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AbstracL - Mossbauer studies of the electron transport protein 
ferredoxin I1 have revealed that the reduced Fe3S4 cluster contains 
one localized Fe3+ site and one delocalized Fe2+-Fe3+ pair. Analysis 
of the spin coupling of this mixed-valence system has shown that 
the coupling is dominated by double exchange. We have recently 
proposed a spin Hamiltonian that takes Heisenberg-Dirac-van Vleck 
exchange as well as double exchange into account. 
Hamiltonian can be constructed from an effective Hamiltonian 
derived from perturbation theory. In applying this approach to 
mixed-valence systems with three paramagnetic centers we have 
obtained a term which to our knowledge has not been considered in 
the literature. The mechanism, which we propose to call exchange- 
transfer, yields for a spin-only d l -d l -d2  system the expression 
za ,b , c  Cacbtab(1 - 4sb*sc) where tab is an operator that transfers 
the excess electron located on the d2-site b to site a; sb and sc are 
spin operators of the excess electron and the electron on site c, 
respectively. 
the product of the transfer integrals connecting the sites a and c 
and the sites b and c and K is the intra-atomic exchange integral. 
The mechanism achieves transfer of the excess electron from b to a 
by a "detour" through an excited state on site c. 

This spin 

Cacb = - PacPcb/(8K) is a coupling constant containing 

INTRODUCTION 

For the past few years we have studied a variety of iron-sulfur proteins with 
Mossbauer spectroscopy. 
core stoichiometries. 
and therefore can exist in various mixed-valence states. In this article we wish to 
focus on the magnetic properties of these clusters. In particular, we wish to discuss 
that aspect of the cluster magnetism which, in the mixed-valence state, is linked to 
the delocalization of valence electrons. 

These proteins contain clusters with Fe2S2, Fe3S4 or FeqS4 
Most of the clusters participate in one-electron redox reactions 

Mossbauer spectroscopy is particularly well suited to study iron-sulfur clusters 
because the technique provides a wealth of information from which details about the 
electronic structure of the core can be deduced. Mossbauer studies, carried out in 
many laboratories, have shown that some iron-sulfur clusters contain iron sites to 
which a distinct valence can be assigned. 
properties which remind us of typical Fe3+ or Fe2+ sites. 
observed in clusters with Fe2S2 cores. FeqS4 cubanes, on the other hand, exhibit 
strong valence delocalization as witnessed by the observations that the parameters 
for the quadrupole splitting, AEQ, and isomer shift, 6, are roughly the average of those 
observed for monomeric Fe3+ and Fe2+ sites. 

Thus, the iron sites can have spectroscopic 
Such sites are always 
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The magnetic properties of iron-sulfur clusters are dominated by strong exchange 
interactions which couple the spins of the individual iron sites to a resultant system 
spin S. Not surprisingly, the magnetic properties are intimately linked to the extent 
of electron delocalization. Thus, the coupling of the Fe3+ site (Sl = 5/2) and the Fe2+ 
site (S2 = 2) of reduced Fe2S2 clusters is described well by the Heisenberg-Dirac-van 
Vleck (HDvV) Hamiltonian H = JS142,  as testified by the successful model put 
forward by Gibson and coworkers (ref. 1-4). 
of the delocalized FeqS4 clusters were not understood. 
provided the decisive clues for understanding the mechanism of the delocalized 
clusters came from Mossbauer studies (ref. 5 )  of reduced Fe3S4 clusters. 
studies showed (ref. 5 )  that the spin Hamiltonian needs to be augmented by a term 
describing the contribution of delocalized electrons. This mechanism, called double 
exchange (ref. 6,7) or resonance interaction (ref. 8) is quite different from the 
familiar mechanism described by H = JS 1 *S2. 

In this article we very briefly discuss the experimental data which showed that the 
double exchange mechanism needs to be incorporated into the Hamiltonian. 
be followed by a brief discussion of the spin Hamiltonian which we have introduced 
recently (ref. 5,9) with essentially intuitive arguments. For a detailed discussion of 
this point the reader is referred to the article by Munck et al. (ref. 9). 
we have been concerned with the derivation of the spin Hamiltonian from 
fundamental theory. 
Hamiltonian description of mixed-valence clusters containing more than two sites 
with unpaired electrons requires the inclusion of yet another mechanism. To our 
knowledge this mechanism, which we propose to call exchange-transfer, has not been 
described in the literature. Much of the new work described below was carried out 
just a few weeks before this article was submitted for this conference. 
article should be viewed as a progress report. 

Until recently, the magnetic couplings 
The experimental data which 

These 

This will 

Quite recently, 

In the course of these studies we discovered that the spin 

Thus, this 

EXPERIMENTAL EVIDENCE FOR DOUBLE EXCHANGE I N  Fe3S4 CLUSTERS 

Ferredoxin I1 (Fd 11) isolated from Desulfovibrio g i g a s  is a small electron-transport 
protein which contains an Fe3S4 cluster. 
depicted to have a cubane FeqS4 core from which one iron atom has been removed. 
Indeed, by incubating the protein in the presence of Fe2+, the cubane FeqS4 cluster is 
formed readily (ref. lo). Moreover, by incubating with excess Zn2+, Cd2+, Ga3+ or Co2+ 
interesting hybrid clusters of the MFe3S4 type can be formed (ref. 9,11,12). 
cluster of Fd I1 has two stable oxidation states. In the oxidized state the cluster has a 
system spin S = 1/2 which results from antiferromagnetic coupling of three high-spin 
ferric ions (Sl = S2 = S3 = 5/2). 
analyzed with a Heisenberg Hamiltonian (ref. 13). 

As shown in Fig. 1 this cluster can be 

The 

The magnetic properties of this state have been 

Fig. 1. Structures of Fe3S4 and FeqSq clusters. Earlier crystallographic studies of the 
3-Fe cluster of an Azotobacter vinelandii ferredoxin, which indicated a planar Fe3S3 
structure, were in error. Recent studies (ref. 14,15) show that Fe3S4 clusters have a 
core structure similar to that depicted here; currently the crystallographic resolution 
is not high enough to determine details of the structure. 
obtained by taking the structure of an FeqS4 cubane (ref. 16) and removing one iron. 

The core shown here was 
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Fig. 2. Mossbauer spectra of the reduced Fe3S4 cluster (S=2) of Fd I1 recorded at 4.2 
K in zero field (A) and at 1.3 K in parallel applied field of 1.0 T (B). The solid lines in 
(B) are theoretical curves for the delocalized pair (I) and the Fe3+ site (11). The sum 
is drawn through the data. Parameters, fitting procedures and additional spectra are 
given in ref. 5. 

Upon one-electron reduction of the cluster, a state with system spin S = 2 is observed 
(ref. 17,18). 
doublets with intensity ratio 2:l .  Doublet I1 has AEQ = 0.52 mm/s and 6 = 0.32 mm/s; 
these parameters are typical for Fe3+ sites in a tetrahedral environment of thiolate 
ligands. The two remaining irons are not distinguishable by Mossbauer spectroscopy. 
The values of AEQ = 1.47 mm/s and 6 = 0.46 mm/s are just the average of typical Fe3+ 
and Fe2+ sites in FeS4 monomers. Thus, both iron sites are at the Fe2.5+ level which 
suggests that the electron, which the cluster has acquired upon reduction, is shared 
equally between the two irons of doublet I. These two sites thus form a delocalized pair. 

The zero field Mossbauer spectrum of Fig. 2A shows two quadrupole 

The spectrum shown in Fig. 2B was recorded at 1.3 K in an applied field of 1.0 T. The 
solid lines show a fit to a spin Hamiltonian which includes zero field splitting 
parameters, electronic and nuclear Zeeman terms as well as magnetic and electric 
hyperfine interactions; for details see ref. 5. 
analysis are of particular interest. 
indistinguishable even within the excellent resolution of the spectra. 
can be analyzed as a superpositon of two spectra with 2:l intensity ratio. 
data show clearly that the magnetic hyperfine coupling tensor of the Fe3+ site has 
positive components. 
coupled antiparallel to the system spin S = 2. 
with a vector coupling model Miinck and Kent (ref. 19) have shown that the spin of 
the delocalized dimer is S12 = 9/2; this result was confirmed by a more refined 
analysis (see below). Formally, S12 = 9/2 can result from ferromagnetic coupling 
between a ferric (Si = 5/2) and a ferrous ion (S2 = 2). However, since both irons are 
equivalent, it would not be clear at all which iron would have S1 = 5/2 and which 
iron would have S2 = 2. Further, parallel spin alignment in conjunction with valence 
delocalization suggested that these phenomena are linked. Anderson and Hasegawa 
(ref. 7) have shown in 1955 that a delocalized electron provides a coupling mecha- 
nism (called double exchange) which causes ferromagnetic alignment of the spins. 

For the present topic, two results of the 

Thus, the data 
First, the two irons of site I are still 

Second, the 

This information implies (ref. 19) that the local spin S3 = 5/2 is 
By analyzing the hyperfine interactions 
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A SPIN HAMILTONIAN WITH DOUBLE EXCHANGE 

The basic idea of double exchange or resonance splitting can be illustrated by means 
of Fig. 3. Consider two metals A and B with two orbitals a l ,  a2 and bl,  bz. Let us 
assume that we have three electrons which we allocate to a l ,  bi and az. In Fig. 3 
(left) we have indicated the configuration which gives rise to a quartet state with S = 
3/2 and Ms = +3/2. We will call the electron in a2 the "extra" electron. Since this 
electron is on A we designate this quartet state as IA> = l a l b l a p .  Alternatively, if the 
extra electron were on B we would obtain another quartet, IB> = l a l b l b p .  The 
Hamiltonian of the system is 

where h(i) is the one-particle Hamiltonian containing the kinetic energy of electron i 
and the potential energy of i due to the nuclei A and B; gij describes the repulsion 
between the electrons. The states IA> and IB> are not eigenstates of H. By choosing 
IA> and IB> as basis states we obtain a 2x2 matrix which contains off-diagonal 
elements, 

where <AIHIA> = ~ ~ ( 3 / 2 )  and <BIHIB> = ~ ~ ( 3 / 2 ) ,  and where p2 = <az(l)lh(l)lb2(1)> is a 
one-electron transfer or hopping integral (we have neglected contributions from the 
gij to the transfer term and we have also assumed that the elements < a l l h l b p =  
<azlhlbi> = 0). Two limiting cases are of interest. For EB - E A  >> lpzl the lowest quartet 
state is IA>, and the electron is thus localized on A. ( E A  and EB may differ because of 
site inequivalencies due to ligand field or vibronic (ref. 20) effects). 
the other hand, the two quartet states mix to form the two delocalized states 

For E A  = E B ,  on 

$1.2 = 1/42(IA> k IB>) 

at energies E1,2 = ~ ~ ( 3 / 2 )  k p2. Since p2 mixes the two configurations, it describes the 
tendency of the system to delocalize. The transfer process is caused by electrostatic 
interactions, and thus the extra electron does not change its spin upon hopping 
between A and B. According to Hunds first rule the interaction of the delocalized 
electron with the electrons in a1 and bl favors the triplet state, and delocalization 
leads therefore to a parallel alignment of the spins in a1 and bi.  More generally, the 
mobile electron mediates ferromagnetic coupling between the core spins S o  of site A 
and B. 
Eq (2) would have been p2/2 (pz does not mix configurations with different S ) .  

If we would have considered the doublet states, the off-diagonal element in 

Anderson and Hasegawa (ref. 7) have shown that the off-diagonal term in Eq (2) can 
be written as p(S + 1/2)/(2So + 1). This yields for E A ( S )  = EB(S) a resonance splitting 
of kp(S + 1/2)/(2So + 1). This dependence on ( S  + 1/2) rather than S ( S  + 1) as in the 
usual HDvV mechanism is the distinctive feature of double exchange. 

a + -  2 b 2  a 2 - - t b *  

1 a 1 -+ -+b, a t - t b l  

A B A B 
Fig. 3. The two quartet configurations resulting from placing 

the extra electron on A (left) and B (right). 
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Using ideas of Anderson and Hasegawa and of Noodleman and Baerends (ref. 8) and 
suggestions of Borshch et al. (ref. 21) 
takes into account HDvV exchange as well as double exchange (ref. 5). 
have outlined in some detail the rational for the construction of this Hamiltonian. 
The major new feature is an operator T A B  that produces the desired p(S + 1/2)/(2So + 
1) off-diagonal elements in Eq (2). 
Hamiltonian takes the form (ref. 5,9)  

we have constructed a spin Hamiltonian which 
In ref. 9 we 

For a mixed-valence AB dimer the spin 

H = [AJABASA*ASB + EA]OA + [BJABBSA*BSB + EB]OB + BTAB (3) 

Here EA and EB are the energies of the dimer when the excess electron is on A and B, 
respectively; 
because the numerical values of SA and SB depend on the location of the extra 
electron. Thus, for an Fe2+-Fe3+ mixed-valence dimer we have  AS^ = 2 and  AS^ = 5/2 
when the extra electron is on A, and B S ~  = 5/2 and B S ~  = 2 when the electron is on B. 
The operators O A  and O B  are occupation operators which have the effect OAIA> = IA>, 
OAIB> = 0, OBIB> = IB> and OgIA> = 0. A definition of these operators in the language of 
second quantization is given below. 

SA and SB are the spins of site A and B. We have added a superscript 

The term BTAB is constructed to produce the desired Anderson-Hasegawa off- 
diagonal elements. 
IA>) and "looks up" the dimer spin SAB to produce the (SAB + 1/2) factor. The (2So + 
1) factor has been absorbed into B. Thus 

TAB is a transfer operator that converts IA> into IB> (or IB> into 

Because the transfer term does not mix states with different dimer spin, we have 
 AS^^ = 
to more complicated systems, as well as its application for limiting cases. 

B SAB = SAB. In ref. 9 we have discussed the extension of the spin Hamiltonian 

Let us now return to reduced Fd 11. The experimental data show the presence of one 
delocalized pair A-B. This suggests a model with BAB = B and BAC = BBC = 0. We have 
further assumed that all coupling constants J are the same; this condition can be 
relaxed somewhat without effecting the results for the ground state in an essential 
way. With these assumptions, the spin Hamiltonian can be written as (using EA = EB =Ec) 

The excess electron is never on site C; hence  AS^ = B S ~  = Sc. The terms in bracket are 
diagonal in the basis I ( A S ~ A S ~ )  SAB, Sc; S> = Ism; SA, I ( B S ~ B S ~ )  SAB, Sc; S> = ISAB; SB. 
The transfer term mixes only states with the same S and the same SAB,  and the 
eigenvalues of (ref. 5) are simply 

E = J/2 S(S + 1) k B(SAB + 1/2) (6) 

with eigenvectors 

In Fig. 4 we have plotted the energies of the lowest levels vs. B/J. It can be seen that 
the system state with S = 2 and SAB = 9/2 becomes the ground state for B/J > 2. This 
is just the desired state. We have also computed the magnetic hyperfine interactions 
for sites I and I1 (for details see ref. 5). The theoretical values, together with the 
experimental data, are listed in Table 1. Given the simplicity of our assumptions the 
agreement between theory and experiment is excellent; both the signs and the 
magnitudes are accounted for. 
state ISAB; S>- do not depend on B/J, i.e. the magnetic hyperfine parameters are 
independent of B/J. Thus, except for B/J > 2 the exchange and double exchange 
parameters are undetermined. 

Note that the coefficients of the electronic ground 

Recent susceptibility studies by Day and coworkers 
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Fig. 4. Correlation diagram for reduced Fd I1 
plotted for antiferromagnetic (J>O) HDvV 
exchange. 
to delocalize between sites A and B. 

The excess electron was allowed 

TABLE 1. Magnetic hyperfine parameters of reduced 

Site A,(MHz) Ay(MHz) Az(MHz) AaV(MHz) 

Ferredoxin I1 (ref. 5) 

Atheory(MHz) 

I -20.5 -20.5 -16.4 -19.1 AA = AB = -19.2 
I1 +13.7 +15.8 +17.3 +15.6 AC = +16.7 

(ref. 18) show that no excited state configuration with 
temperatures up to 200K. 

To date no experimental B-values have been reported 

' 4 / j  1 

S # 2 is populated at 

for any clusters. However, 
Noodleman and Baerends (ref. 8) and Sontum, Noodleman, and Case (ref. 22) have 
provided theoretical estimates for B and J. 
method (ref. 22,23) for estimating B and J from a broken symmetry analysis of Xa- 
calculations. 
broken symmetry calculation with those obtained from a spin Hamiltonian. 
value for B is obtained from the energy separation of symmetric and antisymmetric 
states such as those of Eq (7). 
have obtained J = 297 cm-1 and B = -406 cm-1 for a reduced Fe3S4 cluster. Thus, the 
B-term appears to have a sizable magnitude. 

These workers have developed an elegant 

In this method values for J are obtained by comparing the energies of a 
The 

In this way Sontum, Noodleman and Case (ref. 22) 

Our Mossbauer study has revealed that reduced Fd I1 has a low-lying state which 
seems to be totally delocalized. S .  A. Borshch has informed us (ref. 24) that this can 
be understood with a model that takes HDvV exchange, double exchange and 
vibronic interactions into account. However, we have noticed (ref. 25) that suitable 
delocalized states can also be produced by allowing in Eq ( 5 )  J-values such that 
J(Fe3+-Fe3+) = 2J(Fe3+-Fe2+). 

Finally, the description of the magnetic properties of FeqS4 clusters requires the 
inclusion of double exchange (ref. 9). 
model for [Fe&]3+ cores that includes both Heisenberg and double exchange; this 
model successfully describes the salient features of the experimental data. 

Noodleman (ref. 26) has recently published a 

THE EFFECTIVE HAMILTONIAN 

In order to develop a more fundamental understanding of the spin Hamiltonian of Eq 
(3) we have investigated the problem by developing an effective Hamiltonian Heff 
which can be put into equivalence with a suitable spin Hamiltonian. 
Hamiltonian will contain the standard Heisenberg-Dirac-van Vleck (HDvV) term and 
the double exchange term. In addition, we have found that the spin Hamiltonian will 
have to be augmented by yet another term when mixed-valence clusters containing 
more than two metals with unpaired electrons are considered. Stevens (ref. 27) has 
eloquently described the benefits of using a second quantization description for the 
task at hand; in the following we will use this method. For a derivation of the HDvV 
Hamiltonian with second quantization methods we refer the reader to a paper by 
Leuenberger and Giidel (ref. 28). 

This spin 
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The Hamiltonian of a dimer can be written as 

81 1 

H = Zi,k <ilhlk> C+jCk + Zj,k,l,m <i,klglm,l> a+ja+kalam (8) 
where i,k,I,m designate orthonormal one-electron functions. 
and annihilation operators, and <ilhlk> = <Yi(I)Ih( 1)IYk(l)> and <iklglml> = 
<'Pi( 1)Yk(2)lg(l,2)IYm( 1)Y1(2)> are the matrix elements of one- and two-electron 
operators, respectively. 

In the following we label each orbital by three indices (mko); m designates the site, k 
the orbital on the site m, and o refers to the spin of the electron which occupies 
(m,k). 
will be useful to split the matrix elements into single-ion terms and interaction 
terms. 

C+i and ck are creation 

nmko = C+mk&mko is the occupation operator for the spin-orbital (do). It 

Then the one-electron part can be written as 

Zm,k,o aknmko + &n+m',k,o Pmm',k c mkocm'ko + 

with a k  = < d o l h l m k a >  and the transfer integral is Pmm',k = <mkolglm'ko>. In the 
preceding expression we have neglected elements such as <mkolhlm'k'o>. We will 
split the two-electron matrix elements into intra-ionic repulsion (U) and intra-ionic 
exchange (K) terms, neglecting inter-ionic two-electron interactions. Retention of the 
exchange term K = <mko,mk'a'lglmk'o,mko'> allows us to take Hunds first rule into 
account when we couple the electron spins locally to a site spin. Collecting all the 
terms, and after some rearrangements, we obtain 

H = Zmk aknmk -+ 1/(2u) (Zm,k+k nmknmk' + Zmko nmkonmk-o) 

- 1/(2K) {Zm,k+k',o (nmkonmk'o i- C+rnk&mk-& mk'-&rnk'o)) 

+ Zm+m',k,o Pmm',k C+mk&m'ko 

(9) + 

For polymetallic complexes which lack strong metal-metal bonds the interaction 
between the centers, i.e. the last term in Eq (9), can be treated as a perturbation. 
Thus we write H = H o  + V with 

(10) + v = Zm#m',k,o Pmm',k C mkocrn'ko. 

By dividing the eigenstates of H o  into a ground manifold lo>, energy Eo, projector Po = 
Z 10><01, and excited state manifolds le>, Pe = Z lexel ,  we can construct an effective 
Hamiltonian (ref. 27,29) 

Heff = PoVPo - Po ( ZCVPeV/(EOe - Eo0)}Po (11) 

Heff will contain products of creation and annihilation operators. 
replaced by spin operators and thus a spin Hamiltonian can be constructed. 

These can be 

Two centers: exchange and double exchange 

We consider a mixed-valence system with three electrons consisting of two centers 1 
and 2, each center having two orbitals at energy a1 and a2. We assume that A = a 2  - 
a1 << K,U. Taking Hund's first rule into account the ground configurations will be of 
the type, 

center 1 center 2 center 1 center 2 

By forming a local triplet either on center 1 or on center 2 we can construct two 
quartets and two doublets which belong to the ground manifold €0, with energy Eoo = 
2a1 + a2 + U - K. The perturbation contains terms with Pmm' , l  = PI and Pmm4,2 = P2. 
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The term involving p2  has two effects. By starting with a local triplet on center 1 the 
j32-term can move the excess electron to center 2. With a triplet on center 2, the new 
configuration belongs to the ground manifold and p2 contributes in first order; this 
gives rise to the double exchange term. 
center 2, giving an excited configuration at energy 2K above the ground manifold. 
this case p2 contributes in second order and one obtains the HDvV exchange term. 

Alternatively, we can form a singlet on 
In 

A configuration at energy K can be obtained through the pi-term, as shown in the 
diagram + P2- -+ P2- + - PI+ 
Note that in a mixed-valence system the excited configurations are at much lower 
energy (K) than in monovalent systems (U). With 

the effective Hamiltonian will be 

We consider the second order terms first. Using the projector 

we find after some calculation 

Since 

for singly occupied orbitals (see ref. 29), we obtain 

where we have used the relation nmla + nmlp = 1. 
occupied.) 

(The state (m,l) is singly 

A similar treatment yields 

In Eqs (14) and (15) we have retained the occupation operators nm2 = nm2a + nm2p; 
they remind us that orbital 2 on center m is occupied when we evaluate the 
expressions in the curly brackets. 
modification is made. 

We can combine Eqs (14) and (15) after one further 
This modification involves the use of the Wigner-Eckart 
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theorem to replace sm2 by the ionic spin Sm; since Sm = 1 we pick up the equivalence 
factor 1/2. 
or by Sm* with Sm' = 1/2 when the excess electron is on m. With these modifications, 
and dropping spin-independent terms, we have arrived at the Heisenberg part of the 
spin Hamiltonian 

The operator Sm' l  is replaced by 1/2 Sm' when the excess electron is on m' 

Hs = J{S1*S201 + S10S202) (16) 

with J = p22/(4K) + j3i2/K. The operators Om = nm2 keep track of the extra electron 
and thus control the values of S1 and S2. In our computations of Fe3S4 and FeqS4 
systems we found it useful to add the subscript of the occupation operator as a 
superscript to the spin operators, as indicated in Eq (3). 

The first order term in Eq (12) yields the double exchange term. Since PoV2Po acts 
within the ground manifold for which we desire a spin Hamiltonian we can identify 
this term with the transfer term in Eq (3). Thus we equate 

{Z, c+1,20 c2,20 + Zu c+2,20 c1,2a) with t12. 

where t i 2  is a transfer operator. 
electron. 
or a spin-down electron from center 2 to center 1 or from center 1 to center 2. 
matrix elements of P2t12 are evaluated within the correct spin representation, the 
resultant matrix will be identical to that obtained when V2 is evaluated within the 
ground manifold. For the coupled representation I(Sios1) Si=Sio+si, S2O;S>, ISio, 
(S2Os2) S2=S2o+s2; S> the action of t12 can be written as 

In our example, orbital 2 contains at most one 
Thus, t i 2  can be understood as an operator that transfers either a spin-up 

If the 

tl21(Spsl) s1, s20; s> = (S+1/2)/(2SO+l) IS10, (S20s2) s2; s> (17) 

In our example SlO = S2O = So = 1/2 are the "core" spins on each ion; the indices of s1 
and s2 indicate whether the excess electron is located at site 1 or 2. The immediate 
effect of t i2  on the ket I (S ios i )  S2, S2'; S> is to change si to s2 but leaving s2 coupled 
to Si0. 
scheme for which the intermediate spin is S2 = S2O + s2 and S2 = S2O + 1/2. In our 
previous work (ref. 5,9) we have absorbed (2S0 + 1) in the coupling constant, and we 
have not assumed a direction of transfer in the arrangement of indices. 
(3) we have implied that 

The Racah coefficient (S+1/2)/(2So+l) occurs when we work in a coupling 

Thus in Eq 

Ti2 = (2% + 1) Po t i 2  Po and B = p2/(2So + 1) (18) 

With this we obtain for the spin Hamiltonian of the dimer 

Exchange-transfer 

In this section we consider a mixed-valence system with three centers, each having 
two orbital states at energies a1 and a 2 .  
electrons. 
center m, is shown in the diagram. 
on center m. 
electron from m to m' or m". 

Among these centers we distribute four 
One of the ground configurations, with the excess electron localized on 

Again, the ground configuration has a local triplet 
Two other ground configurations are obtained by moving the extra 

2- 

2- 
'+ 

'I '+ 2-t- m' 

m" m 
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As in the previous example the resulting spin Hamiltonian will contain the 
Heisenberg exchange terms and the double exchange terms. 
we consider the second order contribution from the p2-term, i.e. from 

New terms arise when 

V2 = zmzm'o Prnrn' ,~ c+m2acm*2o 

The following considerations illustrate how the new terms arise. The numerator of 
the second order term contains the operator sequence P o V ~ P ~ V ~ P O ,  Picking a specific 
state from the ground manifold lo>, operation by Po leaves the state unaltered, Polo> 
= lo>. Lets assume that we have picked a lo> where the excess electron is on m, lo>,. 
The ~ + m l l 2 o ~ m 2 ~  part of V2 can move the electron from m to m". 
singlet on m", the state The 
V2 operator on the left has to return the system to the ground manifold. 
~ + m 2 o ~ m " 2 o  part of V2 returns the system to the original state and we obtain a term 
proportional to P2mmll,2/(2K) which contributes to the familiar exchange term. 
However, if the sites m and m' are similar we can also return to the ground manifold 
by using ~+m'2ocm"2o. 
transferred an electron from m to m'. 
Pmm't,2Pm~m~~,2/(2K). 

A suitable projector of the excited state manifold le> can be written as 

If we form a local 
le>m*l belongs to an excited state manifold at energy 2K. 

The 

This puts the system into IO>ml and thus we have effectively 
This term is proportional to 

In the following we comment on some of the computational steps. 

(20) + Pe = zm#m'#m" nmlonm~lo* (nm"1anm*~2p - c+m"lpcm**lac m"2acm"2p 
- C + m " l a C m ~ ~ l p C  + m " 2 p ~ m " 2 a  + nm"lpnm"2a)/2 

The operator c+mv2pcmzp transfers a P-spin from m to m'. 
transfer operator and a product of spins. 

Thus the term contains a 

Defining the transfer operator 

we can write the expression (22) as - tmm's-m2s+mlll. 
a P-spin into orbital m2 and subsequent action of tm'm,2a or tmm',2o produces zero. 

By collecting all terms of expression (21), and after some manipulations we obtain 
for the mechanism considered 

This is possible because s-m2 puts 

Heff = Zm#m'#mla Cmm~~m~ tmm' ((1 - 4~m'2*Sm~~1)Om' + (1 - 4 s m 2 * ~ m ~ * l ) O m )  (24) 

with Cmm**m' = - Pmm"Pm'm'I/(8K) = Cm'm*lm. In Eq (24) the indices m, m' and m" 
assume the triplets (1, 2, 3), (2, 3, 1) and (3, 1, 2). By allowing the indices to run 
through the six permutations we obtain 

Heff = C.m#:m'+m" Cmrn*inI tmm' (1 - 4~rn'2*~rn"1)0m' (25) 
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The first spin operator of the spin product belongs to the site which contains the 
excess electron in orbital 2. Since we have used Eq (13) the whole expression in 
parenthesis has to act on a basis state containing the excess electron. The occupation 
operator Om* = nm32 ensures that the expression acts only on basis states which have 
the excess electron of orbital 2 on a site indicated by the index of the first spin 
operator. 

Eq (25) describes a spin-dependent transfer process. 
is zero when the spins of the mobile electron in m'2 and the electron on the 
intermediate site m" are parallel, i.e. the spin factor excludes the formation of a 
triplet state on m". In contrast to the double-exchange term, the terms of Eq (25) 
cannot readily be cast into a spin Hamiltonian containing the site spins Sml = Smt1 + 
sm'2. 
two sites connected by tmm', 

The expression in parenthesis 

This can be seen by considering a typical matrix element which occurs for the 

<(smlsm2)Sm=l, sm'l; Smm'll sm2 tmm' lI(~m*l~m'2)Sm'=l, sml; S'mm'> 

where Smmj or S'mml is the spin of the dimer. Operation of tmm' replaces sm'2 by ~ m 2  
and produces the ket I(sm'lsm2)S=l, sml; S'mm'>, that is a state for which the electron 
in m2 is still coupled to the electron in m'l .  
I(SmlSm2)Sm, Sm' l ;  S'mm'> with Sm = 0 and Sm = 1. Thus there are matrix elements of 
sm2 between states of different site spin Sm; this excludes the application of the 
replacement theorem. 

Recoupling yields the two states 

The transfer by double-exchange occurs without spin-flip. Interestingly, expression 
(21) contains transfers with and without spin-flip. We can depict these processes in 
the following way. 

2, 2 +  

+ l +  
2- 2- m 

'+ 
rn 

1+  
1 +  rn' 't m" m' 

4- 

Transfer without Spin-Flip 

2- 

'+ 
rn" 

Starting with the excess electron on m' the operator 
where a local singlet state is formed. 

moves a P-spin to m" 
Subsequently the electron is tranferred to m 

with c+m2pcm*o2p. 

2, 2 +  

--.) '+ 
2- 2- m 

'+ 
m '+ 

1 +  m' l +  m" m' 

Transfer with Spin-Flip 

2- 

'4- 
m" 

Transfer with spin-flip can occur because the singlet state on m", (I = ( Im"la>lm"2P> - 
lm"lP>lm"2a>)/d2, contains both a- and P-spins in orbitals 1 and 2. Thus ~+m"2pcm'2p 
can transfer a P-spin into center m" whereas ~ + m 2 ~ ~ m l g 2 ~  carries the a-spin 
component to m, leaving a P-spin in orbital m"1. 

The new terms discussed here are analogous to those considered by Hirsch (ref. 30) 
in his theoretical studies of mixed-valence systems with one orbital per center. For 
the latter systems the new terms are proportional to P 2 / v  rather than p2/K. 
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Double exchange is a first order process proportional to Pmml. 
discussed here achieves the transfer by using the "detour" through an excited state 
on m". 
Pmm'lPm'm". 
features of the familiar exchange term, we may call this process exchange-transfer. 

The exchange transfer process requires that two transfer integrals Pmm" and Pm'm** 
have non-zero values. 
and m" are connected by a double exchange pathway. The exchange-transfer term is 
roughly by a factor P/K smaller than the double exchange contribution. 
term commutes with S2  and S z  but it will mix states with different intermediate spin 
and it can lift degeneracies. Although expression (24) has been derived for a d l -d l -  
d2 system, it seems that one should be able to construct a similar term, with suitable 
modifications, for the dn-dn-d(n+l) system. In this case, the Hund rule configuration 
S = S o  + 1/2 and the configuration S = S o  - 1/2 will take the place of the triplet and 
singlet states discussed here. Finally, exchange-transfer will occur in do-dl-dl and 
dg-ds-dlo systems. 

The mechanism 

Consequently, the process involves two consecutive transfer integrals 
Since the new term contains the transfer operator tmm' as well as 

This implies that the centers m and m" and the centers m' 

The new 

1. 

2. 

3. 
4. 
5. 

6. 
7. 
8. 
9. 
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11. 
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