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Abstract - The application of the Fuoss-Edelson equation to
the conductance of associated 2:1 electrolytes is critically
assessed and compared with the conclusions which can be drawn
by analysis using the Lee-Wheaton equation which is based on
a sounder theory of the conductimetric behaviour of
electrolyte solutions.

INTRODUCTION

Measurementsof the conductivity of solutions of electrolytes have been made
for nearly a century (ref. 1), and from the earliest times have been one of
the most accurate physical measurements made on solutions. Moreover, interest
has never been restricted to aqueous solutions and even in 1888 the
conductivity of non-aqueous solutions (ref. 2) and mixed electrolytes (ref. 3)
was reported. However, throughout this long history most emphasis has been
on the conductance of single symmetrical electrolytes for the simple reason
that the interpretation of the conductance of a solution containing only two
types of ion of equal and opposite charge has been relatively straightforward.
A variety of theoretical approaches has been developed to account successfully
for the conductance of 1:1 electrolytes in water up to a concentration of
about 0.1 mol dm but to rather lower concentrations for higher charged
electrolytes and/or solvents with a lower dielectric constant. These have
been extensively reviewed elsewhere (refs. ,5) and will not be considered
further here.

Much less attention, either practical or theoretical, has been paid to the
more general problem of unsymmetrical electrolytes (especially associated
ones) or to mixtures of electrolytes, although these occur in both natural
waters and industrial solutions. This is undoubtedly due to the fact that
conductance theory for such systems is far more intractible and the
interpretation of the results is far more difficult. Certainly there is a
great shortage of reliable, precise conductance data on such systems,
particularly in non-aqueous solvents, and this has hindered the testing of
such theoretical approaches as have been developed.

It is appropriate to use this opportunity to urge that, in future studies of
the conductance of unsymmetrical and mixed electrolytes, a high priority
should be given to obtaining data of the highest precision. Too often a broad
sweep approach has been adopted in the past, producing results which can at
best be used for semi-quantitative interpretations and which are unsuited for
analysis by such theoretical equations as have been derived. Probably the
most common cause of scatter within a series of experimental results, given
that nowadays reasonable temperature control and resistance measurement are
fairly straightforward, is the preparation of the measured solutions from a
stock solution or solid material. This source of error is particularly
prevalent in studies on non-aqueous solutions because expense and the
difficulties in purifying the solvent usually mean that small volumes of
solution are prepared. Use of a five or six decimal place electronic balance
could help to minimize this source of error and it is good experimental
practice to use amounts of solvent and solution as large as are feasible.
Errors in solvent and salt purity and in absolute temperature control and
cell calibration would not cause a scatter in the results for one series of
experiments and only become apparent when different runs are compared.
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THE DAVIES APPROACH

One of the earliest attempts to interpret quantitatively the conductance of
associated unsymmetrical electrolytes was by Davies (ref. 6) who assumed that
an associated 2:1 (or 1:2) electrolyte could be considered as a mixture of
the appropriate fractions of strong 2:1 and 1:1 electrolytes whose
conductivities were additive but were reduced below their limiting values
by an amount equal to the square root of the total ionic strength, I,
multiplied by the relevant Onsager limiting slope, S. Using the salt MX2
as an example, with T' as the fraction of ion pairs MX formed,

A (y/2)X0(MX) + X0(X) -S11V1 + 1-y)[X0(M2) + A0(X) - S2:1121 (1)

with I c(3 - 2i)
A short series of iterations was necessary to obtain a value of the
association constant for the formation of the ion pair, KA, once the limiting
molar conductivities, Xc, of the various ions had been fixed. As always,
the value of A0 allocated to the associated species is the one most open to
doubt. This approachhas been little used in non-aqueous solutions.

FUOSS-EDELSON EQUATION

Another attempt to tackle the problem quantitatively was by Fuoss and Edelson
(ref. 7) and, although this was restricted to the interpretation of the
conductance of associated 2:1 salts, it has remained the most frequently
used equation to the present day. To simplify the theoretical problems,
Fuoss and Edelson made a series of drastic approximations from the original
theory by Fuoss and Onsager (ref. 8) and which are outlined in Table 1.

TABLE 1 Assumptions made in the Fuoss-Edelson equation

(1)
(2)

(3)
(L)

(5)

The conductance of each ion obeys Onsager's Limiting Law
The Onsager limiting slope is used to correct the conductance
of eah ion for intrionic interactions
A (MX ) O.5X (M2
A8tivity coeffcients are given by1 the Debye-Hückel
Limiting Law, i.e. log y2 - 4A 12

+I 3c, i.e. it is not corrected for association to MX
(6) = MX —

After much algebraic manipulation they obtained the deceptively simple
expression

A0 — (KA/Ao)X (2)

where X 2cy2A*(A* — A0/2) (3)

and A* A{[1 - (S21/A0)(2c)1 + (A0-X0)/(2A)} / {1 + (A0-X0)/(2A0)} ()

from which both A0 and KA can be found by a simple linear least-squares
analysis. In eqs. (2) - () and Table 1 A and A are the molar and the
limiting molar conductivity of (MX2),X is the limiting molar conductivity
of X c is the molar concentration of X2, y2 is the activity coefficient
of M2 and A is the Debye-Hückel constant. As both eq. (3) and () include
A , which has to be found from eq. (2), it is necessary to adopt an
ierative procedure for the determination of KA and A0, using a simple
graphical approach to find the starting value of A0.

However, there is no reason why the approximations listed in Table 1 should
be valid, except at extremely high dilutions, as they are approximations
to the limiting law which is itself known to give an inadequate
representation of conductance data in dilute solution. There is some
experimental evidence (refs. 9,10) that Fuoss-Edelson plots are in fact not
linear but are concave upwards, although this is usually concealed by the
experimental scatter in the raw data.

As explained later, it is now possible to fit precise conductance data to
a soundly-based theoretical equation. One can then use the fitting
parameters so obtained to calculate a "perfect" set of conductance!
concentration data with which to test the FE equation and the various
modifications which have been suggested. A similar approach for symmetrical
electrolytes has recently been published by Fuoss and Jarrett (ref. 11).
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TABLE 2 Fitting parameters for CaC12 solutions from the LW equation.

— KA

dm3 mol'
X(Ca2) X(C1) X (CaCl )0

R
pm

viscosity
poise

dielectric
constant

water 5.5 59.47 76.35 7.58 LLtO 0.008903 78.30
methanol L5O.O 57.'5 52.35 L5.96 550 O.005'45 32.62

This has been done for CaC1 in water and methanol at 298 K, using the
parameters listed in Table which were obtained using the Lee-Wheaton
equation (ref. 12). The standard FE plots obtained are shown in Figs. 1 and
2 for water and methanol respectively. The actual points marked represent
values of A* and X calculated for values of Joncentration increasing by
0.01 (mol _3)1/2 the maximum concentration plotted being 5.0 x i0 for each
solvent. It must be emphasized that these plots are obtained from perfect
data and that most of the curvature, particularly at lower concentrations,
would be masked by an experimental scatter of 0.1% in the results. Hence
the repeated emphasis on the need for results of the highest precision if
reliable information is to be deduced from them. It is also possible that
the curvature at higher concentrations in methanol is spurious because the
original fitting parameters were obtained over a smaller concentration range.
As the plots in Figs. 1 and 2 are curved it is obvious that the values of

and A0 obtained from them will depend on the concentration range used.

Several simple modifications to the basic FE equation are possible. The
basic FE equation includes the Debye-HUckel Limiting Law expression for
the activity coefficient of the divalent metal ion, y2. Particularly in
methanol solutions, this factor becomes quite significant (e.g. y = 0.20
when c = 2.5x103 mol dm3) and Doe et al (ref. 13) have suggested that a
factor (1 + KR) should be included in the denominator of the equation for
log y2. R represents the closest distance of approach of free ions. Ions
closer than R are considered to be associated. More recently it has been
suggested (ref. 1) that the same factor should be included in the
denominator of the (2c)l term in eq. () for A'. If these changes are being
made it would seem logical also to allow during the iteration for the effect
on K of changes in the ionic strength of the solution due to association.
This turns out to have a dramatic effect on the plots. These changes are
summarized below and the resultant FE plots are shown in Fig. 3. Values of
A and IKA obtained from linear least-squares analyses over various
concentration ranges for the various cases are given in Table 3.

Case 1 Basic FE equation, most dilute point 1x10 mol dm3

Case 2 Basic FE equation, most dilute point 1x103 mol dm3

Case 3 (1 + KR) in log y, Doe (ref. 13)

Case (1 + KR) fl both log y and eq. (L), Doe (ref. 1)
Case 5 As Case but correcting ionic strength for association

Case 6 As Case 1, but with model KA = 1000 dm3 mol1, methanol only

x
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TABLE 3 Parameters determined from FE plots under various conditions

H20 MeOH

10x(conc range)
mol dm3 — A0

s 2 molT
KA

dm3 moF1
A0

S 2 mol'
KA

dm3 mol'

Model values 135.82 5.5 109.80 1450

Case

1.0+3.2
1.0+7.8

1 1.0÷114.14
1.0÷23.0
1.0÷33.6

135.55
135.116
135.36
135.26
135.16

12.0
8.3
5.9
14.1

2.7

109.21
109.114
109.07
108.91
108.59

'466
'459
'4514

41414

'425

Case

Case

Case

10.0÷16.0
2 10.0÷36.0

10.0÷614.0—
1.0 ÷3.2

3 1.0÷114.14
1.0÷33.6—
1.0 ÷3.2

'4 1.0÷14.14
1.0÷33.6

1314.97
1311.67
1311.35

135.55
135.36
135.15
135.55
135.38
135.21

2.14

0.2
—1.5

11.9
5.7
2.5

15.6
10.0
7.3

108.17
1014.89
97.06

109.02
108.03
106.00
109.26
109.30
109.50

'418
3014
70

434
361

— 260
496
'499
510

Case
1.0÷3.2

5 1.0÷14.14
1.0÷33.6

135.55
135.38
135.21

15.6
10.0
7.2

109.12
108.53
107.65

'475

1430

385

Case
1.0÷3.2

6 1.0÷14.11
1.0÷33.6

—

—

—

—

—

—

109.10
108.55
107.10

912
859
750

As can be seen from Table 3, the effect on the derived parameters of the
assumptions made, the concentration range covered and particularly the lowest
concentration used are dramatic for both solvents. Of course, it is the most
important points, those at the lowest concentrations, that are most likely to
suffer from the largest experimental error. For all cases in methanol every
calculation underestimates the true value for A0 by a significant amount due
to the concave nature of the real plot, particularly when the larger
concentration ranges are used. However, only the basic FE equation gives
values of A which are roughly constant for different concentration ranges
analysed and which agree with the model value supplied. Case 5, which
intuitively might be expected to give the best results, is by far the worst.
Similar results are observed for the aqueous system, but here the agreement
of KA is worse due to the more pronounced curvature of the original plots.
The errors become worse if the model association constant is larger, as shown
for Case 6.

In conclusion, it can be said that the basic FE equation does appear to give
a reasonable fit in certain cases, but the proposed changes do not yield a
significant improvement. Moreover, given the availability of the LW equation
and powerful computers there is not much to be said in favour of using the FE
equation in the future, except in the analysis of poor quality data.

QUINT-VIALLARD EQUATION

Two conductance equations have been developed to account for the totally
general case of the conductance of solutions containing many ions in dilute
solution. One, by Quint and Viallard (ref. 15), has been presented in an
expanded form, similar to that used for single symmetrical electrolytes, in
which the conductivity of each ion is given by the expression

A. A . - S.12 + E.I ln I + Ji.I - J2.I3/2 (5)
J oJ J J J J

where the coefficients S, E, J1 and are specific to a particular ion
in a given mixture and depend on he values of A0 of the other ions as well
as solvent properties, fundamental constants and the closest distance of
approach of free ions, R. Of course, one might expect a different value of R
for each pair-wise combination of ions, but there does not seem to be much
lost by treating R as a single adjustable parameter for the whole system
whereas much is gained by so doing. Unfortunately, so far the equation does
not seem to have been tested very rigorously, although Lee and Wheaton (ref.
16) claimed to have shown that an earlier version (ref. 17) gave a satisfactory
fit of data for the alkaline earth chlorides (ref. 18) in methanol.
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LEE-WHEATON EQUATION

The other equation, derived by Lee and Wheaton themselves (ref. 12), has been
tested extensively (ref. 10) in both aqueous and non-aqueous systems and
seems to provide a satisfactory explanation of the conductimetric behaviour
of a variety of systems. However, as we shall see, even the LW equation is
not without its problems in application and a complete theoretical
exposition is still awaited. Unlike Quint and Viallard (ref. 15), Lee and
Wheaton (ref. 12) did not expand and truncate the exponential integrals in
their equation but retained them explicitly in terms up to order 3 in KR.
They obtained an equation of the form

A(/)= 2(j) {1 + z E E t[A(t)(I3x) + B(t)(fl)2 + C(t)(flx)3]} — xt)
{1 + Vj1(t)(I3x) + 2(t)(flx)2 +ftS5t/6} (6)

p=2 v=i 2(1 + t)

S
with A . E (Iz.Im.X./ c) (7)

equiv
j::1

where s is the number of charged species, z-j and tj are the ciarge and
transference number of species j, e2IDkT, K2 (Lir/DkT)ne2 and is
proportional to the ionic strength, t KR and t Fe/6i, j-1
m- is the molar free ion concentration of species j, c is the equivalent
soichiometric concentration of the electrolyte and all other terms are
defined in the original papers (ref. 12).

One of the problems that has beset all theoretical approaches to the
conductivity of complex solutions is the symmetry factor, q. This is equal
to for a symmetrical electrolyte but for a system of s ions there are s-I
such factors q , p 2,s, given by

q i1 twl(w2 - a) (8)

where w• is the mobility of the 1th ion and t1 its limiting transference
number efined by t ne2w/E n±e2w1. The values of a are the solutions
of the equation 1=1 p

api!iti1i2 a2) 0 (9)

When s 3, a and a3 are simply the roots of a quadratic equation, but when
s > 3 the values of must be found by an iterative procedure once the ions
have been sorted into a sequence of increasing mobility. A plot of the
function in eq. (9) divided by ap against ap2 is shown in Fig. t for the case
of 1.0 mM CaCl2 in methanol. The solutions for ap2 are where the function
crosses the horizontal axis, leading to a2 and a3 2.59 x lO8and 3.03 x 108
and q and q 0.77 and 0.'-37 respectively.

Even as complex an expression as the LW equation is necessarily only an
approximation and the higher terms C and are not complete. Consequently
Wheaton (refs. 12,18) has suggested that they may be omitted. As can be
seen from Figs. 5 and 6, calculated for the model cases used earlier to test
the FE equation, the effect of including these terms is dramatic, especially
in a solvent like methanol. It has been shown (ref. 10) that in low
dielectric constant solvents such as methanol it is necessary to omit both
terms to obtain a satisfactory fit with sensible parameters (see later)
whereas with solvents like water and DMSO it is helpful to include the V2)
term.
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Figs. 5 and 6 Effect of
including higherterms in
the LW equation for CaC12
in water (ref. 19) and
methanol (ref. 20)

The simplest case to which the LW equation can be applied is that of a 2:1
salt which associates according to the scheme

N2 + X MX ,
KA [MX+]/[M2+][X]y2 (10)

In such a system five variables must be fixed before the conductance of the
solution can be calculated; these being the limiting molar conductivities of
the three ions, the value of KA and a value for R. Of these, XQ(X ) can be
obtained from conductance and transference measurements on solutions of a
single symmetrical electrolyte, but the remaining four are too many to be
determined by a fitting routine from the experimental data, three independent
parameters being the most that can be extracted from the best data. The
present author has found it useful (ref. 10) to express Xo(MX+) as a fixed
ratio of X0(M2) and to calculate pairs of values of X0(M2) and KA which
fit te data at selected values of R and the conductivity ratio,
X0(MX )/X0(M2), expressing the results in a series of grids Values of y
are calculated from the extended Debye-Hiickel equation with (1 + KR) in the
denominator. This has been reported elsewhere (ref. 10) for CaC12 in methanol
and is shown in Table 14 for the results for MgC12 at 298 K reported by the
same authors (ref. 20).

The criteria for the best fit are a minimum in the standard deviation of
Aobs - Acalc values plus the absence of any obvious trend in the values of
these differences. Table LI shows that several sets of parameters give an
equally good fit, but for a given value of the conductivity ratio the value
of R obtained for MgC12 is greater than that found for CaC12. This ma
indicate some extra solvation of the Mg2+ ion, but the values of X0(M+) are
very similar for the two ions and the difference may just be due to some very
small systematic error in one of the sets of data. However, the values of
X0(M2) and KA which give the best fit are almost independent of the exact
pair of values of R and the conductivity ratio. This gives one confidence in
the reliability of these values, particularly when comparing the values
obtained for a series of salts analysed under similar conditions. For many
systems a reasonable fit is obtained with the conductivity ratio equal to 0.8
and in the absence of other information it is recommended that this value
should be used (ref. 10).

standard deviation grid KA grid A0(Mg2) grid
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A
1 and V(2) omitted

2 C only included

3 V.( only included
14 and V(2) both included

LIC o.tmaim 0.02 0.04 0.06 0.06 (L12 0.04 0.06 aIm (LID

I—_ —3 1 —3'.ic /iol di ic hal di

Fig. 5 Fig. 6

TABLE 14 Fit of MgCl2 in methanol (ref.20) with the LW equation with and
v.(2) terms omitted V

ratio 0.70 0.80 0.90 1.0 0.70 0.80 090 1.0 0.70 0.80 0.90 1.0
R/ pm

600

700

800

0.06

0.05

0.014

0.05

0.03

0.02

0.03

0.01

0.02

0.01

0.03
—

256

274

289

279

299

317

307

330

3119

342

367

—

56.3

56.14

56.5

56.4

56.5

56.6

56.5

56.6

56.7

56.6

56.7
—

900 0.03 0.01 0.02 — 302 331 365 — 56.5 56.6 56.7
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TABLE 5 Examples of fit of data for MgC12 in methanol (ref. 20) with the LW
equation using different assumptions about the terms included.

Assumptions R/pm ratio KA A0(Mg2) st.dev.

and V(2) omitted
(see Tabie )

900 0.80 331 56.6 0.01

C only included
(2000

120O
770

0.80
0.60
0.15

3L
35t
265

56.7
56.7
56.6

0.01
0.01
0.02

(2)
V. only included

(2500
.1500
1000

0.80
0.60
0.15

Lt17
389
299

56.7
56.7
56.6

0.01
0.01
0.01

and Vc2)includedV
(2300
1600
1150

0.80
0.60
0.15

L72
Lt15
330

56.7
56.8
56.8

0.01
0.01
0.02

K2 included via eq.(11) 600
(with K2 17.5 dm3 mol')

1.15 376 56.6 0.01

A small value for the standard deviation can also be obtained by forcing a
fit when C and/or V.(2) are included but the values of the other parameters
obtained are unrealitic (i.e. very high values of R at sensible conductivity
ratios or very small ratios at reasonable values of R). Moreover, in sharp
contrast with the situation when both terms are omitted, the values of IKA
giving the best fit change a great deal. The values of X0(Mg2) all
agree within ±0.2%, so this is not helpful in judging the goodness of fit.
These results are summarized in Table 5.

It is interesting to look at the effect of varying each of the four
adjustable parameters in turn to see the effect of each on the calculated
values of the conductivity. This is shown in Figs. 7 and 8 where the
differences between the standard conductivities calculated from the
parameters given in Table 2 and the conductivities calculated after the
appropriate change in one parameter has been made are plotted for CaC12 in
water and methanol at 298 K. The effects of changing R, the conductivity
ratio and KA all tend to zero as c - 0, whereas the effect of changing
X0(N2) is a maximum at this point. This, and the fact that the plots for
the first three changes are differently shaped, explains why it is possible
to extract three independent parameters from a good set of experimental data.
The effect of changing the conductivity ratio in methanol is greater because
the larger value of KA means the concentration of the ion pair is much higher.
The differences between the curves increase as the concentration increases.
Consequently, one should always aim to analyse data over as wide a
concentration range as is consistent with the approximations made in the
derivation of the theory. However, this latter point is more difficult to
judge for the complex equations used for unsymmetrical and mixed electrolytes.

MeOH

Fig. 7 LW parameter
changes for water

model

R/pm change LtO 30 1

KA 5.5 - 6.0
ratio change 0.8 + 0.6

2+'O 2
change 59.47 - 58.97

1<2 change -
•1

Fig. 8 LW parameter
changes for methanol 1

550 -+ L50
L450 - 500
0.8 ÷ 0.6

57.145 + 56.95
0 eq.(11) o ___________________

0.00 0.02 0.04 0.00

iTioi di3 Ic ho! di'
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If the value of KA is large it is possible that further association may take
place, leading to the formation of dissolved but undissociated MX2 for. which a
second association constant exists given by the expression K2[NX2]/[MX+][X ]yi2.
Indeed, in solutions of transition metal halides further association to
anionic complexes may take place, for example, when nickel bromide is
dissolved in dimethyl sulphoxide (ref. 21) anionic complexes such as
NiBr3 and NiBr2 are formed even at low concentrations. Any attempt
to analyse conductance data for such a system would require the introduction
of additional association constants and ionic conductivities leading to an
excess of parameters which must be adjusted. One possible approach is to
analyse data at low concentrations where higher complexes are not formed and
then to use the parameters so obtained to fit the data at higher corceniratiors
in terms of the additional association constants.

If only association via K2 to MX2 takes place, it has suggested (ref.22)
that the introduction of an additional adjustable parameter, K2, can be
avoided by using Fuoss' equation for the association constant between two
ionic species (ref. 2L). When the resultant expressions for KA and 1K2 are
combined, the expression 2

1<2 KA/exp(e ocrcT (1.1)

is obtained in which 1<2 is expressed solely in terms of fundamental constants
and existing parameters. This approach is sometimes useful, but can also lead
to strange results. For example, the last line of Table 5 shows that with the
data for MgCl2 in methanol (ref. 20) a fit can only be obtained when K2 is
introduced via eq.11 by setting the conductivity ratio greater than unity -
which is contrary to all other experience. However, this approach is quite
satisfactory for a system such as Sr(N03)2 in methanol (ref.1O) which is
more strongly associated with IKA 590 dm3 mol' and 1<2- 375 dm3 mol' at
R 60 pm and the conductivity ratio 0.68.

Finally, one word of caution should be added. Every system discussed to far
has involved some kind of mixed electrolyte system in a single solvent. Very
little work has been done on mixed electrolytes in mixed solvents, but recertly
Perie, Perie and Chemla (ref.23) have shown that preferential solvation of the
ions in such mixed solvent systems can lead to effects that cannot be
predicted by present theories of conductance. Consequently, it seems much
safer at the present moment to deal with one major problem at a time and to
restrict studies on mixed electrolyte systems to a single solvent.
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