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Abstract - Importance of the choice of suitable basis sets in ab initio calculations of the electronic 
structure and properties of molecules is briefly discussed. Particular attention is payed to a relatively new 
basis set of Hermite-Gaussian (HG) functions. Their properties and merits are considered in some detail 
and a review of recent results is given. 

INTRODUCTION 

The first step in any of the quantum mechanical calculations on atoms and molecules is the determination of total 
many-electron atomic and molecular wave functions, which in turn are built up from some one-electron functions as 
a rule, the latter are called atomic orbitals (AOs) if they refer to bound-state solutions of a single electron in a central 
field. The corresponding spherically symmetric potentials usually have at least a touch of physical reality, but 
sometimes completely hypothetical potentials are employed. Needless to say, AOs are centered at nuclei of the 
constituent atoms in a molecule. Hartree-Fock (HF) or, to be more specific, Roothaan-Hall equations for molecules 
define optimal molecular orbitals (MOs) in the sense of the average electronic Coulomb field. It is clear that a choice 
of atomic orbitals or basis set in general parametrizes the mamx representation of the HF hamiltonian affecting 
accuracy of calculations. Hence selection of suitable or optimal basis sets is central in computational quantum 
chemistry. Generally speaking, there are three main criteria which should be met by good basis sets (ref. 1). The 
first is related to their completness. Problems arising in basis set truncation are analysed in depth by Klahn (ref. 2). 
The second criterion requires physical correctness of AOs. The underlying physical picture is of paramount 
importance and directly affects performance of the theoretical approach. For instance, enormous computational 
success of the molecular orbital formalism in the LCAO approximation can be traced down to AO's which are 
consistent with a sound concept of (modified) atoms in a molecule. On the other hand, poor performance of the 
single-center expansion method, where all basis set functions are placed at the heavy atom (like fluorine in HF or 
carbon in CH4), is easily understood because existence of hydrogen atom(s) as separate structural unit(s) is denied 
in this particular theoretical procedure. Further, hybrid atomic orbitals (HAOs) provide a good description of a 
number of molecular local and global properties, since they reflect a local symmetry of an atom embedded in a 
molecular environment and deformation of AOs due to the field of neighbouring nuclei. (refs. 3-5). Suitable 
orthogonalized HAOs seem to offer optimal basis sets for various semiempirical schemes (refs. 6-8). Additional 
instructive examples are provided by electric field variant AOs, which are compatible with small off-center shifts of 
atomic charge densities in molecules subjected to external elecmc fields (refs. 9-11). Gauge invariant atomic (GIAO) 
basis sets greately improve performance and yield physically meaningful molecular magnetic propereties in a 
relatively simple manner (refs. 12-14). General requirements like e.g. cusp condition (ref. 15) insure better 
behaviour of the wave function near the nucleus etc. Finally, convenient basis sets should provide a satisfactory 
accuracy and ease of use. Hence, all molecular integrals should be calculable with a relatively small effort. In other 
words, the ratio P E  should be favourable for good basis sets, where P stands for performance (accuracy) whereas E 
denote the required effort (efficiency). It is not the aim of this paper to give a comprehensive review of basis sets 
used in quantum chemistry in the past or at present for several reasons, one of them being a space limitation. This is 
not even necessary because several excellent review articles and books are available (refs. 16-25). Instead, we shall 
make some general remarks and then concentrate on the central theme here: presentation of Hermite-Gaussian (HG) 
functions and discussion of their merits and prospects. Hermite-Gaussian basis sets are not widely known and we 
would like to fill this gap in the literature. 

Two types of AOs which enjoyed a great success and popularity are Slater (STO) and Gaussian (GTO) functions, 
Slater orbitals are solutions of the central field problem: 

and assume a form: 

where Cn is normalization constant Cn = (2c)n+1/2 / [(2n!]1/2 
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Their f o m  is simple and they have correct asymptotical behavior. Since STO satisfy the cusp condition, they provide 
also a good description of wave function in the vicinity of nuclei. Hence, Slater AOs are physically acceptable. 
Many outstanding researchers contributed to a design of algorithms for solving molecular integrals over STOs: 
Coulson, Roothaan, Ruedenberg, Kotani, Wahl, Cade and some others. It turned out that STOs suffer a serious 
drawback. Calculation of polycentric integrals is intricate and very time consuming. Shavitt and Karplus suggested 
the use of Gaussian-transform technique (ref. 26) which represented an improvement but the molecular integrals 
calculations were still too slow. 

A decisive breakthrough was made by invoking Gaussian functions by Boys (ref. 27) and McWeeny (ref. 28). They 
are solutions of an artificial potential: 

V(r) = 2tjZr2 + Ln(n-1) - 1(1+I )]/2r2 (3) 

and are of a fom: 

Rn(r,C) = Cnrn-' exp(-<r2) (4) 

where Cn is the corresponding normalization factor. It is not surprising that GTOs do not posses proper behavior at 
large distances because they decay too quickly. Since GTOs do not satify cusp condition they are not particularly 
suitable for representation of electronic density at very small distances either. Nevertheless, these shortcommings are 
overcompensated by the great efficiency in computing many-center integrals. Hence, larger GTO than STO basis sets 
can be employed. This is the reason why Gaussian AOs dominate contemporary computational quantum chemistry. 

There are many ways of utilizing GTOs. For example, a Slater AO's can be expressed as linear combinations of 
Gaussian functions (refs. 29,30). On the other hand, contracted Gaussian with fixed linear coefficients found a 
widespread use (refs. 20-24). Further, angular dependence is sometimes simulated by spherical lobe-Gaussian 
functions (ref. 32). Additional flexibility is obtained by floating spherical Gaussian (FSGO) by allowing centers of 
GTOs to vary until optimal positions are achieved. Rearrangament of FSGOs centers enables a better description of 
changes in density distributions induced by the chemical bonding (refs. 33-35). We shall explicitly give, for the sake 
of the forthcomming discussion, Cartesian Gaussian functions: 

and ellipsoidal Gaussian functions suggested by Browne and Poshusta (ref. 36): 

-. 
Here xA = x-Ax, where Ax denotes x-coordinate of the nucleus A, a is a mad of nonlinear parameters ax,  ay and 
a,, and 1, m and n are integers. Ellipsoidal Gaussian functions are natural extension of Cartesian GTOs and should 
be in principle useful in describing asymmetry of atomic charge density in molecular environments. The original 
algorithms for molecular integrals involved heavy numerical integrations (ref. 36). This fact prompted us to design 
similar functions-HermiteGaussian (HG) which yield substantially simpler integral expressions (ref. 37). It is 
interesting to mention that HG functions were later rediscovered by Golebiewsky and Salvetti (refs. 38,39) who 
baptized them modified Gaussian functions. In the next section we shall discuss some recent applications of 
Hermite-Gaussians in molecular calculations. 

HERMITE-GAUSSIAN FUNCTIONS 

HG functions are defined as follows: 

" i  where coordinates XA = x-Ax etc. determine electron position relative to a nucleus A, n = nl + n2 + n3 and H 
denotes Hermite polynomials. An alternative and more useful way of expressing HG functions reads: 

This form, involving derivatives over nuclear coordinates, immediately suggest great simplification in calculating 
molecular integrals via interchage of differentiations and integrations over electom coordinates. At the same time it 
indicates that geometry optimization and calculation of force constants can be naturally incorporated in the general 
algorithm. Another useful characteristics is separation in x, y and z coordinates for a number of integrals. Since 
Hermite polynomials are the simplest orthogonal polynomials with the (--, fm) range possessing a number of 
remarkable features (ref. 40) additional favourable properties of HG functions might be expected. Finally, every HG 
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function is symmemc or antisymmemc with respect to reflections in the planes YAZA, XAZA and XAYA according to a 
parity of numbers nl,  np and n3, respectively. There are also nl nodal planes parallel to yz coordinate plane etc. 

Actual calculations of integrals can be performed in three stages: 

(i) putting the differentiation operators in front of the integral mark, 
(ii) calculation of the remaining integrals by using Boys' formula (ref. 27), 
(iii) differentiation with respect to the nuclear coordinates. 

As a final result one obtains entities expressed by HG functions and two auxilliary functions: 

and 

Actual formulas for calculation of the mamx elements appearing in solution of Schrodinger equation involving 
Coulomb Hamiltonian and employing variation theorem are available (refs. 37,38) and will not be repeated here. 

Total molecular energy is pivotal in quantum mechanical calculations. However, it is not very sensitive to finer 
details of the molecular wave function. Much more stringent criteria are provided by some one- and two-electron 
molecular properties which probe particular region or segment of the electron charge density. We examined integrals 
necessary for calculation of a wide variety of electric and magnetic prioperties as well as some relativistic corrections 
arising in the Breit Hamiltonian (ref. 41). More specifically, we considered the mamx elements of the following 
operators: 

It turned out that all these integrals could be reduced to the integrals already encountered in the minimum energy 
calculations. For instance, the one- and two- electron integrals involving ( l / r ~ k ) ~  operator, where k denotes either a 
nuclear or coordinate of the second electron, are expressed in terms of nuclear attraction and Coulomb repulsion 
integrals, respectively. Hence they can be computed with little additional effort if HG basis set is employed. It was 
found that the same conclusion holds for the mamx elements arising in the pseudo-potential calculations involving 
BonaEiC- Huzinaga (ref. 42) potential, which in turn gives a good description of inner-shell electrons in heavy 
atoms. 

We shall dwell now on possible generalizations of HG functions. An obvious extension is introduction of ellipsoidal 
HG functions in full analogy with functions (6): 

i-I 

where rl A = XA etc. and 

-+ + 
with analogous expressions for y and z coordinates. Here a A  and b A  denote mads of numbers (alA, a 2 ~ ,  a 3 ~ )  and 
(bl A, b 2 ~ ,  b3A), respectively. In other words, exponential and polynomial "screening" parameters are uncoupled. It 
should be pointed out that functions (12) were christianed by Katriel and Adam (ref. 43) as generalized HG 
functions. We find this term somewhat ambiguous because it might suggest the use of generalized Hermite 
polynomials (ref. 44) which is not the case. Consequently, a better specification would be given by ellipsoidal HG 
functions (EHG) which will be invariably used in this paper. Other terminological possibilities were considered by 
Primorac (ref. 45). Let's consider briefly some basic integrals over EHG functions (ref. 45,46). For this purpose it 
is convenient to develop EHG functions (12) in terms of components of HG functions which have the same 
exponential and polynomial "screenings": 
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and 6 is a parity switch factor 

- 1 i fnlA-mlA iseven 
'nl .KmlA- 

0 if nlA - mlA is odd 

This expression enables reduction of most of the one-electron integrals to the known formulas for HG functions 
themselves. However, if the operator does not alow separation into three Cartesian components like e.g. the 
Coulomb potential l/rN of the nucleus N, another approach is necessary. The same applies to the two-electron 
operators. Then the exponential function should be written as a product of the spherical part and the ellipticity 
correction: 

1R The spherical portion multiplied with the H polynomials ni=x,y,z Hn,( dA riA ) leads to the integrals which can be 
tackled in analytical fashion. The problem is to eliminate ellipsoidal Gaussian part. This is attempted by a truncated 
series: 

112 1/2 mlA(mm) 
H ~ i  ( a l ~  rlA) exp [- ( blA- dA) ' 1 ~ 1  = 2 e ( alA7 blA, d.4, ml.4) ' HmlA( dA r l ~ )  

(17) mlA 

where the upper limit mlA (max) depends on the predetermined accuracy. The summation is restricted to either even 
or odd mlA depending on the parity of the Hn, polynomial. The expression (17) can be viewed as a development of 
the differently scaled HG functions H(alnx)exp(-bx2) (where a#b) in a series of the customary HG functions of the 
H(dlnx)exp(-dx2) type. It is noteworthy in this connection that statistical distribution functions are frequently 
expanded in terms of the HG basis and that the first few terms usually suffice (ref. 47). Expansion coefficients in 
(17) are straightforwardly obtained: 

k I A  

Hence, the EHG expansion takes a form: 

where 

It follows that integrals over EHG functions can be reduced to integrals over customary HG functions too with some 
additional efforts (ref. 46). 
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As a final comment we would like to point out that HG functions have the same flexibility as FSGO if the addition 
theorem for the Hermite polynomials (ref. 40) is utilized. Some integrals over shifted HG functions were discussed 
by Primorac (ref. 45). 

HERMITE-GAUSSIAN EXPANSION OF HYDROGENIC ORBITALS 

Hydrogen orbitals are quantum mechanical solutions of the Schrijdinger equation. Their exact expectation values are 
also known. For that purpose they were chosen as test functions which, if expanded in a series of HG functions,will 
shed some light on the quality of HG basis sets. Additionally, hydrogen-like orbitals might be useful in solving 
momentum space Schrodinger equation (refs. 48,49). Therefore our numerical experiments should contribute to 
tractability of polycentric integrals over hydrogen orbitals, which are extremely tedious otherwise. Furthermore, 
hydrogen AOs satisfy cusp condition whereas atomic centered HG functions do not. It would be of some interest to 
examine possibilities of improving behavior of AOs at the nuclei by a deliberate choice of HG functions. 

Aiming at expansion of hydrogen orbitals in a series of HG functions we shall express the former in a general but 
real form: 

It is convenient to express the radial part in (21) in terms of spherical Gaussians multiplied by even powers of r: 

2 N Ti 
R ( r ) = x ( x k j i r 2 J )  exp(-a i r  

i-1 j-0 

where the limiting indices N and Ti are functions of the error tolerance. An equivalent formula based on HG 
functions reads: 

i=l k=O k l = 0  k F O  

Coefficients kji and Cki are linearly related which is easily found. Multiplying R(r) in (23) by xK yL ZM one obtaines: 

N Ti Qm=C C Cki [k!/kl!k,! k3!1 f 2 k l + K , 2 k z + L , 2 k 3 + M ( a i , 7 )  (24) 
i=l k=O 

where summation over k implies a triple sum over kl , k2 and k3 confined to give a fixed value of k = kl + k2 + k3 
(k=0,1,2, ... etc.). Our numerical experiments encompass a range of values of N=1-5 for two particular cases: (a) 
Ti=i and (b) Ti=2 (ref. 50). They will be named HG approximations of the second and fourth degree, respectively, 
for an obvious reason. Quality of these two approximations will be compared with the GTO results obtained by 
putting Ti=O. 

Adjustable linear and non-linear parameters in the series (24) are obtained by integral least-square fit criterion by 
minimizing A: 

where Y ~ M  stands for the exact hydrogen orbital and @KLM represents its HG expansion (24). It is easy to see that 
minimum of A condition is equivalent to maximum overlap requirement between approximate representation and 
exact hydrogen AO. Since A is obviously related to differences in @=M and YKLM one can alternatively define a 
similarity measure (SM) as SM = 100(1 - A) (in %). 

Before discussing results a word on notation is necessary. HG approximations of the second and fourth degrees will 
be abbreviated by (m)HG2-N and (m)HG4-N, respectively. Here (m) denotes the angular type of the orbital (e.g. s, 
px etc.) and N determines the number of non-linear parameters (23). They weigh various (inner and outer) portions 
of AO's. 

In addition to the orbital energy, four one-electron operators rn (n=-2,-1,1,2) are examined. Their expectation values 
were calculated by using 1s GTOs, HG2 and HG4 basis set expansions (ref. 51). The virial ratios <-l/r>fi and 
spatial similarity measures SM were considered too. The corresponding values for hydrogen ls-3d AOs are given in 
Table 1. Perusal of the presented data shows that the use of a single non-linear parameter a1 is not satisfactory, the 
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HG4-1 representation of 2p and 3d AOs being exceptions. Introduction of the second non-linear parameter leads to 
a great improvement for all three basis sets. Apparently, inner and outer portions of AOs should be described by 
separate Gaussians. It is noteworthy that a good description of 3s A 0  requires at least 3 non-linear parameters. The 
average values of < rn > operators and orbital energies for GTO expansion are given in table 2. It should be stressed 
that the second moments < r2 > and diamagnetic shieldings (which are proportional to < r-1 > are extremely 
insensitive to finer details of atomic and molecular wave functions (refs. 3,5). Consequently, both entities were 
defined as necessary but not sufficient conditions which acceptable wave functions should satisfy (ref.52). In other 
words, wave functions which do not satisfy these minimal requirements should be either improved or discarded. As 
an illustration we mention that an error of 0.5 ppm in diamagnetic shielding corresponds to an error of - 9 kcal 
mol -1 in orbital energy of hydrogen AO. Survey of the data in Table 2 clarly shows that single GTO representation 
is unsatisfactory, Introduction of the second Gaussian is necessary and approximate description of 2s, 2p and 3p 
AOs is then quite good as far as < r-1 > and < r2 > criteria are concerned. As the main quantum number n increases 
use of only two Gaussians becomes less and less appropriate, 3p, and 3d AO’s being exceptions. This is not 
unexpected because Gaussians fall off quite rapidly and larger sets of values of nonlinear parameters and the 
corresponding exp(-ar2) functions are necessary to describe more and more extensive domains of higher AOs. 

Results obtained by HG2 basis set are somewhat better than GTO description, but a substantial overall improvement 
in accuracy is obtained by the HG4 basis sets (Table 3). For instance, 2s A 0  is very well described by the HG4-2 
basis, which is not the case for the GTO-2 and HG-2 results. This is evidenced by the exact virial ratio and very 
good accordance of the calculated HG4-2 properties with exact values. The same holds for 3d A 0  where a single 
nonlinear parameter HG4-1 suffices for a satisfactory description. Insensitivity of <rl> and <r2> properties can be 
illustrated by HG4-2 results for 4s AO. Although the above mentioned criteria are roughly satisfied, the virial of 1.8 
is obviously unsatisfactory. 

As a general caonclusion one can say that AOs obeying n-l=1 condition are very accurately reproduced which is 
achieved by smaller number of non-linear parameters. The HG4-N basis sets are superior to the GTO-N functions 
possessing the same number of non-linear parameters. 

Behavior of AOs near nucleus deserves a closer scrutiny. Although the nuclear cusp condition can not be fully 
satisfied with HG4-5 basis functions, they are superior to the GTO-5 basis set. This is illustrated by Figure 1 where 
performance of both sets is compared and tested against the exact 1s H orbital. Improvement obtained by HG4-5 
functions is impressive indeed. Preliminary calculations have shown that nuclear cusp requirement is easily satisfied 
by adding off-center HG functions to the set without considerable increase in computational effort. 

056LZ  1, 

0 L 6  
0 01 0 2  r 

Figure 1. Behavior of 1s hydrogen A 0  and its HG4-5 and GTO-5 representations near proton (r in a.u.). 
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TABLE 1. Average Values of Some One-electron Properties for Hydrogen AOs Approximated by Linear 
Combinations of Pure Gaussians (GTOs)* 

N -E < r - 1 >  < r - 2 >  < r  > < r 2 >  

1s 1 
2 
3 
4 
5 

Exact 

2s 1 
2 
3 
4 
5 

Exact 

3s 1 
2 
3 
4 
5 

Exact 

4s 1 
2 
3 
4 
5 

Exact 

2P 1 
2 
3 
4 
5 

Exact 

3P ; 
3 
4 
5 

Exact 

4P ; 
3 
4 
5 

Exact 

3d 1 
2 
3 
4 
5 

Exact 

4.24218(-1) 
4.81155(-1) 
4.94907(-1) 
4.98481 (-1) 
4.99504(-1) 
5.00000(-1) 

1.74685(-1) 
1 ,1761 2(-1) 
1.23598(-1) 
1.23417(-1) 
1.24653(-1) 
1.25000(-1) 

7.83329(-2) 
7.05743(-2) 
5.32835(-2) 
5.50597(-2) 
5.51186(-2) 
5.55556(-2) 

4.38031 (-2) 
4.08771 (-2) 
3.73961 (-2) 
3.03184(-2) 
3.10724(-2) 
3.12500(-2) 

1.1 31 54(-1) 
1.22827(-1) 
1.24584(-1) 
1.24912(-1) 
1.24980(-1\ 
1.25000(-1) 

6.58771 (-2) 
5.37962(-2) 
5.53264(-2) 
5.53374(-2) 
5.55278(-2) 
5.55556(-2) 

3.76144(-2) 
3.54888(-2) 
3.05107(-2) 
3.1 1433(-2) 
3.1 1690(-2) 
3.1 2500(-2) 

5.17320(-2) 
5.49460(-2) 
5.54660(-2) 
5.5541 0(-2) 
5.55520(-2) 
5.55556(-2) 

8.30643(-1) 
9.59098(-1) 
9.89205(-1) 
9.96838(-1) 
9.98974(-1) 
1 .ooooo 

1.97711(-1) 
2.30693(-1) 
2.47141(-1) 
2.46426(-1) 
2.49373(-1) 
2.50000(-1) 

8.23251(-2) 
9.2491 2( -2) 
1.04796(-1) 
1.10017(-1) 
1.10177(-1) 
1.11 111(-1) 

4.49957(-2) 
4.71616(-2) 
5.391 37(-2) 
5.991 33(-2) 
6.21 164(-2) 
6.25000(-2) 

2.231 33(-1) 
2.45178(-1) 
2.49096(-1) 
2.4981 3(-1) 
2.49957( -1 ) 
2.50000(-1) 

8.00221(-2) 
1.06475(-1) 
1.1071 1(-1) 
1.10609(-1) 
1.1 1053(-1) 
1.1111 1(-1) 

4.14005(-2) 
4.77674( -2) 
6.04153(-2) 
6.22617(-2) 
6.23150(-2) 
6.25000(-2) 

1.02380(-1) 
1.09790(-1) 
1.10910(-1) 
1.11080(-1) 
1.1 1110(-1) 
1.1 1111(-1) 

1.08380 
1.62050 
1.83854 
1.92735 
1.96523 
2.00000 

6.1 401 7(-2) 
1.44072(-1) 
2.201 63(-1) 
2.12469(-1) 
2.37675(-1) 
2.50000(-1) 

1.06459(-2) 
1.89474(-2) 
4.06796(-2) 
6.27934(-2) 
6.38396(-2) 
7.40740(-2) 

3.18026(-3) 
4.63550(-3) 
7.93873(-3) 
1.74685(-2) 
2.71108(-2) 
3.12500(-2) 

5.86556(-2) 
7.65394(-2) 
8.14614(-2) 
8.2783 6 (- 2) 
8.31602(-2) 
8.33333( -2) 

7.54400(-3) 
1.97563(-2) 
2.40858(-2) 
2.37630(-2) 
2.451 48(-2) 
2.46914(-2) 

2.01926(-3) 
3.1 8706(-3) 
8.20083(-3) 
9.98507(-3) 
1.00663(-2) 
1.041 67(-2) 

1.15760(-2) 
1.41 160(-2) 
1.46680(-2) 
1.47820(-2) 
1.48070(-2) 
1.48148(-2) 

1.53284 
1.50324 
1.50039 
1.50005 
1.50001 
1.50000 

6.43991 
6.01233 
6.00518 
6.00018 
5.99957 
6.00000 

1.54660(+1) 
1.40105(+1) 
1.35131 (+l )  
1.35022(+1) 
1.34999(+1) 
1.35000(+1) 

2.82964(+1) 
2.66316(+1) 
2.44361(+1) 
2.40067(+1) 
2.4001 7(+1) 
2.40000(+1) 

5.0721 7 
5.00668 
5.00069 
5.00008 
5.00001 
5.00000 

1.41432(+1) 
1.25300(+1) 
1.25052(+1) 
1.25010(+1) 
1.25000(+1) 
1.25000(+1) 

2.73371 (+1) 
2.45395(+1) 
2.30300(+1) 
2.30030(+1) 
2.30001 (+l )  
2.30000(+1) 

1.06128(+1) 
1.05100(+1) 
1.05009(+1) 
1.05001 (+ l )  
1.05000(+1) 
1.05000(+1) 

2.76804 
2.97212 
2.99612 
2.99935 
2.99988 
3.00000 

4.88585(+1) 
4.19722(+1) 
4.1 8288(+1) 
4.20052(+1) 
4.19910(+1) 
4.20000(+1) 

2.81797(+2) 
2.17357(+2) 
2.071 10(+2) 
2.0691 9(+2) 
2.06988(+2) 
2.07000(+2) 

9.43321 (+2) 
7.73225(+2) 
6.62257(+2) 
6.48055( +2) 
6.47998(+2) 
6.48000(+2) 

2.84145(+1) 
2.98282(+1) 
2.99799(+1) 
2.99973(+1) 
2.99996(+1) 
3.00000(+1) 

2.20926(+2) 
1.80015(+2) 
1.79372(+2) 
1.80015(+2) 
1.80000(+2) 
1.80000(+2) 

8.25384(+2) 
6.52003(+2) 
6.00450(+2) 
5.99751 (+2) 
5.99938( +2) 
6.00000(+2) 

1.20941 (+2) 
1.25486(+2) 
1.25947(+2) 
1.25994(+2) 
1.25999(+2) 
1.26000(+2) 

* In atomic units. Numbers given in parentheses are powers of 10. 
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TABLE 2. Comparison of Similarity Measures (SM) (in %) and Virial Ratios (< -1 / r > / E) for Various Basis Sets. 

GTO HG2 HG4 

N SM Virial SM Virial SM Virial 

1s-orbital 
1 95.7 1.958 95.7 1.958 99.3 1.985 
2 99.7 1.993 99.7 1.993 100.0 1.999 
3 100.0 1.999 100.0 1.999 100.0 2.000 
4 100.0 2.000 100.0 2.000 100.0 2.000 
5 100.0 2.000 100.0 2.000 100.0 2.000 

2s-orbital 
1 83.8 1.132 91.2 1.496 91.2 1.496 
2 99.6 1.961 99.6 1.961 100.0 2.000 
3 99.9 1.999 99.9 1.992 100.0 1.992 
4 100.0 1.997 100.0 1.998 100.0 2.000 
5 100.0 2.000 100.0 2.000 100.0 2.000 

2p-orbital 
1 95.2 1.972 95.2 1.972 99.3 1.992 
2 99.7 1.996 99.7 1.996 100.0 2.000 
3 100.0 1.999 100.0 1.999 100.0 2.000 
4 100.0 2.000 100.0 2.000 100.0 2.000 
5 100.0 2.000 100.0 2.000 100.0 2.000 

3s-orbital 
1 59.6 1.051 93.5 1.334 93.8 1.334 

3 99.9 1.967 99.9 1.970 100.0 1.995 
4 100.0 1.998 100.0 1.998 100.0 2.000 
5 100.0 1.999 100.0 1.999 100.0 2.000 

2 94.6 1.331 98.9 1.847 98.9 1.847 

3p-orbital 
1 78.2 1.21 5 89.2 1.666 89.2 1.666 
2 99.5 1.979 99.5 1.979 100.0 1.997 
3 99.9 2.001 99.9 1.997 100.0 2.000 
4 100.0 1.999 100.0 1.999 100.0 2.000 
5 100.0 2.000 100.0 2.000 100.0 2.000 

~~ 

3d-orbital 
1 95.0 1.979 95.0 1.979 99.3 1.994 
2 99.7 1.997 99.7 1.997 100.0 2.000 
3 100.0 2.000 100.0 2.000 100.0 2.000 
4 100.0 2.000 100.0 2.000 100.0 2.000 
5 100.0 2.000 100.0 2.000 100.0 2.000 
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TABLE 3. Average Values of Some One-electron Properties for Hydrogen AOs Approximated by Linear 
Combinations of Functions Belonging to HG4 Basis Set.* 

N -E < r - l >  < r - 2 >  < r  > c r 2 >  

1 s  1 
2 
3 
4 
5 

Exact 

2s 1 
2 
3 
4 
5 

Exact 

3s 1 
2 
3 
4 
5 

Exact 

4s 1 
2 
3 
4 
5 

Exact 

2P 1 
2 
3 
4 
5 

Exact 

3P 1 
2 
3 
4 
5 

Exact 

4P 1 
2 
3 
4 
5 

Exact 

3d 1 
2 
3 
4 
5 

Exact 

4.67343(-1) 
4.96672(- 1 ) 
4.99566(-1) 
4.99863(-1) 
4.99983(-1) 
5.00000(-1) 

1.14834(-1) 
1.22109(-1) 
1.24798(-1) 
1.24861(-1) 
1.24930(-1) 
1.25000(-1) 

6.59129(-2) 
5.10170(-2) 
5.471 lo(-2) 
5.54853(-2) 
5.55376(-2) 
5.55556(-2) 

3.03507(-2) 
2.9521 0(-2) 
3.08929(-2) 
3.09558( -2) 
3.12182(-2) 
3.12500(-2) 

1.20968(-1) 
1.24786(-1) 
1.24990(-1) 
1.24992(-1) 
1.24999(-1) 
1.25000(-1) 

4.88234( -2) 
5.51 182(-2) 
5.55437(-2) 
4.55467( -2) 
5.55549(-2) 
5.55556(-2) 

3.42849(-2) 
2.931 39(-2) 
3.1 1074(-2) 
3.1 2440(-2) 
3.1 2487(-2) 
3.12500(-2) 

5.44309(-2) 
5.55179(-2) 
5.55545(-2) 
5.55554(-2) 
5.55555(-2) 
5.55556(-2) 

9.27907(-1) 

9.99094(-1) 
9.99696(-1) 
9.99970(-1) 
1 .ooooo 

1.71833(-1) 
2.43239(-1) 
2.49568(-1) 
2.49704(-1) 
2.49844(-1) 
2.50000(-1) 

8.79217(-2) 
9.42268(-2) 
1.09131(-1) 
1.10956(-1) 
1 .11074(-1) 

9.92985(-1) 

1.1111 1(-1) 

4.41294(-2) 
5.31577(-2) 
6.1 7168(-2) 
6.18161 (-2) 
6.24327(-2) 
6.25000(-2) 

2.40930(-1) 
2.49537(-1) 
2.49980(-1) 
2.4998 1 (- 1 ) 
2.49997(-1) 
2.50000(-1) 

8.13433(-2) 
1.10066(-1) 
1.1 1085(-1) 
1.1 1091 (-1) 
1.1 11 lo(-1) 
1.1111 1(-1) 

4.67052(-2) 
5.64639(-2) 
6.21617(-2) 
6.24854(-2) 
6.24982(-2) 
6.25000(-2) 

1.08556(-1) 
1.11030(-1) 
1.1 11 lo(-1) 
1.111 11(-1) 
1.1 11 11(-1) 
1.1 111 1(-1) 

1.46009 
1.87791 
1.96792 
1.98433 
1.99660 
2.00000 

3.28915(-2) 
1.94205(-1) 
2.40457(-1) 
2.42507(-1) 
2.45067(-1) 
2.50000(-1) 

1.56299(-2) 
1.92992(-2) 
5.771 44(-2) 
7.08550( -2) 
7.28276( -2) 
7.40740(-2) 

2.86766(-3) 
5.45702(-3) 
2.58402(-2) 
2.51 993(-2) 
2.98706(-2) 
3.12500(-2) 

7.241 29(-2) 
8.22164(-2) 
8.32331(-2) 
8.32405(-2) 
8.33141 (-2) 
8.33333(-2) 

7.57703(-3) 
2.30668(-2) 
2.46004(-2) 
2.46144(-2) 
2.46809(-2) 
2.4691 4(-2) 

2.92955(-3) 
6.00328(-3) 
9.85730(-3) 
1.03680(-2) 
1.04073(-2) 
1.041 67(-2) 

1.36197(-2) 
1.47448(-2) 
1.481 22(-2) 
1.48141 (-2) 
1.48147(-2) 
1.48148(-2) 

1.50722 
1.5001 7 
1.50000 
1.50000 
1.50000 
1.50000 

6.24731 
6.00125 
6.00007 
6.0 0 0 0 2 
6.00000 
6.00000 

1.40230(+1) 
1.35835(+1) 
1.35012(+1) 
1.35000(+1) 
1.35000(+1) 
1.35000(+1) 

2.49158(+1) 
2.41 397(+1) 
2.40082(+1) 
2.40008(+1) 
2.40001(+1) 
2.40000(+1) 

5.01454 
5.00025 
4.99999 
5.00000 
5.00000 
5.00000 

1.31 179(+1) 
1.25026(+1) 
1.25001 (+1) 
1.25000(+1) 
1.25000(+1) 
1.25000(+1) 

2.45165(+1) 
2.31471(+1) 
2.3001 7(+1) 
2.30001 (+l )  
2.30000(+1) 
2.30000(+1) 

1.0521 6(+1) 
1.05002(+1) 
1.05000(+1) 
1.05000(+1) 
1.05000(+1) 
1.05000(+1) 

2.93778 
2.99810 
2.99985 
3.00001 
2.99999 
3.00000 

4.15260(+1) 
4.20135(+1) 
4.19984(+1) 
4.20001(+1) 
4.20000(+1) 
4.20000(+1) 

2.1 3309(+2) 
2.06915(+2) 
2.07024(+2) 
2.06999(+2) 
2.07000(+2) 
2.07000(+2) 

6.51222(+2) 
6.48762(+2) 
6.47505(+2) 
6.48022(+2) 
6.48003(+2) 
6.48000(+2) 

2.96233(+1) 
2.89921(+1) 
2.99993(+1) 
2.99999(+1) 
3.00000(+1) 
3.00000(+1) 

1.79937(+2) 
1.80043(+2) 
1.79994(+2) 
1.80000(+2) 
1.80000(+2) 
1.80000(+2) 

6.43032( +2) 
5.9981 9(+2) 
6.00048( +2) 
5.99999(+2) 
5.99996( +2) 
6.00000(+2) 

1.24886(+2) 
1.25981(+2) 
1.26000(+2) 
1.26000(+2) 
1.26000(+2) 
1.26000(+2) 

In atomic units. Numbers given in parentheses are powers of 10. 
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DISCUSSION 

Molecular integrals over HG functions are simpler than the corresponding expressions over GTOs (refs. 31,3633). 
Their advantage increases as the quantum numbers n and 1 become larger. Mamx elements of the SCF Hamiltonian 
over EHG functions are given in a form which is significantly simpler than the algorithm provided by Kame1 and 
Adam (refs. 5435). Their procedure involves development of a product of the two HG functions centered at two 
different nuclei in a series of the complete set of the harmonic oscillator functions placed at the third centres. It is well 
known that this kind of approach implies a slow convergency in instances, e.g. when two centers are far appart or 
when non-linear parameters of the two considered HG functions are widely different. This drawback is 
circumvented in our procedure. In this connection it should be mentioned that HG functions are related to harmonic 
oscillator functions suggested for calculations in nuclear physics by Talmi (ref. 56) and in quantum chemistry by 
Roberts (ref. 57) and by Moshinsky and Novaro (ref. 58). However, integrals over HG and EHG functions are 
expressed in considerably simpler way and their computation is more efficient. 

It is remarkable that all molecular properties integrals can be reduced to those encountered in the SCF calculations. 
Derivatives over nuclear coordinates and non-linear parameters are easily incorporated in the general algorithm (ref. 

Another advantageous feature is that calculations with HG functions in momentum space is simpler than by using 
GTO's. Successful description of hydrogen AO's by HG4-N basis sets indicate that it would be worthwhile to 
expand Laguerre functions (ref. 17) in terms of Hermite-Gaussians. 

One should stress that HG functions were successfully subject to practical tests mostly through the work of Salvetti 
et al. (ref. 59-62) and some others (refs. 63-71). We note in passing that the same idea underlying introduction of 
HG functions*was used by McMurchie and Davidson (ref. 72) who expanded product of Cartesian coordinates of 
two centers in terms of Hermite polynomials around the third point lying on the intermolecular distance and specified 
by the corresponding product of pure Gaussians. 

Recently HG functions were applied to calculations of the electronic structure in diatomics H2, HeH+ and HF (ref. 
73). It was found that non-linear parameters can be transferred from GTO's to HG functions. Ab initio calculations 
of force constants in HzO, HF, H2S and NaH based on HG functions gave results in better agreement with 
experiment than the GTO estimates of the comparable basis set (ref. 74). It appears that potential surface is too flat if 
GTO functions are used (ref. 24) whilst better curvature is obtained with HG basis. 

59). 

As far as future prospects are concerned, we feel confident that HG functions will prove useful in improving nuclear 
cusps of the total wave functions and will provide a relatively simple description of electron correlation by explicit 
inclusion or rij coordinates. 
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ERRATA 

1. 

2. 

3. 

Pure & Appl. Chem., Vol. 66, No. 4, pp. 873-889, 1994 

The April issue of Pure and Applied Chemistry (Volume 66, No. 4) included the 
IUPAC Recommendation ’Structure-based nomeclature for irregular single-strand 
organic polymers’ prepared by a Working Group consisting of R. B. Fox, N. M. 
Bikales, K. Hatada and J. Kahovec. Unfortunately, pages 887 and 888 were printed 
incorrectly. The full article was therefore reproduced correctly in a loose insert 
which came with the September issue (Volume 66 No. 9). These pages should be 
substituted for those originally produced when the Volume is bound. 

Pure & Appl. Chem., Vol. 66, No. 6, pp. 1267-1286, 1994 

The June issue of Pure and Applied Chemistry (Volume 66, No. 6) included the 
articles ’Theoretical basis of non-equilibrium near atmospheric pressure plasma 
chemistry‘ by A. A. Fridman and V. D. Rosanov, and ‘Modelling of dielectric barrier 
discharge chemistry’ by B. Eliasson, W. Egli and U. Kogelschatz. Unfortunately, the 
front pages of these two  papers were transposed during production so that the body 
of both papers was printed out of position within the issue, and given the wrong 
page numbers and running headlines. 

Both articles were reproduced in their entirety in a loose insert that came with the 
August issue (Volume 66, No. 81, along with a revised contents list. These should 
be substituted for the original items when the volume is bound. 

Pure & Appl. Chem., Vol. 61, pp. 2075-2085, 1989 

Article entitled ‘New basis sets in quantum mechanics of molecules. Hermite- 
Gaussian function’ by 2 .  B. MaksiC , K. Kovazevid , M. Primorac. 

(i) Page 2075, insert the following additional author to  the three above: 

T. i ivkovid 

(ii) Page 2079, line 9 from bottom: 

fnr SM = 100 (1 - A) (in %) 

xLiii 




