ML ML ₂ ML ₂ H ₋₁ ML ₂ H ₋₁	7.79 14.29 3.84	75GN
	(T)	0.15 NaClO ₄	37	ML ₂ II ₋₂ ML ML ₂ H ML ₂ H ₂ ML ₄ H ₂ MLH ₋₁ ML ₂ H ₋₁	7.71 14.21 17.42 20.19 0.68 3.94	86BH
Ni ²⁺	(T)	0.1 KNO3	25	ML	5.64	65RW
	(T)	3.0 NaClO ₄	25	ML ₂ ML ₂ ML ₃	6.15 11.16 14.54	74BW
Zn ²⁺	(T)	3.0 NaClO ₄	25	ML ML ₂ ML ₃	5.07 9.43 12.30	74BW

© 1995 IUPAC, Pure and Applied Chemistry, 67, 1117–1240

Table 7-6. Constants for Mixed-ligand	Complexes Involv	ing L-Asparagine
---------------------------------------	------------------	------------------

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Cd ²⁺	Pol.	1.0 KNO ₃	30	Carbonate Ammonia	ML ₂ X ML ₂ X	8.14	64RS
	Pol.	1.0 KNO ₃	25	Formate	MLX MLX ₂	5.95 7.94	89KN
	Pol.	1.0 KNO ₃	25	Acetate	ML ₂ X MLX MLX ₂ ML ₂ X	8.30 6.08 8.12 8.48	89NK
Ce ³⁺	Gl.	0.2 NaClO ₄	30	EDTA	(MX)L	3.28	78MS
Co ²⁺	G1.	0.15 KNO ₃	25	Iminodiacetic acid	MLX	10.36	87CJ
Cu ²⁺	Gl.	3.0 NaClO ₄	25	L-Histidine	MLX MLXH	18.597 23.326	75BW
	G1.	0.2 KCl	25	Glycine	MLX MLX MLX	14.91	75GN
	Gl.	0.2 KCl	25	Glycyl- glycine	MLXH ₋₁	4.92	77NG
				Glycyl-DL- α-alanine	MLXH ₋₁	4.93	
				DL-α-Alanyl- DL-α-alanine	MLXH-1	4.45	
	Gl. (D-)	~ 0 (50% ethanol)	25	Acetoacetic ester	MLX	15.41	79FM
	Gl. (D-)	0.1 KNO ₃	25	L-Histidine	MLX MLX	17.03 17.04	79YS
	Gl.	0.1 NaClO ₄	30	Glycyl- sarcosine	MLX	19.02	80AS
	Gl.	0.1 KNO_3 (20% dioxane)	25	L-Histidine D-Histidine	MLX MLX	17.53 17.54	80YT
	Gl.	0.1 NaClO ₄	30	Glycyl-L- phenylalanine	MLXH ₋₁	5.29	82S
	G1.	0.1 NaClO ₄	30	Glycyl-DL- serine	MLXH ₋₁	4.73	83S
	G1.	0.1 NaClO ₄	30	Alanyl-L- phenylalanine	MLXH ₋₁	4.28	84S
	Gl.	0.1 NaClO ₄	30	Glycyl- L-asparagine	MLXH ₋₁	10.85	86AJ
	Gl.	0.15 NaClO ₄	37	L-Histidine	MLX MLXH MLXH	16.756 20.057 5.702	86BH
	G1.	0.1 NaClO ₄	25	DL-α-Alanyl- DL-methionine DL-Alanyl- DL-norvaline	(ML)X (?) (ML)X (?)	5.78 5.77	88JA
La ³⁺	Gl.	0.2 NaClO ₄	30	EDTA	(MX)L	3.25	78MS
Nd ³⁺	G1.	0.2 NaClO ₄	30	EDTA	(MX)L	3.35	78MS

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Ni ²⁺	Gl.	3.0 NaClO ₄	25	Chloride	MLX ML2X MLXH ₋₁	6.1 11.7 11.64	74GW
Pd ²⁺	Gl.	3.0 NaClO ₄	25	Chloride	MLXH	18.29	74GW
	G1.	0.1 KNO ₃	25	Ethylenediamine	MLXH ₋₁ (MX)L (MLX)H	10.46 6.46	77La
Pr ³⁺	G1.	0.2 NaClO ₄	30	EDTA	(MX)L	3.30	78MS
Sc ³⁺	Gl.	0.2 NaClO ₄	30	EDTA	(MX)L	3.38	78MS
Tb ³⁺	Sp.	-	-	EDTA	(MX)L	3.09	85SB
Y ³⁺	Gl.	0.2 NaClO ₄	30	EDTA	(MX)L	3.35	78MS

Table 7-6. Constants for Mixed-ligand Complexes Involving L-Asparagine (continued)

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	ΔH° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Cd ²⁺	Pol.	0.1 KNO3	35	ML_2	-61.7	-87.1	86SSa
Ce ³⁺	Pot.	0.1 KNO ₃	35	ML_2	55.7	322.3	86SS
Co ²⁺	Cal.	3.0 NaClO ₄	25	ML ML ₂ ML ₃	-11.95 -26.71 -36.40	53.8 83.3 104.8	74BW
Cu ²⁺	Cal. (DL-)	0.1 KNO3	25	ML ₂	-47.50	117 118	70BP, 71BP
	Cal.	3.0 NaClO ₄	25	ML ₂ ML	-27.5	73.9	74BW
	Cal.	0.2 KCl	25	ML ML ML ₂	-26.3 -53.9	60.6 92.4	75GN
Dy ³⁺	Pot.	0.1 KNO ₃	35	ML_2	65.4	377.6	86SS
Gd ³⁺	Pot.	0.1 KNO ₃	35	ML_2	58.2	349.7	86SS
La ³⁺	Pot.	0.1 KNO ₃	35	ML_2	45.7	288.0	86SS
Nd ³⁺	Pot.	0.1 KNO ₃	35	ML_2	56.5	336.2	86SS
Mn ²⁺	Cal.	3.0 NaClO ₄	25	ML ML ₂	-7.26 -14.23	35.0 52.2	74BW
Ni ²⁺	Cal.	3.0 NaClO ₄	25	ML ML ₂ ML ₃	-17.11 -43.45 -63.50	60.4 67.9 65.5	74BW
Pb ²⁺	Pol.	0.1 KNO ₃	35	ML_2	-60.8	-81.0	86SSa
Pr ³⁺	Pot.	0.1 KNO ₃	35	ML_2	50.1	310.8	86SS
Sm ³⁺	Pot.	0.1 KNO3	35	ML_2	54.6	326.2	86SS
Tb ³⁺	Pot.	0.1 KNO ₃	35	ML_2	56.2	347.2	86SS
Y ³⁺	Pot.	0.1 KNO ₃	35	ML_2	71.9	405.8	86SS
Zn ²⁺	Cal.	3.0 NaClO ₄	25	ML ML ₂ ML ₃	-10.44 -23.17 -27.55	62.1 102.7 143.0	74BW

Table 7-7. Overall Thermodynamic Quantities for L-Asparagine Metal Complex Equilibria

(Pol. = polarography; Pot. = potentiometry; Cal. = calorimetry)

Table 7-8.	Thermodynamic (Quantities for	Mixed-ligand	Complexes	Involving	g L-Asparag	gine
------------	-----------------	----------------	--------------	-----------	-----------	-------------	------

Metal Method ion	Medium Temp. (mol dm ⁻³) (°C)	Extra ligand (X)	Complex	∆H° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Cu ²⁺ Cal.	3.0 NaClO ₄ 25	L-Histidine	MLX MLXH	-67.5 -88.2	129.7 150.7	75BW
		L-Threonine	MLX	-50.0	147.7	

(Cal. = calorimetry)

© 1995 IUPAC, Pure and Applied Chemistry, 67, 1117–1240

8. GLUTAMINE - H₂NCOCH₂CH₂CH[NH₂]CO₂H (2-amino-4-carbamoylbutanoic acid, LH)

Formally, glutamine contains three electron-donating centres. However, its amide group, like that of asparagine, dissociates at a pH near the limit of the ionic product of water and the dissociation cannot be detected in aqueous solution (75GN). Thus, the only measurable effect of adding a $-CH_2$ group to the asparagine skeleton in respect of the proton interactions of these two amino acids is the increased stability of the protonated forms of the glycine-like donors of glutamine. This effect, almost totally entropic in nature, has been attributed to the larger perturbation brought about by the proton approach in the solvation shell of the more hydrophobic glutamine molecule (74BW).

For metal complexation, attempts have been made to characterise a possible participation of the amide group in the coordination of several metal ions (79M). However, given the unfavourable size of the chelate ring potentially involved, glutamine displays only a very weak tridentate capability with cobalt(II) and nickel(II) (79M) and exclusively behaves as a bidentate ligand with copper(II) (75GN). This is in line with the fact that the formation of copper(II)-glutamine complexes is not accompanied by any stereoselective effect (65RW).

8-1. Protonation constants of glutamine

Glutamine protonation constants available in the literature are collected in Table 8-1. Although still more limited in number than those for asparagine, these data provide an acceptable basis for the present evaluation. Some of them are proposed as tentative, and recommended averages have been calculated for physiological conditions (Table 8-2).

Contrary to what was observed with asparagine, stoichiometric protonation constants determined in refs. 65RW and 73TS (25 °C and I=0.1 mol dm⁻³) do not coincide. Nevertheless, one of these sets has been selected on the basis of the following considerations. For asparagine, the average values calculated from the two references above are very close to the constants determined by Gergely et al. (75GN) at 25 °C in 0.2 mol dm⁻³ KCl. This was taken as a criterion of reliability (see previous chapter) since constants determined in a 0.1 mol dm⁻³ ionic background are theoretically expected to be equal or slightly higher than those measured at I=0.2 mol dm⁻³. In the present case, only the constants obtained in ref. 65RW are close to the values determined in 75GN. They are thus proposed as tentative together with those from 75GN.

By reference to the discrimination made between asparagine constants reported in 72GW and 81M, values relative to glutamine determined in 73W at 25 °C in 3.0 mol dm⁻³ ionic strength are taken as tentative while the only constant available in 81M was rejected.

The stoichiometric constants determined under physiological conditions (82KB, 85CF) are quite reproducible, and corresponding averages have been recommended. Moreover, if we apply the usual 0.12 correction (74MS, 82MS, 89SM) to the mixed constant determined by Hallman et al. (71HP), the resulting log K_1 (8.71) is quite close to the above average (8.69). In contrast, the corrected log K_2 (2.03) is comparatively much lower than its recommended value (2.19).

8-2. Thermodynamic quantities for the protonation of glutamine

The three sets of data available for glutamine protonation (Table 8-3) have been obtained from direct calorimetric measurements. They can thus be taken as reliable.

8-3. Metal complex formation constants

Formation constants for metal complexes of glutamine are collected in Table 8-4. Many metal ions have been investigated, but the number of independent determinations for each of these is rather limited and rarely offers a sound basis of evaluation.

For cadmium(II) complexes, for example, only two studies refer to comparable experimental conditions (74WW, 81M) and their results differ to a considerable extent. As already noticed for asparagine, it seems unlikely that such a discrepancy can originate in the different nature of the background electrolyte, and in accordance with previous comparisons on data from the same authors, the constants determined in 74WW have been chosen as tentative. Still, this selection has been limited to the ML and ML₂ species since the group of authors involved did not confirm the existence of ML₃ in a subsequent study where MLH₁ was characterised instead (85CF). Only the ML and ML₂ constants

determined under physiological conditions in the latter investigation have thus been accepted as tentative (85CF).

By reference to considerations developed for asparagine, constants relative to cobalt(II) complexes determined in 65RW and 73W can be considered as reliable and have then been proposed as tentative.

For copper(II), four sets of constants have been determined under similar experimental conditions (65RW, 75GN, 73KS-77S, 84KW). The lower values found in 75GN with respect to 65RW are certainly attributable to the competitive influence of the chloride ion rather than to the higher ionic strength, and both sets can a priori be accepted as tentative along with log β_{ML} from 84KW. As for the third set however, the constants, especially β_{ML2} , seem too high and have not been selected. This is all the more surprising as their homologues for threonine and, to a lesser extent, serine, conformed quite well to values determined at 0.1 and 0.2 mol dm⁻³ ionic strengths (see preceding chapters).

The evaluation of the constants of copper(II) complexes corresponding to physiological conditions is more straightforward since the values obtained by two (82KB, 85CF) of the three groups involved are almost identical. Average values have thus been recommended (Table 8-5). Exceptionally, values from 71HP, obviously too low, should be rejected. Precision in the determination of these constants is especially important since glutamine is the second most important 1.m.m. ligand of copper(II) (after histidine) in blood plasma (86BH).

Three studies relative to nickel(II)-glutamine complexes have been performed under different experimental conditions by groups of authors regularly selected in the above evaluations (65RW, 73W, 85CF). Corresponding constants have thus been accepted as tentative.

Also by reference to above evaluations, formation constants of zinc(II) complexes determined by Williams at 25 °C in 3.0 mol dm⁻³ NaClO₄ (73W) have been accepted as tentative. Data from three independent groups are available for physiological conditions (71HP, 80KB, 85CF), but the agreement is relatively poor. Accordingly, the average values calculated from these have only been proposed as tentative.

Determinations relative to mixed-ligand complexes are limited. About half of these refer to physiological conditions, which appears logical considering the important role of glutamine as a ligand in vivo. This is especially true for copper(II), whose neutral mixed-ligand complex with histidine and glutamine has recently been recognized as the main species of its 1.m.m. fraction in blood plasma (86BH). No comparative study of the corresponding data is allowed, but given the frequent selection of the authors involved in preceding evaluations, all constants from 86BH can be considered as reliable.

For the copper(II)-histidine-glutamine species evoked above, its two constants determined at 25 °C (73KS-77S, 79YS) are obviously too different for the similar ionic strengths used. The value reported by Yamauchi et al. (79YS) has been calculated with protonation and binary complex constants taken from the literature, which is far from being recommended (see introduction). Moreover, the copper(II)-histidine-threonine constant determined in that study (79YS) has already been discarded as being far too low compared to others obtained under similar conditions (see Chapter 6). By contrast, the value of the copper(II)-histidine-threonine constant reported in ref. 77S has been found to fall within the limits of error of the average relative to the 0.1 mol dm⁻³ ionic strength at 25 °C (see Chapter 6), which would tend to support the present copper(II)-histidine-glutamine constant by the same author. However, since doubt has been cast on the constants of the parent copper(II)-glutamine system (see above), it is impossible to conclude in favour of either of these two works.

8-4. Thermodynamic quantities for metal complex formation with glutamine

The few thermodynamic quantities available in the literature concerning copper(II)- and nickel(II)glutamine complexes (Table 8-7) have been obtained from direct calorimetric measurements and by authors frequently selected in the above evaluations. Corresponding values can thus logically be considered as reliable. By contrast, those relative to cerium deduced from the van't Hoff equation (86K) have been rejected as too imprecise.

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	Ref.
Thermo	~0.01	15	9.34	-	53P
Stoicnio Mixed	0.1 KNO3 0.15 KNO	25	9.01	2.17	03KW 71LD
-	-	25	9.13	2.15	72IB
Stoichio(?)	0.1 NaClO₄	25	8.91	2.21	73TS
Stoichio	3.0 NaClO_4	25	9.640	2.721	73W
Mixed(?)	0.1 KNO3	35	9.10	2.25	74SC
	0.0 WINO	45	8.80	2.15	
	0.2 KNO_3	35	9.08	2.23	
Stoichio	0.5 KINO_3	33 25	9.00	2.20	75GN
Thermo	~0	25	9.00	2.15	73GN 77CL
Thermo	10% methanol	25	-	2.47	I I OL
	20% methanol	25	-	2.55	
	30% methanol	25	-	2.62	
	40% methanol	25	-	2.84	
	50% methanol	25	-	3.14	
	60% methanol	25	-	3.40	
	70% methanol	25	- 20	3.52	
	10% ethanol	25	9.20	2 50	
	20% ethanol	25	-	2.60	
	30% ethanol	25	-	2.70	
	40% ethanol	25	-	2.90	
	50% ethanol	25	-	3.15	
	60% ethanol	25	-	3.35	
	70% ethanol	25		3.33	
Mixed	0 5 KNO	25	9.22	2.03	771 2
Stoichio(?)	3.0 LiClO	25	9.19	-	77M. 81M
Stoichio	0.2 NaClO	30	8.515	2.210	77MS, 78MS
Stoichio	0.15 NaCl	25	8.970	2.390	73KS, 77S
Stoichio	0.1 KNO3	25	9.14	2.45	80YT
m i	20% dioxane	95	0.00	0.14	0000
Thermo	~()	25	9.08	2.16	82DD
	8.0% propan-2-01	25	9.08	2.40	
	25.1% propan-2-ol	25	9.08	2.51	
	34.3% propan-2-ol	25	9.11	2.78	
	43.9% propan-2-ol	25	9.18	2.91	
	54.0% propan-2-ol	25	9.23	3.09	
	64.6% propan-2-ol	25	9.26	3.56	
a	75.8% propan-2-ol	25	9.27	3.70	0.000
Stoichio	0.15 NaClO ₄	37	8.680	2.184	82KB
Stoicnio Mixed(2)	0.15 Nacio	51	8.09/ 0.021	2.202	850CF
Mixed(?)	0.7 NaCiO4	35	9.031	2.15	858Ya
1111VOI(1)	V	55	2.10	2.13	000 I a

Table 8-1. Protonation Constants of Glutamine

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	$\log K_2$ ·	Ref.
Thermo Mixed(?) Mixed(?)	~0 8.0% t-BuOH 16.4% t-BuOH 25.0% t-BuOH 34.2% t-BuOH 43.8% t-BuOH 54.0% t-BuOH 64.5% t-BuOH 75.8% t-BuOH 0.2 KC1 1.0 KNO ₃	25 25 25 25 25 25 25 25 25 25 25 25 25	9.08 9.11 9.10 9.13 9.16 9.21 9.28 9.40 9.48 8.94 9.13	2.16 2.28 2.40 2.44 2.52 2.56 2.65 2.78 3.00 2.33 2.17	86PD 88KD 89KN, 89NK

Table 8-1. Protonation Constants of Glutamine (continued)

Table 8-2. Recommended (R) and Tentative (T) Values for Protonation Constants of Glutamine

Type of constants	Medium (mol dm ⁻³)	Temp. (°C)	$\log K_1$	log K ₂	Ref.
Stoichio (T)	0.1 KNO3	25	9.01	2.17	65RW
Stoichio (T)	0.2 KCl	25	9.00	2.15	75GN
Stoichio (T)	3.0 NaClO4	25	9.64	2.72	73W
Stoichio (R)	0.15	37	8.69 (±0.01)	2.19 (±0.01)	82KB, 85CF

Table 8-3. Thermodynamic Quantities for Glutamine Protonation Equilibria

Method	Medium (mol dm ⁻³)	Temp. (°C)	ΔH° ₁ (kJ n	$\Delta H^{\circ}{}_{2}$ nol ⁻¹)	ΔS° ₁ (J K ⁻¹	ΔS°_{2} mol ⁻¹)	Ref.
Cal.	3.0 NaClO ₄	25	-50.86	-4.42	14.0	37.4	74BW
Cal.	0.2 KCl	25	-41.6	-3.43	31.8	29.6	75GN
Cal.	~0	25	-40.8	-2.80	38.1	32.1	89RF, 89R

(Cal. = calorimetry)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
Al ³⁺	Gl.	0.1 NaClO ₄	25	ML ML ₂	~6.59 10.25	73TSb
Be ²⁺	Gl. Gl.	0.015 0.1 NaClO ₄	15 25	ML ₂ ML ML ₂	12.4 ~5.80 10.36	53P 73TSb
Bi ³⁺	G1.	0.1 NaClO ₄	25	ML ML ₂	9.81 17.25	74TS
Ca ²⁺	Ion exch.	0.16 (pH 7.2)	25	ML	0.18	548
Cd ²⁺	G1. G1.	0.015 3.0 NaClO ₄	15 25	ML ₂ ML ML ₂	7.4 4.099 7.664 9.999	53P 74WW
	G 1.	3.0 LiClO ₄	25	ML	3.83	81M, 82MH
	Gl.	0.15 NaCl	37	ML ₂ ML ML ₂ MLH	3.168 5.694 -6.58	85CF
	G1.	0.7 NaClO ₄	25	ML ML	3.62	85SC
	Pol.	1.0 KNO ₃	25	$ ML_2 ML_2 ML_3 $	4.00 7.04 8.91	89KN, 89NK
Ce ³⁺	Gl.	0.1 NaClO ₄	25	ML	~3.80	73TSa
	G1.	0.1 KNO ₃	35	ML ₂ ML ML ₂	4.77 8.80	74SC
			45	ML ML ₂	4.68 8.68	
		0.2 KNO ₃	35	ML^{-} ML_{2}	4.55 8.40	
		0.3 KNO ₃	35	ML [°] ML ₂	4.38 8.11	
	Gl. Pol.	0.2 NaClO ₄ 1.0 KCl	30 25 35 45	ML ML ML ML	3.945 3.72 3.15 2.65	77MS, 78MS 86K
Co ²⁺	Gl.	0.1 KNO ₃	25	ML	4.03	65RW
	(DL-)			ML ₂ ML	4.05	
	Gl.	3.0 NaClO ₄	25	ML ₂ ML ML ₂ ML ₃	7.35 4.518 8.361 11.405	73W
Cu ²⁺	Gl. (DL-)	0.1 KNO ₃	25	ML ML ₂ ML ML ₂	7.75 14.25 7.74 14.20	65RW

Table 8-4. Overall Formation Constants for L-Glutamine Metal Complexes
Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref
	Gl.	0.15 KNO ₃	37	ML MLo	7.24 13.40	71HP
	Gl.	0.15 NaCl	25	ML ML	7.765	73KS, 77S
	G1.	3.0 NaClO ₄	25	ML ML	8.950	73W
	G1.	0.2 KCl	25	ML ₂ ML	7.62	75GN
	G1.	0.1 KNO_3	25	ML ₂ ML	8.02	80YT
	G1.	0.15 NaClO_4	37	ML ₂ ML	7.475	82KB
	G1.	0.2 NaClO4	25	ML ₂ ML	13.586	84KW
	Gl.	(pH 6) 0.15 NaCl	37	ML ₂ ML	13.77 7.474	85CF
				ML ₂ MLH ₋₁	13.600 -0.07	
Fe ²⁺	Gl.	3.0 NaClO ₄	25	ML ML ₂	4.432 7.258	73W
•				ML ₃	10.401	
Hg ²⁺	Hg el.	0.1 NaNO ₃	25	ML ML ₂	11.5 18.7	73VB
In ³⁺	G1.	0.1 NaClO ₄	25	ML ML	~7.45	73TSb
	Pol.	0.1 NaClO ₄	30	ML ML ₂	6.65 14.39	80JK, 83JK
La ³⁺	G1.	0.1 NaClO4	25	ML	~3.40	73TSa
	Gl.	0.1 KNO ₃	35	ML ₂ ML	0.45 3.48	74SC
		0.2 KNO3	45 35	ML ML	4.10	
	Gl.	0.3 KNO ₃ 0.2 NaClO ₄	35 30	ML ML	3.88 3.710	77MS, 78MS
Mn^{2+}	Gl.	3.0 NaClO ₄	25	ML ML ₂	2.863 4.62	73W
Mo ^{VI}	Gl.	0.1 NaClO ₄	25	ML ML ₂ ML ₃	7.90 14.83 18.18	73TS
Nd ³⁺	G1.	0.1 NaClO ₄	25	ML MI	~4.10	73TSa
	Gl.	0.2 NaClO ₄	30	ML ² ML	4.530	77MS, 78MS
Ni ²⁺	Gl. (DL-)	0.1 KNO3	25	ML ML ₂ ML ML ₂	5.14 9.38 5.17 9.45	65RW

Table 8-4. Overall Formation Constants for L-Glutamine Metal Complexes (continued)

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.
	Gl.	3.0 NaClO ₄	25	ML ML ₂	5.561 10.282	73W
	Gl.	0.15 NaCl	37	ML3 ML ML2 ML3 ML2H-1	4.979 9.015 11.62 -1.91	85CF
Pb ²⁺	Pol. Gl.	0.6 NaNO3 3.0 NaClO4	25 25	ML ₂ (OH) ML ML ₂ ML ₃	10.16 4.697 8.364 10.123	69LC 73CT
Pd ²⁺	Gl.	0.1 NaClO ₄	25	ML ML ₂	9.10 17.45	74TS
Pr ³⁺	Gl.	0.1 NaClO ₄	25	ML ML2	~4.00 7.55	73TSa
	G1.	0.2 NaClO ₄	30	ML	4.275	77MS, 78MS
Pt ⁴⁺	G1.	0.1 NaClO ₄	25	ML ML ₂	7.31 10.46	74TS
Sc ³⁺	Gl.	0.2 NaClO ₄	30	ML	7.405	77MS, 78MS
UO ₂ ²⁺	Gl.	0.1 KNO ₃	35 45	ML ML ₂ ML	7.05 13.90 7.00	74SC
		0.2 KNO3	35	ML ₂ ML	13.73 6.99	
		0.3 KNO ₃	35	ML ₂ ML ML ₂	13.78 6.95 13.70	
¥3+	G1.	0.2 KCl	25	ML ML ₂	8.20 15.82	88KD
VO ²⁺	Gl.	0.1 NaClO ₄	25	ML ML ₂ ML ₃	~7.40 14.45 18.52	73TS
WVI	Gl.	0.1 NaClO ₄	25	ML ML ₂ ML ₃	5.76 10.85 14.05	73TS
Y ³⁺	G1.	0.1 NaClO ₄	25	ML MI	~4.20	73TSa
	G1.	0.1 KNO_3	35 45 35	ML ML ML	4.65 4.25	74SC
	G1.	$\begin{array}{c} 0.2 \text{ NNO}_3\\ 0.3 \text{ KNO}_3\\ 0.2 \text{ NaClO}_4 \end{array}$	35 30	ML ML ML	4.31 4.36 4.720	77MS, 78MS

 Table 8-4. Overall Formation Constants for L-Glutamine Metal Complexes (continued)

cont'd

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	log β	Ref.	
Zn ²⁺	Gl. Gl. Gl. Gl. Gl.	0.015 0.15 KNO ₃ 0.15 NaCl 3.0 NaClO ₄ 0.15 NaClO ₄ 0.15 NaCl	15 37 37? 25 37 37	ML ₂ ML ML ₂ ML ML ₂ ML ₃ ML ₂ ML ₂ ML ₂ ML ₂ ML ₂ ML ₂ ML ₂	8.4 4.27 7.94 4.39 8.14 4.826 9.165 11.843 4.174 7.664 -2.137 4.215 7.808 -1.35	53P 71HP 72GH 73W 80KB 85CF	
				21			

 Table 8-4. Overall Formation Constants for L-Glutamine Metal Complexes (continued)

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography)

Table 8-5. Recommended (R) and Tentative (T) Overall Formation Constants for L-Glutamine Metal Complexes

) (- i'		Complex	100 P	Dof
 ion	(mol dm ⁻³)	(°C)	Complex	10g p	KCI.
Cd ²⁺ (T)	3.0 NaClO ₄	25	ML.	4.10	74WW
	0.15 NaCl	37	ML2 ML ML2	3.17 5.69	85CF
Co ²⁺ (T)	0.1 KNO ₃	25	ML ML	4.03	65RW
(T)	3.0 NaClO ₄	25	ML ML ₂ ML ₃	4.52 8.36 11.40	73W
Cu ²⁺ (T)	0.1 KNO ₃	25	ML ML2	7.75 14.25	65RW
(T)	0.2	25	ML	7.62	75GN, 84KW
(T)	0.2 KCl	25	ML_2	14.0	75GN
(R)	0.15	37	ML ML ₂	7.47 (±0.01) 13.59 (±0.01)	82KB, 85CF
Ni ²⁺ (T)	0.1 KNO ₃	25	ML ML2	5.14 9.38	65RW
(T)	3.0 NaClO ₄	25	ML ² ML ₂ ML ₃	5.56 10.28 12.82	73W
(T)	0.15 NaCl	37	ML ML ₂ ML ₃ ML ₂ H ₋₁	4.98 9.02 11.62 -1.91	85CF
Zn²⁺ (T)	3.0 NaClO ₄	25	ML ML ₂	4.83 9.17 11 84	73W
(T)	0.15	37	ML ML ₂	4.22 (±0.05) 7.80 (±0.15)	71HP, 80KB, 85CF

© 1995 IUPAC, Pure and Applied Chemistry, 67, 1117-1240

.

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Extra ligand (X)	Complex	log β	Ref.
Cd ²⁺	Pol.	1.0 KNO ₃	25	Formate	MLX MLX ₂	5.79 7.71	89KN
	Pol.	1.0 KNO3	25	Acetate	ML2X MLX MLX2 ML2X	8.07 5.92 7.90 8.26	89NK
Ce ³⁺	G1.	0.2 NaClO ₄	30	EDTA	(MX)L	3.32	78MS
Cu ²⁺	G1.	0.2 KCl	25	Glycyl-	MLXH-1	4.65	77NG
				Glycyl-DL-	MLXH-1	4.69	
				DL-a-Alanyl-	MLXH-1	4.32	
	Gl.	0.15 NaCl	25	L-Histidine	MLX MLXH	17.624 21.654	73KS, 778
	Gl. Gl.	0.1 KNO3 0.1 KNO2	25 25	L-Histidine L-Histidine	MLX MLX	17.06 17.42	79YS 80YT
	Gl.	(20% dioxane) 0.15 NaClO ₄	37	D-Histidine Histamine	MLX MLX	17.45 15.971	82KB
	GI.	0.15 NaClO ₄	37	L-Histidine	MLXH MLX MLXH MLXH ₋₁	20.112 16.703 20.108 5.844	86BH
In ³⁺	Pol.	0.1 NaClO ₄	30	L-Histidine	MLX	16.37	83JK
La ³⁺	Gl.	0.2 NaClO ₄	30	EDTA	(MX)L	3.27	78MS
Nd ³⁺	Gl.	0.2 NaClO ₄	30	EDTA	(MX)L	3.36	78MS
Pd ²⁺	Gl.	0.1 KNO ₃	25	Ethylenediamine	(MX)L (MLX)H	10.76 9.03	77La
Pr ³⁺	G1.	0.2 NaClO ₄	30	EDTA	(MX)L	3.33	78MS
Sc ³⁺	G1.	0.2 NaClO ₄	30	EDTA	(MX)L	3.43	78MS
ТЪ3+	Sp.	-	-	EDTA	(MX)L	1.62	85SB
Y ³⁺	Gl.	0.2 NaClO ₄	30	EDTA	(MX)L	3.39	78MS
Zn ²⁺	Gl. Gl. Gl.	0.15 NaClO ₄ 0.15 NaClO ₄ 0.15 NaCl	37 37 37	Histamine Citrate L-Cysteine	MLX M ₂ LXH ₋₂ MLXH	9.102 -2.815 19.66	80KB 82BB 85CF

Table 8-6. Constants for Mixed-ligand Complexes Involving L-Glutamine

(Gl. = glass electrode potentiometry [as exclusive or main method]; Pol. = polarography; Sp. = spectrophotometry)

Table 8-7. Overall Thermodynamic Quantities for L-Glutamine Metal Complex Equilibria

Metal ion	Method	Medium (mol dm ⁻³)	Temp. (°C)	Complex	ΔH° (kJ mol ⁻¹)	ΔS° (J K ⁻¹ mol ⁻¹)	Ref.
Cu ²⁺	Cal.	3.0 NaClO ₄	25	ML ML	-16.5	118.0 174 3	74BW
	Cal.	0.2 KCl	25	ML ML ₂	-23.6 -49.1	66.9 103.3	75GN
Ni ²⁺	Cal.	3.0 NaClO ₄	25	ML ML ₂ ML ₃	-13.28 -36.09 -54.75	61.9 75.9 80.9	74BW

(Cal. = calorimetry)

9. REFERENCES

- 26S K. Sano, Biochem. Z., 168, 14 (1926).
- 27CK R.K. Cannan and C.J.G. Knight, Biochem. J., 21, 1384 (1927).
- 37BE H. Borsook, E.L. Ellis and H.M. Huffman, J. Biol. Chem., 117, 281 (1937).
- 39GK J. D. Greenstein, F.W. Klemperer and J. Wyman, J. Biol. Chem., 129, 681 (1939).
- 42SG P.K. Smith, A.T. Gorham and E.R.B. Smith, J. Biol. Chem., 144, 737 (1942).
- 44RS L.K. Ryklan and C.L.A. Schmidt, Arch. Biochem., 5, 89 (1944).
- 50A A. Albert, Biochem. J., 47, 531 (1950).
- 50DW C.W. Davies and G.M. Waind, J. Chem. Soc., 301 (1950).
- 51SK W. Stricks and I.M. Kolthoff, J. Am. Chem. Soc., 73, 4569 (1951).
- 51SKa W. Stricks and I.M. Kolthoff, J. Am. Chem. Soc., 73, 1723 (1951).
- 52A A. Albert, Biochem. J., 50, 690 (1952).
- 52K H. Kroll, J. Am. Chem. Soc., 74, 2034 (1952).
- 52LD N.C. Li and E. Doody, J. Am. Chem. Soc., 74, 4184 (1952).
- 53P D.J. Perkins, Biochem. J., 55, 649 (1953).
- 53SK W. Stricks and I.M. Kolthoff, J. Am. Chem. Soc., 75, 5673 (1953).
- 53TS C. Tanford and W.S. Shore, J. Am. Chem. Soc., 75, 816 (1953).
- 54LD N.C. Li and E. Doody, J. Am. Chem. Soc., 76, 221 (1954).
- 54S J. Schubert, J. Am. Chem. Soc., 76, 3442 (1954).
- 55BB R. Benesch and R.E Benesh, J. Am. Chem. Soc., 77, 3389 (1955).
- 55GN M.A. Grafius and J.B. Neilands, J. Am. Chem. Soc., 77, 3389 (1955).
- 55LM N.C. Li and R.A. Manning, J. Am. Chem. Soc., 77, 5225 (1955).
- 55TK N. Tanaka, I.M. Kolthoff and W. Striks, J. Am. Chem. Soc., 77, 1996 (1955).
- 56G G. Gorin, J. Am. Chem. Soc., 78, 767 (1956).
- 56PC S. Pelletier, J. Curchod and M. Quintin, C. R. Hebd. Séances Acad. Sci., 243, 1868 (1956).
- 56WM J.M. White, R.A. Manning and N.C. Li, J. Am. Chem. Soc., 78, 2367 (1956).
- 57LW N.C. Li, W.M. Westfall, A. Lindenbaum, J.M. White and J. Schubert, J. Am. Chem. Soc., 79, 5864 (1957).
- 57P S. Pelletier, C. R. Hebd. Séances Acad. Sci., 245, 160 (1957).
- 57PQ S. Pelletier and M. Quintin, C. R. Hebd. Séances Acad. Sci., 244, 894 (1957).
- 58LD N.C. Li, B.E. Doody and J.M. White, J. Am. Chem. Soc., 80, 5901 (1958).
- 58P D.D. Perrin, J. Chem. Soc., 3125 (1958).
- 59B W.E. Bennett, J. Am. Chem. Soc., 81, 246 (1959).
- 59FO G. Fölsch and R. Österberg, J. Biol. Chem., 234, 2298 (1959).
- 59MH Y. Mashiko, N. Hosoya and M. Akimoto, J. Electrochem. Soc. Japan, 27, E-33 (1959).
- 59P D.D. Perrin, J. Chem. Soc., 290 (1959).
- 60P S. Pelletier, Diss., University of Paris (1960).
- 60Pa S. Pelletier, J. Chim. Phys., 57, 301 (1960).
- 60Pb S. Pelletier, J. Chim. Phys., 57, 306 (1960).
- 60Pc S. Pelletier, J. Chim. Phys., 57, 311 (1960).
- 61KP E.C. Knoblock and W.C. Purdy, J. Electroanal. Chem., 2, 493 (1961).
- 61RR F.J.C. Rossotti and H. Rossotti, 'The Determination of Stability Constants', Mc Graw-Hill, New York (1961).
- 61S R.B. Simpson, J. Am. Chem. Soc., 83, 4711 (1961).

- 62EE E.L. Elson and J.T. Edsall, *Biochem*, 1, 1 (1962).
- 62RS G.N. Rao and R.S. Subrahmanya, Current Sci., 31, 55 (1962).
- 63HP C.J. Hawkins and D.D. Perrin, Inorg. Chem., 2, 843 (1963).
- 63KM A. Aziz Khan and W.U. Malik, J. Indian Chem. Soc., 40, 565 (1963).
- 63SC J.T. Spence and H.H.Y. Chang, Inorg. Chem., 2, 319 (1963).
- 64FW M. Friedman and J.S. Wall, J. Am. Chem. Soc., 86, 3735 (1964).
- 64IC R.M. Izatt, J.J. Christensen and V. Kothari, Inorg. Chem., 3, 1565 (1964).
- 64J V. Jokl, J. Chromatogr., 14, 71 (1964).
- 64KW H.-W. Krause, F.-W. Wilcke, H. Mix and W. Langenbeck, Z. Phys. Chem., 225, 342 (1964).
- 64LM G.R. Lenz and A.E. Martell, Biochemistry, 3, 745 (1964).
- 64RS G.N. Rao and R.S. Subrahmanya, Proc. Indian Acad. Sci., 60, 165 (1964).
- 64S A.Y. Sychev, Russ. J. Inorg. Chem., 9, 1270 (1960).
- 64SM L.G. Sillén and A.E. Martell, 'Stability Constants of Metal-ion Complexes', The Chemical Society, Special Publication N°17, London (1964).
- 64WI D.P. Wrathall, R.M. Izatt and J.J. Christensen, J. Am. Chem. Soc., 86, 4779 (1964).
- 65CM H.L. Conley Jr and R.B. Martin, J. Phys. Chem., 69, 2923 (1965).
- 65D D.A. Doornbos, Thesis, University of Rijks, Groningen, Netherlands (1965).
- 65FC M. Friedman, J.F. Cavins and J.S. Wall, J. Am. Chem. Soc., 87, 3672 (1965).
- 65PG V.D. Panasyuk and V.A. Golub, Russ. J. Inorg. Chem., 10, 482 (1965).
- 65PP P.A. Pella and W.C. Purdy, J. Electroanal. Chem., 10, 51 (1965).
- 65RW J.H. Ritsma, G.A. Wiegers and F. Jellinek, Recl. Trav. Chim. Pays-Bas, 84, 1577 (1965).
- 66TA V.F. Toropova and Y.M. Azizov, Russ. J. Inorg. Chem., 11, 288 (1966).
- 66SP I.H. Suffet and W.C. Purdy, J. Electroanal. Chem., 11, 302 (1966).
- 66WS K. Wallenfels and C. Streffer, Biochem. Z., 346, 119 (1966).
- 67AM Y.M. Azizov, A.M. Miftakhova and V.F. Toropova, Russ. J. Inorg. Chem., 12, 345 (1967).
- 67NS P.Z. Neumann and A. Sass-Kortsak, J. Clin. Invest., 46, 646 (1967).
- 67PS D.D. Perrin, I.G. Sayce and V.S. Sharma, J. Chem. Soc. (A), 1755 (1967).
- 67S V.S. Sharma, Biochim. Biophys. Acta, 148, 37 (1967).
- 67SS W.F. Stack and H.A. Skinner, Trans. Faraday Soc., 63, 1136 (1967).
- 68IC J. Israeli and M. Cecchetti, Can. J. Chem., 46, 3821 (1968).
- 68PO A.S. Prasad and D. Oberleas, J. Lab. Clin. Med., 72, 1006 (1968).
- 68PS D.D. Perrin and I.G. Sayce, J. Chem. Soc. (A), 53 (1968).
- 68PSa D.D. Perrin and V.S. Sharma, J. Chem. Soc. (A), 446 (1968).
- 68RM E.V. Raju and H.B. Mathur, J. Inorg. Nucl. Chem., 30, 2181 (1968).
- 68RP E.M. Rogozina, D.K. Popov and T.M. Ponikarova, Radiokhim., 10, 593 (1968); Soviet Radiochem., 10, 579 (1968).
- 68S I.G. Sayce, Talanta, 15, 1397 (1968).
- 68ZK E.A. Zekharova and V.N. Kumok, Zh. Obshch. Khim., 38, 1922 (1968); J. Gen. Chem. USSR, 38, 1868 (1968).
- 69CM E. Coates, C.G. Marsden and B. Rigg, Trans. Faraday Soc., 65, 863 (1969).
- 69CMa E. Coates, C.G. Marsden and B. Rigg, Trans. Faraday Soc., 65, 3032 (1969).
- 69CP C.W. Childs and D.D. Perrin, J. Chem. Soc. (A), 1039 (1969).
- 69FM H.C. Freeman and R.-P. Martin, J. Biol. Chem., 244, 4823 (1969).

- 69LC T.-T. Lai and M.-C. Chen, Talanta, 16, 544 (1969).
- 69PS D.D. Perrin and V.S. Sharma, J. Chem. Soc. (A), 2060 (1969).
- 69TS A.C.R. Thornton and H.A. Skinner, Trans. Faraday Soc., 65, 2044 (1969).
- 69VF D. van der Helm and W.A. Franks, Acta Cryst., B25, 451 (1969).
- 69VH D. van der Helm and M.B. Hossain, Acta Cryst., B25, 457 (1969).
- 70B M.T. Beck, 'Chemistry of Complex Equilibria', Van Nostrand Reinhold Co., London (1970).
- 70BP D.S. Barnes and L.D. Pettit, Chem. Comm., 1000 (1970).
- 70FM O. Farooq, A.U. Malik and N. Ahmad, J. Electroanal. Chem., 24, 233 (1970).
- 70FMa O. Farooq, A.U. Malik and N. Ahmad, J. Electroanal. Chem., 26, 409 (1970).
- 70FMb O. Farooq, A.U. Malik, N. Ahmad and S.M.F. Rahman, J. Electroanal. Chem., 24, 46 (1970).
- 70GN A. Gergely, I. Nagypal and I. Sovago, Magy. Kém. Foly., 76, 550 (1970).
- 70HM R.W. Hay and P.J. Morris, J. Chem. Soc. (B), 1577 (1970).
- 70JP T.J. Janjic, L.B. Pfendt and M.B. Celap, Z. Anorg. Allg. Chem., 373, 83 (1970).
- 70LB J.E. Letter Jr and J.E. Bauman Jr, J. Am. Chem. Soc., 92, 437 (1970).
- 70RP E.M. Rogozina and T.M. Ponikarova, Zh. Obshch. Khim., 40, 2357 (1970); J. Gen. Chem. USSR, 40, 2346 (1970).
- 70RS A. Raghavan and M. Santappa, Curr. Sci., 39, 302 (1970).
- 70VN D. van der Helm, A.F. Nicholas and C.G. Fisher, Acta Cryst., B26, 1172 (1970).
- 71BP D.S. Barnes and L.D. Pettit, J. Inorg. Nucl. Chem., 33, 2177 (1971).
- 71GN A. Gergely, I. Nagypal and I. Sovago, Acta Chim. Acad. Sci. Hung., 67, 241 (1971).
- 71HP P.S. Hallman, D.D. Perrin and A.E. Watt, Biochem. J., 121, 549 (1971).
- 71KP S.S. Kalinina, Z.N. Prozorovskaya, L.N. Komissarova and V.I. Spitsyn, Russ. J. Inorg. Chem., 16, 1357 (1971).
- 71MB M.A. Marini, R.L. Berger, D.P. Lam and C.J. Martin, Anal. Biochem., 43, 188 (1971).
- 71SM L.G. Sillén and A.E. Martell, 'Stability Constants of Metal-ion Complexes', Supplement N°1, The Chemical Society, Special Publication N°25, London (1971).
- 71SS B.S. Sekhon, P.P. Singh and S.L. Chopra, Indian J. Chem., 9, 485 (1971).
- 72BL P. Bonvicini, A. Levi, V. Lucchini and G. Scorrano, J. Chem. Soc., Perkin Trans. II, 2267 (1972).
- 72CB G. Carpeni, E. Boitard and R. Pilard, J. Chim. Phys., 69, 1445 (1972).
- 72GH E.L. Giroux and R.I. Henkin, Biochim. Biophys. Acta, 273, 64 (1972).
- 72GM A. Gergely, J. Mojzes and ZS. Kassai-Bazsa, Magy Kém. Foly, 78, 76 (1972).
- 72GMa A. Gergely, J. Mojzes and ZS. Kassai-Bazsa, J. Inorg. Nucl. Chem., 34, 1277 (1972).
- 72GP K. Garbett, G.W. Partridge and R.J.P. Williams, Bioinorg. Chem., 1, 309 (1972).
- 72GS A. Gergely, I. Sovago, I. Nagypal and R. Kiraly, Inorg. Chim. Acta, 6, 435 (1972).
- 72GW R.D. Graham, D.R. Williams and P.A. Yeo, J. Chem. Soc., Perkin Trans. II, 1876 (1972).
- 72IN T.P. I and G.H. Nancollas, Inorg. Chem., 11, 2414 (1972).
- 72JB G. Jung, E. Breitmaier and W. Voelter, Eur. J. Biochem., 24, 438 (1972).
- 72RJ J.H. Ritsma and F. Jellinek, Recl. Trav. Chim. Pays-Bas, 91, 923 (1972).
- 72ST H.A. Skinner and E.W. Tipping, Rev. Chim. Min., 9, 51 (1972).
- 73BJ J.R. Blackburn and M.M. Jones, J. Inorg. Nucl. Chem., 35, 1605 (1973).
- 73BL P. Bonvicini, A. Levi, V. Lucchini, G. Modena and G. Scorrano, J. Am. Chem. Soc., 95, 5960 (1973).
- 73BS L.P. Berezina, V.G. Samoilenko and A.I. Pozigun, Russ. J. Inorg. Chem., 18, 205 (1973).

- 73CT A.M. Corrie, M.L.D. Touche and D.R. Williams, J. Chem. Soc., Dalton Trans., 2561 (1973).
- 73FA O. Farooq, N. Ahmad and A.U. Malik, J. Electroanal. Chem., 48, 475 (1973).
- 73GM P. Grenouillet, R-P. Martin, A. Rossi and M. Ptak, Biochim. Biophys. Acta, 322, 185 (1973)
- 73H J.A. Happe, J. Am. Chem. Soc., 95, 6232 (1973).
- 73KS T.P.A. Kruck and B. Sarkar, Can. J. Chem., 51, 3555 (1973).
- 73PA D.D. Perrin and R.P. Agarwal, in 'Metal Ions in Biological Systems', Vol. 2, H. Sigel ed., Marcel Dekker, New York (1973), p. 167.
- 73RG P.C. Rawat and C.M. Gupta, Indian J. Chem., II, 186 (1973).
- 73RK E.M. Rogozina, L.F. Konkina and D.K. Popov, Radiokhim., 15, 61 (1973); Soviet Radiochem., 15, 59 (1973).
- 73RS A. Raghavan and M. Santappa, J. Inorg. Nucl. Chem., 35, 3363 (1973).
- 73SA R.V. Snyder and R.J. Angelici, J. Inorg. Nucl. Chem., 35, 523 (1973).
- 73SC B.S. Sekhon and S.L. Chopra, Thermochim. Acta, 7, 311 (1973).
- 73SR S.K. Srivastava, E.V. Raju and H.B. Mathur, J. Inorg. Nucl. Chem., 35, 253 (1973).
- 73SK G.M. Sergeev and I.A. Korshunov, Radiokhim., 15, 618 (1973); Soviet Radiochem., 15, 619 (1973).
- 73SKa G.M. Sergeev and I.A. Korshunov, Radiokhim., 15, 621 (1973); Soviet Radiochem., 15, 623 (1973).
- 73SY A.D. Sherry, C. Yoshida, E.R. Birnbaum and D.W. Darnall, J. Am. Chem. Soc., 95, 3011 (1973).
- 73TS R.C. Tewari and M.N. Srivastava, Talanta, 20, 133 (1973).
- 73TSa R.C. Tewari and M.N. Srivastava, J. Inorg. Nucl. Chem., 35, 3044 (1973).
- 73TSb R.C. Tewari and M.N. Srivastava, Indian J. Chem., 11, 701 (1973).
- 73VB W.E. van der Linden and C. Beers, Anal. Chim. Acta, 68, 143 (1973).
- 73W D.R. Williams, J. Chem. Soc., Dalton Trans., 1064 (1973).
- 74BW A.C. Baxter and D.R. Williams, J. Chem. Soc., Dalton Trans., 1117 (1974).
- 74FA O. Farooq and N. Ahmad, J. Electroanal. Chem., 53, 457 (1974).
- 74FAa O. Farooq and N. Ahmad, J. Electroanal. Chem., 53, 461 (1974).
- 74FAb O. Farooq and N. Ahmad, J. Electroanal. Chem., 57, 121 (1974).
- 74FL Y.D. Fridman and M.G. Levina, Zh. Neorg. Khim., 19, 2422 (1974); Russ. J. Inorg. Chem., 19, 1324 (1974).
- 74GW R.D. Graham and D.R. Williams, J. Chem. Soc., Dalton Trans., 1123 (1974).
- 74KH V.J. Kollmann and E. Hoyer, J. Prakt. Chem., 316, 119 (1974).
- 74KU F.Y. Kul'ba, V.G. Ushakova and Y.B. Yakovlev, Zh. Neorg. Khim., 19, 1785 (1974); Russ. J. Inorg. Chem., 19, 972 (1974).
- 74MG D.B. Mc Cormick, R. Griesser and H. Sigel, in 'Metal Ion in Biological Systems', Vol. 1, H. Sigel ed., M. Dekker, New York (1974), p. 213.
- 74MS A.E. Martell and R.M. Smith, 'Critical Stability Constants', Vol. 1, Plenum Press, New York (1974).
- 74PN V.E. Plyushchev, G.V. Nadezhdina, G.S. Loseva, V.V. Mel'nikova and T.S. Parfenova, Zh. Obshch. Khim., 44, 2319 (1974); J. Gen. Chem. USSR, 44, 2274 (1974).
- 74RM S. Ramamoorthy and P.G. Manning, Inorg. Nucl. Chem. Letters, 10, 623 (1974).
- 74RMa S. Ramamoorthy and P.G. Manning, J. Inorg. Nucl. Chem., 36, 1671 (1974).
- 74SC B.S. Sekhon and S.L. Chopra, Indian J. Chem., 12, 1322 (1974).
- 74SK G.M. Sergeev and I.A. Korshunov, Radiokhim., 16, 783 (1974); Soviet Radiochem., 16, 767 (1974).

- 74TS R.C. Tewari and M.N. Srivastava, Acta Chim. Acad. Sci. Hung., 83, 259 (1974).
- 74WL D.B. Walters and D.E. Leyden, Anal. Chim. Acta, 72, 275 (1974).
- 74WW M.D. Walker and D.R. Williams, J. Chem. Soc., Dalton Trans., 1186 (1974).
- 75BW A.C. Baxter and D.R. Williams, J. Chem. Soc., Dalton Trans., 1757 (1975).
- 75CM A.M. Corrie, G.K.R. Makar, M.L.D. Touche and D.R. Williams, J. Chem. Soc., Dalton Trans., 1803 (1975).
- 75FR M.T. Fairhurst and D.L. Rabenstein, Inorg. Chem., 14, 1413 (1975).
- 75GN A. Gergely, I. Nagypal and E. Farkas, J. Inorg. Nucl. Chem., 37, 551 (1975).
- 75HV G.J.M. Heijne and W.E. van der Linden, Talanta, 22, 923 (1975).
- 75IP M. Israeli and L.D. Pettit, J. Inorg. Nucl. Chem., 37, 999 (1975).
- 75RF D.L. Rabenstein and M.T. Fairhurst, J. Am. Chem. Soc., 97, 2086 (1975).
- 75RM S. Ramamoorthy and P.G. Manning, J. Inorg. Nucl. Chem., 37, 363 (1975).
- 75S T. Simeonova, Nauchni Tr.- Plovdiv Univ., 13, 61 (1975).
- 75SC B.S. Sekhon and S.L. Chopra, Ann. Chim., 10, 22 (1975).
- 75ZK G.D. Zegzhda, V.N. Kabanova and F.M. Tulyupa, Zh. Neorg. Khim., 20, 2325 (1975); Russ. J. Inorg. Chem., 20, 1289 (1975).
- 76BH P. Bianco, J. Haladjian and R. Pilard, J. Electroanal. Chem., 72, 341 (1976).
- 76CW A.M. Corrie, M.D. Walker and D.R. Williams, J. Chem. Soc., Dalton Trans., 1012 (1976).
- 76CWa A.M. Corrie and D.R. Williams, J. Chem. Soc., Dalton Trans., 1068 (1976).
- 76HS Y. Hojo, Y. Sugiura and H. Tanaka, J. Inorg. Nucl. Chem., 38, 641 (1976).
- 76KF B. Khan, O. Farooq and N. Ahmad, J. Electroanal. Chem., 74, 239 (1976).
- 76KS N. Kojima, Y. Sugiura and H. Tanaka, Bull. Soc. Chim. Japan, 49, 3023 (1976).
- 76PS L.D. Pettit and J.L.M. Swash, J. Chem. Soc., Dalton Trans., 2416 (1976).
- 76SP J.L.M. Swash and L.D. Pettit, Inorg. Chim. Acta, 19, 19 (1976).
- 76ZN G.D. Zegzhda, S.I. Neikovskii and F.M. Tulyupa, Koord. Khim., 2, 162 (1976); Soviet J. Coord. Chem., 2, 124 (1976).
- 77B M.T. Beck, Pure & Appl. Chem., 49, 127 (1977).
- 77BP G. Brookes and L.D. Pettit, J. Chem. Soc., Dalton Trans., 1918 (1977).
- 77BR S.A. Bedell, P.R. Rechani, R.J. Angelici and R. Nakon, Inorg. Chem., 16, 972 (1977).
- 77CL A.K. Chattopadhyay and S.C. Lahiri, Indian J. Chem., 15A, 930 (1977).
- 77DO P.G. Daniele and G. Ostacoli, Ann. Chim., 67, 311 (1977).
- 77L M. Lamache-Duhameaux, J. Inorg. Nucl. Chem., 39, 2081 (1977).
- 77La M.-C. Lim, J. Chem. Soc., Dalton Trans., 1398 (1977).
- 77M H. Matsui, Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 45, 734 (1977).
- 77MG P.K. Migal, A.P. Gerbeleu and I.K. Gaidarzhi, Zh. Neorg. Khim., 22, 155 (1977).
- 77ML P.M. May, P.W. Linder and D.R. Williams, J. Chem Soc., Dalton Trans., 588 (1977).
- 77MS S.D. Makhijani and S.P. Sangal, J. Indian Chem. Soc., LIV, 670 (1977).
- 77NG I. Nagypal and A. Gergely, J. Chem. Soc., Dalton Trans., 1109 (1977).
- 77PU V.P. Poddymov and A.A. Ustinova, Zh. Neorg. Khim., 22, 1617 (1977); Russ. J. Inorg. Chem., 22, 877 (1977).
- 77RN J. Rangarajan, B.I. Nemade and R. Sundaresan, Proc. Indian Acad. Sci., 85A, 454 (1977).
- 77RR K. Rangaraj and V.V. Ramanujam, J. Inorg. Nucl. Chem., 39, 489 (1977).
- 77S B. Sarkar, J. Indian Chem. Soc., LIV, 117 (1977).
- 78BK G.A. Bagiyan, I.K. Koroleva and N.V. Soroka, Zh. Neorg. Khim., 23, 2422 (1978); Russ. J. Inorg. Chem., 23, 1337 (1978).

- 78BM G. Berthon, P.M. May and D.R. Williams, J. Chem. Soc., Dalton Trans., 1433 (1978).
- 78IS N. Ivicic and V. Simeon, Thermochim. Acta, 25, 299 (1978).
- 78KA A.P. Kreshkov, N.S. Aldarova, A.M. Yarovenko, B.B. Tanganov, K.N. Shulunova, T.K. Batorova and T.E. Batlaeva, Zh. Fiz. Khim., 52, 456 (1978); Russ. J. Phys. Chem., 52, 255 (1978).
- 78L M.-C. Lim, J. Chem. Soc., Dalton Trans., 726 (1978).
- 78MG P.K. Migal, A.P. Gerbeleu, P.G. Kalitina and T.K. Utkina, Zh. Neorg. Khim., 23, 1593 (1978); Russ. J. Inorg. Chem., 23, 878 (1978).
- 78MGa P.K. Migal, A.P. Gerbeleu and P.G. Kalitina, Zh. Neorg. Khim., 23, 1602 (1978); Russ. J. Inorg. Chem., 23, 882 (1978).
- 78MS S.D. Makhijani and S.P. Sangal, Chem. Era, 202 (1978).
- 78NM M. Niitsu, T. Manri and N. Iritani, Bull. Chem. Soc. Japan, 51, 2165 (1978).
- 78VV J. Vliegen and L.C. van Poucke, Bull. Soc. Chim. Belg., 87, 837 (1978).
- 79FD Y.D. Fridman, N.V. Dolgashova and T.Z. Zhusupbekov, Zh. Neorg. Khim., 24, 3325 (1979); Russ. J. Inorg. Chem., 24, 1852 (1979).
- 79FM Y.D. Fridman and L.Y. Mikhailyuk, Koord. Khim., 5, 972 (1979).
- 79GS A. Gergely and I. Sovago, in 'Metal Ions in Biological Systems', Vol. 9, H. Sigel ed., M. Dekker, New York (1979) p. 77.
- 79KC Y. Khayat, M. Cromer-Morin and J.P. Scharff, J. Inorg. Nucl. Chem., 41, 1496 (1979).
- 79M R.B. Martin, in 'Metal Ions in Biological Systems', Vol. 9, H. Sigel ed., M. Dekker, New York (1979) p. 1.
- 79PB L. Pillai, R.D. Boss and M.S. Greenberg, J. Sol. Chem., 8, 635 (1979).
- 79PG M.M. Palrecha and J.N. Gaur, J. Electrochem. Soc. India, 28, 233 (1979).
- 79PH L.D. Pettit and R.J.W. Hefford, in 'Metal Ions in Biological Systems', Vol. 9, H. Sigel ed., M. Dekker, New York (1979) p. 173.
- 79SG I. Sovago, A. Gergely, B. Harman and T. Kiss, J. Inorg. Nucl. Chem., 41, 1629 (1979).
- 79SGa N.P. Sachan and C.M. Gupta, Indian J. Chem., 18A, 82 (1979).
- 79SP H. Stünzi and D.D. Perrin, J. Inorg. Biochem., 10, 309 (1979).
- 79SS N.P. Sachan, S.K.Shah and C.M. Gupta, Indian J. Chem., 17A, 622 (1979).
- 79SSb C.F. Shaw III, G. Schmitz, H.O. Thompson and P. Witkiewicz, J. Inorg. Biochem., 10, 317 (1979).
- 79YS O. Yamauchi, T. Sakurai and A. Nakahara, J. Am. Chem. Soc., 101, 4164 (1979).
- 79ZJ T.D. Zucconi, G.E. Janauer, S. Donahe and C. Lewkowicz, J. Pharm. Sci., 68, 426 (1979).
- 79ZN G.D. Zegzhda, S.I. Neikovskii, F.M. Tulyupo and A.P. Tulya, Koord. Khim., 5, 632 (1979); Soviet J. Coord. Chem., 5, 494 (1979).
- 80AM G. Arena, S. Musumeci, E. Rizzarelli and S. Sammartano, Transition Met. Chem., 5, 297 (1980).
- 80AS B.R. Arbad, D.N. Shelke and D.V. Jahagirdar, Inorg. Chim. Acta, 46, L17 (1980).
- 80BM G. Berthon, C. Matuchansky and P.M. May, J. Inorg. Biochem., 13, 63 (1980).
- 80JK S.L. Jain and R.C. Kapoor, Indian J. Chem., 19A, 351 (1980).
- 80KB A. Kayali and G. Berthon, J. Chem. Soc., Dalton Trans., 2374 (1980).
- 80KT A.P. Kreshkov, B.B. Tanganov, A.N. Yarovenko and T.K. Batorova, Zh. Fiz. Khim., 54, 105 (1980); Russ. J. Phys. Chem., 54, 56 (1980).
- 80MS K. Matsuda, C. Shirahige, M. Takahara and M. Maki, Nihon Daigaku Seisankogakubu Hokoku, 13, 73 (1980); CA 94:116414h (1981).
- 80RK V.V. Ramanujam and U. Krishnan, J. Indian. Chem. Soc., LVII, 359 (1980).
- 80RKa V.V. Ramanujam and U. Krishnan, Indian. J. Chem., 19A, 779 (1980).

- 80RR V.V. Ramanujam, K. Rengaraj and B. Sivasankar, Indian J. Chem., 19A, 240 (1980).
- 80S G.M. Sergeev, Radiokhim., 22, 701 (1980).
- 80SD C.L. Sharma and T.K. De, J. Less-Common Metals, 70, 63 (1980).
- 80SG S.K. Shah and C.M. Gupta, Talanta, 27, 823 (1980).
- 80TH M.M. Taqui Khan and A. Hussain, Indian J. Chem., 19A, 44 (1980).
- 80YT O. Yamauchi, T. Takara and T. Sakurai, Bull. Chem. Soc. Japan, 53, 106 (1980).
- 81AB T. Alemdaroglu and G. Berthon, Inorg. Chim. Acta, 56, 115 (1981).
- 81ABa T. Alemdaroglu and G. Berthon, Inorg. Chim. Acta, 56, 51 (1981).
- 81ABb T. Alemdaroglu and G. Berthon, Bioelectrochem. Bioenerg., 8, 49 (1981).
- 81BC M.A. Basinger, J.S. Casas, M.M. Jones, A.D. Weaver and N.H. Weinstein, J. Inorg. Nucl. Chem., 43, 1419 (1981).
- 81BK M.J. Blais, A. Kayali and G. Berthon, Inorg. Chim. Acta, 56, 5, (1981).
- 81BR S.J. Backs and D.L. Rabenstein, Inorg. Chem., 20, 410 (1981).
- 81CD B. Carré and J. Devinck, Bull. Soc. Chim. Fr., I-309 (1981).
- 81FP Y.D. Fridman, Z.M. Pulatova and M.G. Levina, Koord. Khim., 7, 73 (1981).
- 81G A. Gergely, Inorg. Chim. Acta, 56, L75 (1981).
- 81IS N. Ivicic and V. Simeon, J. Inorg. Nucl. Chem., 43, 2581 (1981).
- 81JI M. Jawaid and F. Ingman, Talanta, 28, 137 (1981).
- 81L M.-C. Lim, Inorg. Chem., 20, 1377 (1981).
- 81M H. Matsui, J. Inorg. Nucl. Chem., 43, 2187 (1981).
- 81MC J. Maslowska and L. Chruscinski, J. Inorg. Nucl. Chem., 43, 3398 (1981).
- 81MG P.K. Migal, A.P. Gerbeleu and A.P. Tyunikova, Zh. Neorg. Khim., 26, 1826 (1981); Russ. J. Inorg. Chem., 26, 985 (1981).
- 81MW P.M. May and D.R. Williams, in 'Metal Ions in Biological Systems', Vol. 12, H. Sigel ed., M. Dekker, New York (1981) p. 283.
- 81PS L.D. Pettit, K.F. Siddiqui, H. Kozlowski and T. Kowalik, Inorg. Chim. Acta, 55, 87 (1981).
- 81PU V.D. Poddymov and A.A. Ustinova, Zh. Neorg. Khim., 26, 1307 (1981); Russ. J. Inorg. Chem., 26, 702 (1981).
- 81R D. Reddy, Indian J. Chem., 20A, 1038 (1981).
- 81RK V.V. Ramanujam and U. Krishnan, J. Indian. Chem. Soc., LVIII, 425 (1981).
- 81RR R.S. Reid and D.L. Rabenstein, Can. J. Chem., 59, 1505 (1981).
- 81RS V.V. Ramanujam and V.M. Selvarajan, Indian J. Chem., 20A, 633 (1981).
- 81RSa V.V. Ramanujam and V.M. Selvarajan, J. Indian. Chem. Soc., LVIII, 125 (1981).
- 81RSb V.V. Ramanujam and V.M. Selvarajan, J. Indian. Chem. Soc., LVIII, 1131 (1981).
- 81S B. Sarkar, in 'Metal Ions in Biological Systems', Vol. 12, H. Sigel ed., M. Dekker, New York (1981) p. 233.
- 81SH P. Sharrock and R. Haran, J. Coord. Chem., 11, 117 (1981).
- 81UP P. Utrilla Sanchez, L. Parra Bravo and P. Sanchez Batanero, Analusis, 9, 455 (1981).
- 81W D.R. Williams, private communication.
- 82BB M.J. Blais and G. Berthon, Inorg. Chim. Acta, 67, 109 (1982).
- 82BC Y. Bizri, M. Cromer-Morin and J.P. Scharff, J. Chem. Res., 192 (1982).
- 82BK G. Berthon and A. Kayali, Agents Actions, 12, 398 (1982).
- 82CG C.P.S. Chandel, C.M. Gupta and N.P. Sachan, Chem. Scr., 20, 229 (1982).
- 82DD B.P. Dey, S. Dutta and S.C. Lahiri, Indian J. Chem., 21A, 886 (1982).

- 82HA Z-X. Huang, H.S. Al-Falahi, A. Cole, J.R. Duffield, C. Furnival, D.C. Jones, P.M. May, G.L. Smith and D.R. Williams, *Polyhedron*, 1, 153 (1982).
- 82J J.D. Joshi, Indian J. Chem., 21A, 446 (1982).
- 82KB A. Kayali and G. Berthon, Polyhedron, 1, 371 (1982).
- 82KP Z. Kralj, N. Paulic, N. Raos and V. Simeon, Croat. Chem. Acta, 55, 337 (1982).
- 82MH H. Matsui, Y. Hirabayashi and M. Furukawa, Nagoya Kogyo Gijutsu Shikensho Hokoku, 31, 168 (1982).
- 82MS A.E. Martell and R.M. Smith, 'Critical Stability Constants', Vol. 5, Plenum Press, New York (1982).
- 82N A. Napoli, Ann. Chim., 72, 575 (1982).
- 82NA T. Nageswara Rao, G. Aravamudan and R. Narayan, Electrochim. Acta, 27, 985 (1982).
- 82NM M. Nourmand and N. Meissami, Polyhedron, 1, 537 (1982).
- 82NMa M. Nourmand and N. Meissami, Radiochem. Radioanal. Letters, 55, 149 (1982).
- 82RB M. Ramaiah, B.G. Bhat and R. Sundaresan, Proc. Indian Acad. Sci., 91, 151 (1982).
- 82S D.N. Shelke, J. Coord. Chem., 12, 35 (1982).
- 82SD C.L. Sharma and T.K. De, J. Indian Chem. Soc., LIX, 101 (1982).
- 82TB H.E. Toma, A.A. Batista and H.B. Gray, J. Am. Chem. Soc., 104, 7509 (1982).
- 82VN K. Venkatachalapathi, M.S. Nair, D. Ramaswamy and M. Santappa, J. Chem. Soc., Dalton Trans., 291 (1982).
- 82WF D.R. Williams, C. Furnival and P.M. May, in J.R.J. Sorenson (ed.), 'Inflammatory Diseases and Copper', The Humana Press, Clifton, New Jersey, (1982), p. 45.
- 82XL S. Xu, X. Liu, G. Sun and K. Wang, Fenzi Kexue Xuebao, 2, 19 (1982); CA 98:60708v (1983).
- 83AC A.P. Arnold and A.J. Canty, Can. J. Chem., 61, 1428 (1983).
- 83BA R.K. Boggess, J.R. Absher, S. Morelen, L.T. Taylor and J.W. Hughes, *Inorg. Chem.*, 22, 1273 (1983).
- 83BV G.A. Bagiyan, A.K. Valeev, I.K. Koroleva and N.V. Soroka, Zh. Neorg. Khim., 28, 2016 (1983); Russ. J. Inorg. Chem., 28, 1142 (1983).
- 83DQ K.P. Dubey and M.A. Qazi, Proc. Nat. Acad. Sci. India, 53(A), 342 (1983).
- 83FA Ya.D. Fridman, S.V. Alikeeva, N.V. Dolgashova and T.G. Nemal'tseva, Russ. J. Inorg. Chem., 28, 836 (1983).
- 83HD D. Huljev, M. Dzajo, N. Kristic and P. Strohal, Intern. J. Environ. Anal. Chem., 15, 53 (1983).
- 83HS B. Harman and I. Sovago, Inorg. Chim. Acta, 80, 75 (1983).
- 83HV T.U. Hoogenraad and C.J.A. van den Hamer, Acta Neurol. Scand., 67, 356 (1983).
- 83JK S.L. Jain and R.C. Kapoor, Inorg. Chim. Acta, 78, 93 (1983).
- 83KP A. Kufelnicki and S. Petri, Pol. J. Chem., 57, 1129 (1983).
- 83LW L. Lomozik, A. Wojciechowska and M. Jaskolski, Mon. Chem., 114, 1185 (1983).
- 83NM M. Nourmand and N. Meissami, J. Chem. Soc., Dalton Trans., 1529 (1983).
- 83S D.N. Shelke, Inorg. Chim. Acta, 80, 255 (1983).
- 83VD N.N. Vlasova and N.K. Davidenko, Koord. Khim., 9, 1470 (1983).
- 83VK M. Vašák and J.H.R. Kägi, in 'Metal Ions in Biological Systems', Vol. 15, H. Sigel ed., M. Dekker, New York (1983) p. 213.
- 84AO N. Al-Ani and A. Olin, Chem. Scr., 23, 161 (1984).
- 84BB G. Berthon, M.J. Blais, M. Piktas and K. Houngbossa, J. Inorg. Biochem., 20, 113 (1984).
- 84BP G. Berthon, M. Piktas and M.J. Blais, Inorg. Chim. Acta, 93, 117 (1984).
- 84CG C.P.S. Chandel and C.M. Gupta, Bull. Chem. Soc. Jpn., 57, 2303 (1984).

- 84GN H.B. Gurav and B.I. Nemade, J. Electrochem. Soc. India, 33, 139 (1984).
- 84ID S. Iftekhar and K.P. Dubey, J. Indian Chem. Soc., LXI, 702 (1984).
- 84J J.D. Joshi, J. Indian Chem. Soc., 61, 257 (1984).
- 84Ja J.D. Joshi, J. Indian Chem. Soc., 61, 901 (1984).
- 84KB V.G. Kulkarni, P.K.Bhansali and B.I. Nemade, J. Electrochem. Soc. India, 33, 143 (1984).
- 84KW F. Karczinski, J. Wolinski and H. Lapkowska, Chem. Anal. (Warsaw), 29, 19 (1984).
- 84LT P.W. Linder, R.G. Torrington and D.R. Williams, 'Analysis Using Glass Electrodes', Open University Press, Milton Keynes, (1984).
- 84MC J. Maslowska and L. Chruscinski, Polyhedron, 3, 523 (1984).
- 84MCa J. Maslowska and L. Chruscinski, Polyhedron, 3, 1329 (1984).
- 84MCb J. Maslowska and L. Chruscinski, Acta Univ. Lodz., 3, 23 (1984).
- 84MM K. Murray and P.M. May, ESTA Users' Manual, UWIST, Cardiff (1984).
- 84MR V.R. Mundra, G.N. Rao and C.S.R. Murthy, Pol. J. Chem., 58, 53 (1984).
- 84P L.D. Pettit, Pure & Appl. Chem., 56, 247 (1984).
- 84PB J.M. Pingarron Carrazon, I. del Barrio Marcaida and L.M. Polo Diez, Anal. Quim., 80, 141 (1984).
- 84RS V.V. Ramanujam and V.M. Selvarajan, Proc. Indian Acad. Sci. (Chem. Sci.), 93, 1251 (1984).
- 84S D.N. Shelke, Acta Cienc. Ind., Xc, 97 (1984).
- 84SC M.L.S. Simoès Gonçalves and M.M. Correia Dos Santos, J. Electroanal. Chem., 163, 315 (1984).
- 84SP R.S. Saxena and R.D. Parikh, Bull. Soc. Chim. Belg., 93, 507 (1984).
- 84SY S. Singh, H.L. Yadava, P.C. Yadava and K.L. Yadava, J. Electrochem. Soc. India, 33, 249 (1984).
- 84TS J.J. Tombeux, J. Schaubroek, C.T. Huys, H.F. de Brabander and A.M. Goeminne, Z. Anorg. Allg. Chem., 517, 235 (1984).
- 85AM G. Arena, S. Musumeci, E. Rizzarelli and S. Sammartano, Transition Met. Chem., 10, 399 (1985).
- 85BC R. Benhallam, E. Collange and M.R. Pâris, Bull. Soc. Chim. Fr., 1159 (1985).
- 85BP E. Bottari and R. Porto, Ann. Chim., 75, 393 (1985).
- 85CF A. Cole, C. Furnival, Z.X. Huang, D. Ceri Jones, P.M. May, G.L. Smith, J. Whittaker and D.R. Williams, *Inorg. Chim. Acta*, 108, 165 (1985).
- 85FD Y.D. Fridman, M.S. Dzhusueva and N.V. Dolgashova, Zh. Neorg. Khim., 30, 2286 (1985); Russ. J. Inorg. Chem., 30, 1299 (1985).
- 85KC R. Kumari, C.P.S. Chandel and C.M. Gupta, J. Indian Chem. Soc., LXII, 740 (1985).
- 85KR K.P. Kariya, M.M. Ranade and N.S. Bhave, J. Indian Chem. Soc., LXII, 187 (1985).
- 85MG P.K. Migal and A.P. Gerbeleu, Metallkhelaty Ikh Svoistva, 25 (1985); CA 107:122145z (1987).
- 85MK K. Matsuda, C. Kanai, M. Takahara and M. Maki, Nippon Kagaku Kaishi, 4, 698 (1985).
- 85MM K. Murray, P.M. May and D.R. Williams, Talanta, 32, 483 (1985).
- 85MMa P.M. May, K. Murray and D. Peaper, Rev. Port. Quim., 27, 312 (1985).
- 85MS B.V. Mrudula Rao, S.J. Swamy and P. Lingaiah, Indian. J. Chem., 24A, 887 (1985).
- 85S M.M. Shoukry, Egypt. J. Chem., 28, 443 (1985).
- 85SB L. Spaulding and H.G. Brittain, Inorg. Chem., 24, 3692 (1985).
- 85SC M.L.S. Simoes Gonçalves and M.M. Correia Dos Santos, J. Electroanal. Chem., 187, 333 (1985).
- 85SN C.L. Sharma and S.S. Narvi, Thermochim. Acta, 90, 1 (1985).

- 85SS K.K. Saxena, S. Sharma and R.S. Saxena, Afinidad, 91 (1985).
- 85SY S. Singh, H.L. Yadava, P.C. Yadava and K.L. Yadava, J. Electrochem. Soc. India, 34, 125 (1985).
- 85SYa R.K.P. Singh and K.L. Yadava, J. Electrochem. Soc. India, 34, 128 (1985).
- 85VD N.N. Vlasova and N.K. Davidenko, Zh. Neorg. Khim., 30, 1738 (1985); Russ. J. Inorg. Chem., 30, 988 (1985).
- 86AJ B.R. Arbad and D.V. Jahagirdar, Indian J. Chem., 25A, 253 (1986).
- 86BH G. Berthon, B. Hacht, M.J. Blais and P.M. May, Inorg. Chim. Acta, 125, 219 (1986).
- 86CS M.M. Correia Dos Santos and M.L.S. Simoès Gonçalves, J. Electroanal. Chem., 208, 137 (1986).
- 86FA Y.D. Fridman, S.V. Alideeva, N.V. Dolgashova and T.G. Nemal'tseva, Zh. Neorg. Khim., 31, 1232 (1986); Russ. J. Inorg. Chem., 31, 700 (1986).
- 86FD Y.D. Fridman, M.S. Dzhusueva and N.V. Dolgashova, Zh. Neorg. Khim., 31, 1459 (1986); Russ. J. Inorg. Chem., 31, 834 (1986).
- 86J J.D. Joshi, J. Indian Chem. Soc., LXIII, 929 (1986).
- 86Ja S.L. Jain, J. Indian Chem. Soc., LXIII, 805 (1986).
- 86K F. Khan, J. Indian Chem. Soc., LXIII, 340 (1986).
- 86KC R. Kumari, C.P.S. Chandel and C.M. Gupta, Indian J. Chem., 25A, 877 (1986).
- 86KD D. Kovala-Demertzi, M. Demertzis and J.M. Tsangaris, Bull. Soc. Chim. Fr., 558 (1986).
- 86LS G. Lewis and C.F. Shaw III, Inorg. Chem., 25, 58 (1986).
- 86M R.B. Martin, in 'Metal Ions in Biological Systems', Vol. 20, H. Sigel ed., M. Dekker, New York, (1986) p. 21.
- 86MC J. Maslowska and L. Chruscinski, Polyhedron, 5, 1131 (1986).
- 86MCa J. Maslowska and L. Chruscinski, Polyhedron, 5, 1135 (1986).
- 86PD A. Pal, B.P. Dey and S.C. Lahiri, Indian J. Chem., 25A, 322 (1986).
- 86SP R.S. Saxena and R.D. Parikh, Bull. Soc. Chim. Belg., 95, 163 (1986).
- 86SS S. Sharma, K.K. Saxena and R.S. Saxena, Bol. Soc. Chil. Quim., 31, 7 (1986).
- 86SSa S. Sharma, K.K. Saxena and R.S. Saxena, Trans. SAEST, 21, 127 (1986).
- 86SV I. Sovago, K. Varnagy and A. Benyei, Magy. Kém. Foly., 92, 114 (1986).
- 87CJ F. Chunmei and Z. Jia, Chem. J. Chin. Univ., 8, 1 (1987).
- 87CL S.K. Chakravorty and S.C. Lahiri, J. Indian Chem. Soc., LXIV, 399 (1987).
- 87HO M.J. Hynes and M. O'Dowd, J. Chem. Soc., Dalton Trans., 563 (1987).
- 87KS T. Kiss, C. Simon and Z. Vachter, J. Coord. Chem., 16, 225 (1987).
- 87L S. Laurie, in 'Comprehensive Coordination Chemistry', Vol. 2, G. Wilkinson ed., Pergamon Press, Oxford (1987) p. 739.
- 87MT A.K. Molodkin, E.V. Tarakanova and N.Ya. Esina, Zh. Neorg. Khim., 32, 2299 (1987); Russ. J. Inorg. Chem., 32, 1344 (1987).
- 87PS K. Prasad and M. Srinivas Mohan, J. Coord. Chem., 16, 1 (1987).
- 87RF F. Rodante and F. Fantauzzi, Thermochim. Acta, 111, 233 (1987).
- 87SB R.R. Sharma, B.L. Bhat and K.P. Dubey, J. Indian Chem. Soc., LXIV, 437 (1987).
- 87SM M.M. Shoukry, A.E. Mahgoub and W.M. Hosny, Transition Met. Chem., 12, 77 (1987).
- 87SP I. Sovago and G. Petöcz, J. Chem. Soc., Dalton Trans., 1717 (1987).
- 88AG S.K. Agrawal and K.C. Gupta, Indian J. Chem., 27A, 1008 (1988).
- 88BA J. Benzakour, G. Antonetti and G. Ferroni, Bull. Soc. Chim. Belg., 97, 541 (1988).
- 88GG M. Garcia Bugarin, M.E. Garcia, G. Berthon, J.S. Casas and J. Sordo, Polyhedron, 7, 2487 (1988).

- 88JA D.V. Jahagirdar and B.R. Arbad, Transition Met. Chem., 13, 238 (1988).
- 88KD D. Kovala-Demertzi, M. Demertzis and J.M. Tsangaris, Bull. Soc. Chim. Fr., 793 (1988).
- 88KS K. Kratzer and J. Stary, J. Radioanal. Nucl. Chem. Letters, 127, 325 (1988).
- 88LD L. Lambs, B. Decock-Le Révérend, H. Kozlowski and G. Berthon, Inorg. Chem., 27, 3001 (1988).
- 88LG H.-K. Lin, Z.-Z. Gu, X.-M. Chen and Y.-T. Chen, Thermochim. Acta, 123, 201 (1988).
- 88M L. Magos, in 'Handbook on Toxicity of Inorganic Compounds', H.G. Seiler and H. Sigel eds., M. Dekker, New York (1988) p. 419.
- 88MA M.S. Masoud, B.A. Abdel-Nabby, E.M. Soliman and O.H. Abdel-Hamid, Thermochim. Acta, 128, 75 (1988).
- 88PP M. Philip, M.N. Patel, M.P. Peerzada and J.D. Joshi, J. Indian Chem. Soc., LXV, 871 (1988).
- 88PS K. Prasad, M. Srinivas Mohan and H.B. Bathina, J. Coord. Chem., 17, 63 (1988).
- 88SKI I. Sovago, T. Kiss, K. Varnagy and B. Decock-Le Révérend, Polyhedron, 7, 1089 (1988).
- 88SKa R.K. Saxena, R. Kumari, C.P.S. Chandel and C.M. Gupta, Trans. SAEST, 23, 93 (1988).
- 88SP V.I. Shcherbakova, O.B. Pankratova and G.B. Zhaiykova, Vestn. Leningr. Univ. Ser., 4, 97 (1988).
- 88SS K. Singh, G. Singh and V.D. Gupta, Indian J. Chem., 27A, 264 (1988).
- 89CV J. Costa Pessoa, L.F. Vilas Boas and R.D. Gillard, Polyhedron, 8, 1173 (1989).
- 89CVa J. Costa Pessoa, L.F. Vilas Boas and R.D. Gillard, Polyhedron, 8, 1745 (1989).
- 89DF M.S. Dzhusueva and Y.D. Fridman, Zh. Neorg. Khim., 34, 2839 (1989); Russ. J. Inorg. Chem., 34, 11 (1989).
- 89JA D.V. Jahagirdar, B.R. Arbad, T.K. Chondhekar and S.U. Pankanti, Indian J. Chem., 28A, 366 (1989).
- 89KN F. Khan and K. Nema, J. Indian Chem. Soc., 66, 17 (1989).
- 89KS A. Koteswar Rao and M. Srinivas Mohan, Proc. Indian Acad. Sci. (Chem. Sci.), 101, 1 (1989).
- 89KV A. Koteswar Rao, P. Venkataiah, M. Srinivas Mohan and H.B. Bathina, J. Coord. Chem., 20, 69 (1989).
- 89MA M.R. Mahmoud, H.A. Azab, M.M.A. Hamed and A.H. Mohamed, Chem. Script., 29, 17 (1989).
- 89NK K. Nema and F. Khan, Chem. Script., 29, 155 (1989).
- 89PV K. Prasad, P. Venkataiah and M. Srinivas Mohan, Indian J. Chem., 28A, 325 (1989).
- 89R F. Rodante, Thermochim. Acta, 149, 157 (1989).
- 89RF F. Rodante and F. Fantauzzi, Thermochim. Acta, 144, 275 (1989).
- 89RM F. Rodante, G. Marrosu and F. Fantauzzi, Thermochim. Acta, 141, 297 (1989).
- 89S M.M. Shoukry, Talanta, 36, 1151 (1989).
- 89SC R.K. Saxena, C.P.S. Chandel and C.M. Gupta, Indian J. Chem., 28A, 625 (1989).
- 89SH M.M. Shoukry and W.M. Hosny, Transition Met. Chem., 14, 69 (1989).
- 89SM R.M. Smith and A.E. Martell, 'Critical Stability Constants', Vol. 6, Plenum Press, New York (1989).
- 89WZ L. Wagner-Roos, H. Zahn, J.-M. Séquaris and P. Valenta, Toxicol. Environ. Chem., 22, 77 (1989).
- 89YW H. Yang, W. Wang and L. Peng, Acta Phys.-Chim. Sin., 5, 583 (1989).
- 90BB V. Brumas and G. Berthon, in 'Metal Ions in Biology and Medicine', P. Collery, L.A. Poirier, M. Manfait and J.C. Etienne eds., John Libbey Eurotext, Paris (1990) p. 5.
- 905 M. Shoukry, Proc. Indian Acad. Sci. (Chem. Sci.), 102, 19 (1990).

91DB S. Daydé and G. Berthon, unpublished results.

93BA V. Brumas, N. Alliey and G. Berthon, J. Inorg. Biochem., 52, 287 (1193).

ACKNOWLEDGEMENT

The author wishes to express his thanks to Prs S. Ishiguro, T. Kiss, S.H. Laurie, H. Ohtaki, L.D. Pettit and S. Sjöberg for reading the manuscript and making useful suggestions.

The author is also grateful to Prs Griepink, K. Izutsu, J. Lorimer and H. Ohtaki for their useful advice in the editing.