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Abstract - After presenting the various assumptions implied in the
classical ion-pair association model, recent developments are re-
viewed which help to show in which conditions the chemical model
is realistic. The results obtained from fundamental bases like the
activity expansion equation are discussed. Some general properties
concerning ion—pair distribution functions are analyzed. A genera-
lisation of the echo effect in conductance is proposed which is
applicable to electrolyte mixtures in solutions. These results
explain the large success of the association concept for excess
thermodynamic and transport properties of electrolyte solutions
where strong interactions occur.

INTRODUCTION

Among the most striking features of the concept of ionic association (Ref.1),
one can point out the following characteristics.

- The simplicity of the basic idea and of its analytical representation.
- The large appeal of this concept to chemists due to its obvious tight
chemical analogy.
- The surprising success met when it is tested against experimental data
(Ref.2), or compared to more refined theoretical developments (Ref.3,4).
— The easiness with which it can be generalized to any model hamiltonian
(Ref.5).

And yet, few concepts have been more misunderstood, criticized, altered or
misused. What is really amazing is that the most efficient definition of
the concept is the original 1926 statement of Bjerrum which it seems appro-
priate to recall here for the special case of a single symmetrical electro-
lyte.

1) In dilute solutions, all short range configurations involving one anion
and one cation of opposite charges at a distance from each other less than
a distance R will be considered as behaving as a non electrolyte entity,
without interaction with the other ionic solute particles. The stoichio—
metric activity coefficient of the electrolyte thus reads

= yf (1)

where y and f are the fraction and the activity coefficient of non asso-
ciated electrolyte, respectively.

2) The probability density of such a type of configuration is approximated
by the Boltzmann function exp C- U+../kT) where U_ is the direct potential
in the pure solvent.

3) These ion pairs are considered to be in equilibrium with the rest of
the ions. This leads to the mass action law expression

(1—y)/y2c E± = 4 N 1O3 jRr2exp(_ U+jkT)dr (2)

4) For the activity coefficient f. of the free ions, any theoretical
expression may be used which reasönnably takes into account the long—
range nature of the corresponding interactions. But for sake of consis—
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tency in this expression an ionic Restricted Primitive Model of characte—
ristical distance R must be used together with concentration c y of free
ions. Thus, the activity coefficient f becomes

:: = f÷(R, c y) (3)

This does not imply that the sphere of radius R is a hard sphere. Free ions
cease to be free ions as soon as they enter the sphere R and associated
ions become free ions as soon as they leave the sphere of radius R. On the
average the two flows of ions are equal but of opposite directions so that
the result is the same as if free ions of concentration c y were indeed
bouncing on a hard core sphere of radius R. Hard core sphere encounters
would imply a f÷(R,cy) formulation but the reciprocal is much less
restrictive as Illustrated in the present case.

The exact correspondance rule for the analytical expression of the long
range contribution f!j to f± will be proved below from more rigorous con—
siderations leading Eo eqs. (19-21). Suprisingly this rule is independant
of the type of interactions between the ions as well as of their proper—
ties in the long and short range regions.

5) In 1926 the Debye and HUckel theory was the only theory available, so
that Bjerrum chose

f = exp {_Kqyh/2/(l + KRy1"2)} (3 bis)

6) The choice of the cut-off distance R must obviously be a compromise
which tends to minimize the effect of the two different approximations
used on each side of this cut—off distance. Bjerrum proposed to choose

R=qZ2e2/2DkT (4)

since this minimizes the integrand of eq. (2). Using now the hard sphere
model of distance of closest approach a for anion and cation the Bjerrum
association constant is given by

KR = 4 ir N ar2 exp (.a) dr (5)

and the function f becomes

f = exp {— Kqy'2/(1 + Kqyh/'2)} (6)

The above decomposition of the Bjerrum definition into six steps of
decreasing importance as to the conseqeuences of the restrictions they bring,
will help to discuss the various criticisms often encountered and also to
foresee in which direction the association concept may be complemented to
be useful in a large range of applicability.

First, the choice of the cut-off distance, if the concept is correct and
the range of concentration in which it is used adequate, must not be cri-
tical. Indeed it has been shown (Ref.6) that if exactness is to be achieved
at the level the linear contribution in concentration of the log ± function
the best choice for this "book keeping" should be R 1.1 q. This shows that
Bjerrum's proposal, though not based on the same criterion is indeed quite
satisfying. This also shows that this "cut-off" distance is in no way a
"critical distance" as it was often called and thereafter subsequently
criticized. Indeed the cut-off distance must be such that the errors due to
the application of either two short and long range theories used in the
vicinity of R are less than experimental precision requires. The answer to
this is mainly a matter of experimental verification until more refined
theoretical developments either confirm or reject the former assumptions.
For instance the HNC theory has indeed confirmed that activity coefficients
calculated by Bjerrum's formula are quite realistic in all cases where a
comparison can be achieved.

It is often said that the Bjerrum theory concerns only the restricted
primitive model like the original Debye—HUckel theory. In fact this is
quite inexact since the direct potential U+ used in eq. (2) can easily
represent any model. Experiments have shown that, indeed, in this respect,
the specific short range parameters which can be derived from eq. (2) do
exhibit close correlations with the same parameters issued from HNC cal-
culations: ref.5.
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It may seem inconsistent that the Bjerruxn theory does not explicitly take
into account the short range Uj potential. This is to be expected since
in dilute solutions the short range ++ or —— configurations are, for most
simple symmetrical electrolytes such as alkali halides or alkylamxnonium
salts, largely outweighed in number by the corresponding +- configurations
(there may be some exceptional cases where some chemical complexation occurs
between ions of the same charge; but these are outside the field of appli-
cations of the association concept discussed here) . It was shown elsewhere
(Ref.6,7) from considerations concerning the evaluation of the second virial
coefficient of electrolyte solutions that the contribution of ++ and -— short
range configurations may be explicitly accounted for analytically. These
results will be discussed and generalized below.

More important and crucial is the legitimization of the basic statement of
the association concept which specifies that the short-range anion-cation
pairs do lose their electrolyte activity even in dilute solution. Bjerrum's
idea was based on the fact that those pairs in dilute solution were far from
any other ion of the solution so that these interactions could be assimilated
to ion-dipole interactions which could be neglected. One must admit that
this view is not unrealistic. This is but an approximation though and the
real question is: how good is this approximation and under which particular
conditions for the concentration range and electrolyte-solvent system con-
sidered? Obviously for any system the more dilute is the concentration the
better is the approximation. A good discussion of this point may be to refer
to the average distance of the free ions from the reference ion and state
that the ratio of the Debye radius (K/2Y1 to the Bjerrum length q be
larger than 2. It thus comes

Kq < 0.5 (7)

to define the maximum concentration beyond which the Bjerrum expression may
become irrealistic. Beyond this concentration one may expect the number of
three—ion—short-range clusters to become significant and no longer negligible.

EXCESS PROPERTIES AT EQUILIBRIUM

After a brief summary of the results previously obtained and discussed in
a former review (Ref.13) we shall present our more recent developments.

From the Rasaiah-Friedman compressibility equation (Ref.8)

d ln f÷/d ln c = — c G/(1 + c G) (8)

where G = + j (G÷+ + G) (9)

and = 4r Jr2((r) - 1) dr (10)

in which (r) is the ion-pair distribution function, the following result
could be rekched (Ref.7)

ln = ln f (R,c) + ln 'ij + lny + ln '' + 0(c312) (11)

(1 - = c (12)

where is the short range part of the integral defining Gi (integration
from 0 to R) and where f is the value of f obtained by usin the compressi-
bility equation with thelong range parts of the integrals Gij (integration
form R to infinity). It could be shown that all neglected terms in the pro-
cess are of order 3/2 in concentration. The above result for + is indeed a
first step toward the legitimation of the Bjerrum formulation. This resultwas
itself at the time the generalization of a former result (Ref.6) obtained
for the second virial coefficient which reads

ln f = — Kq + K KR {1 — (q/R) + S'(q/R)} — c

— + K__)c + 0(c312) (13)

with = 4TrN io JRr2 exp (— iJ/kT) dr (14)
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These results encouraged us to proceed further in the hope of reaching a
formulation which should be in closer agreement with the ion-pair formulation
of Bjerrum. This was achieved (Ref.9) recently by proceeding from a
completely different starting point.

In a recent publication by Wood et al (Ref.10) it was shown that the so-
called activity expansion formula of statistical mechanics was indeed quite
efficient when strong interactions occur between solute particles. This
equation reads

c. = a + E fl K a (15)1
?;>1

1

where ci and a are the concentration and activity of the solute particle
of type i; ni is the number of particles of type i in the ionic cluster
considered. under the summation sign means that all types of clusters of
order n must be considered in the summation. Finally a is a compact for-
mulation for

nia =Tra. (16)1 1

and K are the classical Mayer integrals. In the case of a binary symmetrical
elect!olyte for which = U_.. at any value of r, the original formulation
reduces to

c = a÷ + (n/2) K a2 (17)-

where c is the stoichiometric concentration, a± is the mean activity coeffi-
cient and n is the number of ions in the cluster considered. Defining the
activity by

= a+/c (18)

it is possible to rewrite the activity expansion in a different form without
introducing any approximation. The detail of the calculation will be
found elsewhere (Ref.9). The result is

= f x f (19)

' f = (1 + (n/2) KL = f÷ (R, c f) (20)

I

- -

(1 fS)/(fS)2 (fL)2 = (n/2) K a21 2 K_ +
- n>1 -

+ K_ + E (n/2) KS a2 (21)-

This was achieved after parting the Mayer integrals into long and short
range contributions,

(22)

in which the integrals K contain only bond distances r > R and K contain
at least one bond distance such that 0<r<R. For instance at the level n = 2

=
2TrRf°°r2 {exp (— U/kT) — 1} dr (23)

and = 2 fRr2 exp (- u/kT) - 1} dr. (24)

The system of eqs.(19-21) is general and as exact as the initial activity
expansion eq. (17) from which it was derived without approximation.

This reformulation is quite interesting since it reduces exactly to the
Bjerrum 1926 expression after neglecting
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1) all n > 2 contributions

2) K÷+ and IL_

3) the excluded volume term in K integral eq. (24)

The f identifies with the fraction y of fre ions as defined originally by
Bjerrum. Using the Debye approximation for f was the only possibility
offered in 1926.

Before the introduction of these approxomations for f and f, the choice
of R is arbitrary. Given the approximations for f and f, the choice of R
becomes restricted, but it is not critical aroundthe value of R = q and
leads to errors not higher than the experimental errors in the range of
dilute concentration defined by Kqyl/2<O.5.

The system of eqs.(19-21) constitutes a generalization of the former system
of eqs (11,12). One way to obtain a better evaluation from the compressibi-
lity eq.(8) would be to substitute there the unknown zerothmomentfunction
G by 1GM (c y) in which GM represents the Meeron approximation. The
compressibility equation then reads

d ln / d ln c = — cy GM (cy)/(1 + cy GM (cy) (25)

which would lead straightforwards to the following modification of
eqs. (11,12)

r
ln f = ln f(R,cy)+ln y_+ln y+ln y__+O(c3"2y3'2) (26)

(1 — = cy GM (cy) (27)

which is much closer to the exact system of eqs. (19-21).

This means that the distribution function of the type 1g (cy) represents
indeed a good analytical expression for the distribution functions. This
expression does not tend to 1 as r goes to infinity as it should. By
adding empirically the necessary complement 1 - y, the distribution func-
tion then reads

4 2q -<y1/2-g_ = r exp C— -k-— ± — e ) + 1 - 1. (28)
++ r

If y represents the fraction of free ions then 1 — y represents the
fraction of associated pairs for the g function. The quantity 1 - y should
represent distribution function of anion-cation ion pairs which is a
constant independant of r if these pairs behave ideally. Since free ions
or paired ions are the only two exclusive possibilities for an ion their
probabilities should indeed be added as done in eq. (28). One thus
reaches a selfconsistent formulation.

SOME REMARKS ON DISTRIBUTION FUNCTIONS

Statistical mechanics tells us that distribution functions must meet certain
conditions which are often used to overcome various mathematical undeter-
minacies or as selfconsistency test

A) The most frequent condition used is the electroneutrality condition
which states that the charge of the ionic atmosphere should be opposite
to that of reference ion. This gives

c(G — G) = —1 with i j (29)

These relations were used by Debye and Htickel to remove one of the unde-
terminacies in the integration of the linearized Poisson-Boltzmann
equation. This condition is also called the zeroth moment condition.

B) Another condition is the second moment condition due to Stillinger and
Lovett (Ref.11).
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.— c e = — 1 (30)

with G = f(g (r) - 1) r2 d (31)
1J

which is used as a test in the HNC approximation by Friedman et al
(Ref. 12)

C) We have seen that

(r) + 1 as r (32)

which simply means that at infinity there is no correlation between the
ions. This condition was used by Debye and Htickel to remove the second
undeterminacy of their integration.

D) There is another condition which so far has been little used which states
that at infinite dilution the distribution function should tend to the
direct Boltzmann function of the direct potential Ujj

ij (r) > exp (— U/kT) as c÷0 (33)

In other words the mean potential must tend to the direct potential at
infinite dilution when two ions i and j are left alone in the solvent.

It is quite interesting to notice that the Meeron distribution function
*
ij 2q —Kr= exp (- -j- ± -- e ) (34)

is in agreement with this requirement like the HNC distribution
functions. Also all treatments based on the complete Poisson—Boltzmann
equation implicitly assume this condition. The same is true with the
Bjerrum calculation through the association constant which makes explicit
use of the Boltzmann function. Let us note that the Meeron functions do
not satisfy conditions A and B but lead however to much more exact eva-
luation than the Debye-HUckel functions. This is the evidence that,
though theoretically important, the two conditions A and B are not
crucial for the evaluation of excess thermodynamic functions at least
in dilute solution and condition 1) is more important for practical
efficiency in this field.

B) It is our belief that the function gB defined above by eq.(28) may
constitute a further condition. As concentration decreases the distribution
functions should tend to the gB formulation before leading ultimately to
the Boltzmann exp (—Uj/kT) expression at zero concentration. (Let us note
that the g functions also follow condition D). Expressed in terms of
correlation functions

h = g — 1 (35)

one obtains

hB = yhM (cy) (36)

so that

GB = YGN (cy) (37)

which was the starting point of this development.

CONDUCTANCE

Let us now turn to the problem of conductance. Classical low field conduc-
tance is an irreversible process where the response of the system is linear
versus the external perturbation. Like all linear irreversible processes
the coefficient of proportionality must be independant of the external
perturbation and be a function only of the state of the system at equi-
librium. In other words the conductance coefficient
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= A/A0
where A and A0 are the molar conductances at finite and zero concentration
respectively, should lead to the same kind of information concerning the
electrolyte—solvent system as the activity coefficient f÷. This has already
been checked in terms of short—range Gurney cosphere overlap free energy
parameters (Ref. 4,13). Another consequence is that in conductance the con-
cept of ion pair must also be a very efficient theoretical tool. This point
consequently deserves close attention. We shall now briefly summarize the
situation in this particular respect'.

A close analysis of the basic equation of transport processes

iP ÷iP jQ +jQ jQ iP
VP gQ vQ + VQ g vp - - = - - gQ (38)

shows (Ref.14) that the perturbation gjj () on the distribution function
of an ion of type i in the vicinity of a reference ion of type j is not
only proportional to the external force acting on the ions but more gene-
rally is proportional to the difference in the velocity impressed on them
in the linear irreversible process.

±i +j_
() — Y (r) cosO (v

— v )X/X (39)— ii kT (w + ui)
÷ ÷ ÷

where r is the vector r. - r.
1 J÷ ÷

0 is the angle between r and the external field X

is the mobility of the ion i

is the mean velocity vector of the ions of type i

is the external field

Expressed in terms of ionic conductance quantities the above result can be
rewritten

eX
(r) = (r) cosO (40)

where ei is the charge of the ions of type i and is the "echo" factor
given by

X./z. — X./z.
— i

X/z +

For symmetrical electrolytes the echo factor reduces to

= A/A0 (42)

which was so far always neglected. (This was equivalent to approximating
ionic conductances X by their limiting value A? in Onsager continuity
equation, i.e in the coefficient).

For symmetrical electrolyte, taking into account the echo factor vji leads
to the following reformulation (Ref.14) of the molar conductance

s LX tXh AeA = A A0 (1 + —f- + .—— + (43)

= — (44)

AX LXh
where —r- is the long range coulombic part of the relaxation effect; r

is the hydrodynamic part of the relaxation effect; Ae is the electro—

phoretic conductance and —-— is the "unechoed" short range part of the

relaxation effect. The quantity f is here an intermediary variable which
has the following interesting numerical property.
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0< f< 1 (45)

The analogy with the Bjerrum formulation is obvious. Using the strong
coupling approximation Justice and Ebeling (Ref.15) could show that

LX R 32— = — c J r2 exp /kT) + 0(c ) (46)x

so that the result for A is now quite analogous to the set of eqs.(11,12)
and also of eqs.(26,27) at equilibrium. Another interesting feature of
the above system is that the conductance coefficient can be represented
by a product

fix (47)

in close analogy with the result for activity coefficient given in eq.(19).
Another consequence is the fact that the perturbation on the pair distribu-
tions function can be rewritten

- L
g.. (r) = yg I (r) x (48)
Ji

since according to the result of the strong coupling approximation

f —> Y (49)

like f at low concentrations.

This result must be closely related to the above result for the equilibrium
distribution functions which states that the quantity y should also appear
explicitly as a factor of the distribution functions. In other words the
quantity y which at low concentration identifies with Bjerrum's fraction of
free ions is a permanent factor whether the distribution function is at equi-
librium or slightly perturbed.

Introducing this last result in the Onsager continuity equation leads ulti-
mately to the following result

= yf (c y, R, a) (50)

(1 - y)/y = cyG (cy) (51)
+- L

where R, the cut-off distance, controls the leading term in eq. (43) and

a still controls the minor contributions —v-- and Ae/Ao• However the calcu-

lation shows that these two quantities are practically independant of a as
soon as a is less than the Ejerrum distance q, a result which constitutes
an independant confirmation of the Strong Coupling Approximation (Ref. 16).

It was recently possible to generalize these results to the case of mixtures
of any electrolyte to obtain the following formulation for the specific
conductance X of such solutions (Ref.17).

103 = E c y A (1 + LXc/X + tXih/X + )/A9)

+ Z)2/(Z/A? +Z/79)B. (52)

with (1 — y.)/y. = E ck Ak (53)1 k 1

and

= z(1 + Lx/x + )/A) + Z(1 + + A/A)} /(Z + Z) (54)

S R2° 3/2Ak = 4r J r dr + 0(c ). (55)1 1
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The interesting new feature of this result is that the second term on the
right hand side of eq. (52) identifies with the conductance of ion pairs of
net charges z + Z1 existing in the solution at a concentration (1—y1)c
and characterized y an intrinsic limiting conductance

Ai (Z1 + Z)2/(Z/X? ÷ Z/X) (56)

a result which is in close agreement with what the chemical model would
predict.

CONCLUSION

Two very similar formulations are now reached for activity coefficient f±
and conductance coefficient f which are valid for dilute solutions of
electrolytes and quite efficient specially when anion—cation interactions
are large.

They are based on a space partition of integrals into short—range and long—
range terms. In the long—range terms concentration expansion treatments are
used whereas in the short-range terms activity expansion treatments turn
out to be much more adequate. Depending on the different approximations
used in both treatments the concentration range of validity will vary as
well as the range of possibilities for the cut-off distance R defining the
space partition. If the Debye approximation is used in the long-range term
(linearized Poisson-Boltzmann equation) and if the Mayer integrals of order
three and higher as well as those concerning ++ and -- clusters are neglected
in the short—range term, then a Bjerrum type formulation is obtained.
Experiment shows (Ref.5) that a) the range of validity for concentration is
then such that KRy1/2 < 0.5 and b) the value of R may vary around the
Bjerrum distance q without significantly altering the numerical results in
terms of ± and A•

Surprisingly enough, the short—range contribution is represented in terms
of a mass action law even though they do not concern tightly bonded entities
as is the case for real chemical equilibria. Indeed, the mass action law
formulation found is an approximation but not in the usual assertion; it is
not a more or less justified extrapolated view of a chemical model, as the
Bjerrum original presentation of the concept might lead to think, which
thus would need a more or less drastic revision before enabling to proceed
further in theoretical developments; it is rather an exact formulation in
terms of functional expansion (just like the virial expansion is) which
can be improved by adding more terms (just like introducing the third virial
coefficient is an improvement relative to the same expansion truncated at
the second virial term).
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