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Abstract - Classic DLVO descriptions of coagulation are cast in terms of
mean interfacial potentials developed in self—consistent physical terms by
a general surface charge. An alternative approach is to begin by identifying
an array of well defined, chemically distinguishable surface groups. The
charging of such groups is controlled through equilibrium constants by bulk
aqueous solution parameters. Subsequent definition of the mean potential
of the array of ionizable groups is then a first approximation towards the
more difficult task of defining local potentials. Nevertheless, the
combination of specific group charge plus a mean potential allows new
approaches to be made towards understanding interaction of biological
surfaces and model latex)cofloids, particularly in concentrated suspensions.

INTRODUCTION

The recent Discussion of the Faraday Society on Colloidal Stability (1) recognised the 30th
anniversary of the first formal presentation of the DLVO theory of the stability of lyophobic
colloids. Derjaguin, Landau, Verwey and Overbeek made a contribution that has been of
lasting value and served to raise colloid science to the level of a quantitative science, a

progress begun by Irving Langmuir and others (2) almost fifty years ago.

The essential structure of the DLVO theory has stood the test of time, viz., that interaction
between approaching surfaces can be expressed as a sum of two independent interactions of
attraction due to van der Waals forces and repulsion due to electrostatic (screened Coulomb)
forces. The current models (3) of the attractive van der Waals component are now more
sophisticated and acceptable than those used in 1948 and include, for example, analyses of
the dependence of the van der Waals attraction on the electrostatics of the intervening
solvent medium between the approaching surfaces. The essential correctness of the theory of
van der Waals forces has indeed been verified experimentally by Tabor etal. (4,5).

The application of DLVO theory to the kinetics of Brownian coagulation of colloidal particles
was perhaps the earliest test of the theory, and general agreement between theory and
experiment was obtained. More recently, the known relaxation processes that must occur
during collision have been considered, both experimentally and theoretièally, and new
advances or modification of the DLVO theory in this area are imminent (6).

Ironically it is in the theory of electrostatic repulsion where relatively little
modification has been made to the DLVO model. In most instances we still calculate the
repulsion by the techniques of classical electrostatics with the interacting surfaces being
considered as planes of smeared-out charge surrounded by atmospheres (diffuse layers) of
equal and opposite charge density. This mean field approach, enshrined in the Gouy-Chapman
and Debye-Hiickel theories is, with very few modifications, the basis of all theories of

double layer repulsion.

We imagine, with increasing scepticism, that this model is an adequate representation of

interacting mercury drops, silver halide particles and polymer latex colloidal particles!
The latter, we well know, have surfaces with chemically identifiable (—COO or —NH, etc)
groups set in a sea of, say, polystyrene. While such synthetic surfaces cannot be seen as
planes of smeared-out charge, it is possible, however, with adjustment of parameters, to
understand some of the general features of latex colloid stability in terms of the
traditional DLVO theory. Fortunately, the complacent stance of colloid scientists has been
disturbed in the past few years by Israelachvili (7) and Ottewill (8), and others, who
produce more and more direct measurements of the forces between surfaces separated by aqueous
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electrolyte solutions. These brilliant experimental studies are now of a precision where
subtleties in the force-distance curve can be detected and real quantitative tests of

interaction theory are possible.

If we consider biosurfaces, we are again forced to recognise that they too are arrays of
identifiable ionizable groups set in a matrix of more or less hydrophobic or at least non-
ionic material, the overall form of which may or may not be deformable! May we suggest that
i is too easy to say that such biosurfaces are just too difficult to consider; such an
apology for the general lack of impact of DLVO theory on biology is,we believe, facile.
Biological systems and processes abound in "interacting surfaces" and yet the essential and
well-tried theory of colloid science has been almost spectacularly absent from the field.
Perhaps this assessment is overstated, but doing so forces colloid chemists to re-examine
some of the tenets of their much beloved theory to see where one might begin to better
model biosurfaces and biosystems in general.

REGULATION

General aspects

One possible way is to recognise that most surfaces of interest to the colloid chemist are

composed of arrays of specific chemical groups that can and will ionize to generate "a
surface charge". The aim of the present paper is to review zeroth and first order theories
of interaction that are based on just such surface structures with a view to contrasting the
results of such models with conventional DLVO theory, ie, mean field theory.

Before considering interaction between surfaces, it is important to distinguish the
conventional DLVO models for the calculation of double layer interaction, viz., constant
potential or constant charge interaction. This is shown schematically in Figure 1, where we
consider two identical surfaces that have surface potential and surface charge values of

and a respectively at infinite separation.

Constant charge or potential

constant

decreases

Bq\
cr.-4,Tx1

a constant

increases

Figure 1. Schematic representation of the potential-distance profiles
during double layer overlap under conditions of constant potential (upper)
or constant charge (lower). One surface is moved from A to B to C.

Since is given by the negative of the slope of potential () versus distance (x) at x = 0,
the constant potential approximation yields decreasing charge until a = 0 at x = 0. Again,
if must remain constant, then the potential at x = 0, p , increases as the separation
decreases.

0

Interaction between surfaces composed of arrays of ionizable groups is a modification of
DLVO theory and is. clearly composed of many elements of the conventional theory. In the
present paper, consideration will be given to the electrostatic component of interaction,
which is necessarily repulsive, between identical non-zero charge surfaces, and may be
repulsive or attractive if dissimilar surfaces are considered.

The model is best described as 'Regulated Interaction' or interaction under charge regulation,
following the pioneering work of Ninham and Parsegian (9). The essence of general regulated
interaction is that during the progress of approach the surfaces communicate with each other,
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Colloidal behaviour of materials 1209

adjusting their surface charges, shapes or adsorption densities to ensure at all times that
the system is as little displaced from equilibrium as possible during interaction.
Alternatively, the system of interacting surfaces adjust itself to minimise the total
free energy. The mechanism whereby the two interacting surfaces "see" each other or
communicate with each other resides in sets of equations that define the system and which
sets contain explicit relationships which link the free energy of the interacting double
layer system to the state of the interfaces and bulk solution.

A useful conceptual example involves two identical liquid (say oil) drops approaching each
other in an aqueous solution. If the drops are stabilized by a layer of strongly adsorbed,
charged surfactant species, then as the double layers overlap, repulsion is observed. The
system can minimize the repulsion by allowing the two drops to flatten in the region of
contact but at the expense of creating regions of more curved interface at the flat-curve
surface confluence. Again, the detergent molecules could migrate to the rear of the drops to
decrease the surface charge per unit area in the region of contact but at the expense of
creating a surface tension gradient around the drop circumference and, possibly, internal
circulation within the drop. All these very complex processes serve to minimize the
repulsion during approach at the price of disturbing the total structure of the two drops
from their equilibrium, infinite separation structure.

If by responding in these way the net free energy of the system is decreased during inter—
action, then the system will so respond. More generally, processes will operate such that
the total free energy of the system is minimized at each separation.

If one considers two bioparticles during approach, again one can see an array of regulation
processes that may or may not contribute. Consider two cells that approach each other with
each cell surrounded by a lipoprotein membrane. As the protein-protein interaction sets in,

repulsion may be minimized by changes in tertiary structure of the proteins, which will in
turn influence the packing of the lipids, which will in turn influence the shape of the
membrane and its permeability; a train of subsequent events will operate to accommodate
these changes, which will in turn communicate themselves back to the secondary and tertiary
structure of the proteins. The dynamics of such interactions will be complex to the extent
that biosystems are themselves complex sets of interactions and reactions.

We can begin to retain some of the communication processes that will regulate interaction by
using simple colloidal systems composed of polymer latex particles or metal oxide particles.
Essentially, we thereby eliminate "deformation" as a regulatory process and concentrate on
charge regulation associated with the interacting electrical double layers.

In the following section, a model is presented for two interacting surfaces that have
identifiable ionizable surface groups. The formalisms of previous papers (10,11) on
regulation have been retained, although the reader is directed specifically to an elegant
alternative formalism due to Radke and Everett (12). The aim in the present paper is to
explore the conclusions of charge regulation for some simple but real systems of interacting
particles and to explore the use of charge regulation in considering the concentrated
suspensions or close-packed arrays of colloidal particles.

CHARGE REGULATION - An Outline of the Model

The original Ninham and Parsegian (9) (NP) model considered two surfaces, each containing an
array of discrete carboxyl (—COOH/—C00) groups. The surface charge (o,) is given by the
number of —C00 groups and we seek an expression for the surface potential (p). In
principle, we should operate in terms of local or micropotentials (13) and indeed, seek to
obtain the profile of potential over the surface (14). At present, the essential physics of
charge regulation is lost if we attempt to include these necessary sophistications and for
the moment we restrict ourselves to considerations that rely on obvious approximations.
Thus we shall identify a mean potential, iI, of tJ-ie surface which we shall couple to a net
charge, o. [The nature of this approximation is discussed in detail elsewhere (15).]

It is, however, useful to begin with a charge regulation model that is÷rnore general than the.
single site NP system. Thus we shall consider a surface made up of AM2 sites that ionize to
AH and A sites, in, a so-called amphoteric surface or zwitterionic surface. In subsequent
sections we shall detail the results of chaige regulation for two-site surfaces, the
detailed discussion of which is presented elsewhere (15).

CHARGE REGULATION - Formalism

Consider a surface which develops a surface charge via dissociation equilibria of a surface
(amphoteric) group, AH.
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AH i AH + H
(K÷) (1)

AH A + H (K) (2)

Here, hydrogen ions act as potential determining ions and K÷ and K_ are surface dissociation
constants defined in terms of surface concentrations of sites and protons as:

[AH][H]
=K (3)

[AH]
+

[A][H]5
[AH]

= K_ (Lb)

The dissociation constants, K+,K_, are assumed to be only functions of temperature and
pressure. The validity of equations (3) and (4) has been discussed elsewhere (15).

For N5 surface groups per unit area, the net surface charge density is (e = protonic charge)

[AH] - [A]
0 = eN5 [AH] i- [AH. ÷ [A-] =

eNct (5)

The fraction a defined by equation (5) can assume any value between plus and minus one.

In the Gouy-Chapman approximation, which we shall adopt, the concentration of ionic
species at any point is related to the bulk value by the Boltzmann factor exp(e/kT). The
electrostatic potential, i, is measured with respect to the value at the reservoir (taken to
be zero). In particular, the surface concentration of PDI is:

H exp(-ep0/kT), (6)

where H is the bulk concentration of PDI and is the surface potential. Combining
equations (3), (4) and (6.), the surface charge can be written as:

(H/K) exp(-eip0/kT) - (K_/H) exp(ei/kT)
- eN 1 + (H/K÷) exp(-e0/kT) + (K_/H) exp(eip/kTY

This is an'quation of state" •of the surface. It specifies all possible values of the

"co-ordinate", (p,a).

It is instructive to rewrite equation (7) in the form:

6 sinh[e(ij - p)/kT]
a

eN5 1 ÷ 6 cosh[e(pN - t41)/kT]
=

eNcx, (8)

where
K ½

6 = 2 x 10—tpK/2 = 2 (9)
+

and

ApK = pK_
- pK. (10)

We shall call the potential,

= 2.303 (pH - pH), (11)

the Nernst potential, since it is related to the pH of the point-of-zero-charge (pH0) (pzc)
of the surface composed of amphoteric AH groups,

pH0 = ½(pK÷ + pK_). (12)



Colloidal behaviour of materials 1211

Equation (8) can be further simplified in notation by introducing reduced variables,

eiji e)N
y0-- and

such that

tS sinh(y - y)
cr/eN =a . (13)o s l+äcosh(y_y0)

Thus the charge, or fractional charge, a, is expressed in terms of the potential, y , for
any pair of surface dissociation constants. 0

Before we let two identical surfaces, described by equation (13), interact, we need first to
describe the diffuse layer charge, °d' that in a simple Gouy-Chapman first approximation is
equal and opposite to

CKkT
°d 2s1nhy/2 . (14)

Since, in this simple model,

+ °d = (15)

then from equations (13), (14), (15),

y sinh y/2 = a, (16)

where

y = lO K N5/4Ne. (17)

where is the Debye length and N0 is Avogadros number.
The potential of the interface (y0) can thus be obtained graphically to illustrate the

operation of equation (16), which_is central to charge regulation. As shown in Figure 2, we
have plotted the potential term(y 1 sinh y,'2)and the charge term a as functions of the

reduced potential, y,

cxN

O(i

)Sirth()

Figure 2. Schematic plot of both the variation of the charge parameter a
and the potential parameter [y 1 sinh (y/2)] with the reduced potential y
for different values of tpK; a, a2 and a refer to increasing values of LpK.

such that the intersection is y for that system. The three a curves plotted are for
increasing pK with the result hat y , which is always less than or equal to N' becomes
further removed from N as pK increases. Surfaces are more and more Nernstian as the number
of uncharged groups at the point-of-zero-charge increases (15,16). As the number of unchargi
groups aproaches zero then y -' y , the value of the potential for a truly Nernstian
amphoteric surface.

0 N

PAA 52/5—E
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Emphasis on whether or not a surface, ie, an isolated surface, is Nernstian is important,
since it determines, amongst other things, whether or not the usual DLVO approximation of
constant potential is realistic or not for any given system.

If we now let two surfaces interact, each given by Equation (16), we can describe the
potential and charge on each wall at any separation and both charge and potential will adjust

ie, regulate during the interaction.

The electrostatic free energy of interaction for two plates, each at —50 mV at infinite
separation, for a bulk electrolyte concentration of 10 mol dm is calculated in Figure 3
via the conventional constant charge and constant potential approximations.

E

w

Figure 3. Comparison of the electrostatic free energy of interaction (VR)
as a function of separation for interaction at constant charge (V°),
constant potential (i*) and under charge regulation (greg) for pK = 6 and
pH 7 and 10 mol dm supporting 1:1 electrolyte.

For comparison, regulated interaction is also included for a surface of point-of—zero—charge
at pH 7 and a pK of 6. Notice that greg is much less than V° and is closer to V1).

The feedback element of regulation is summarized as follows for a positive surface and fixed
bulk pH.

1. Allow small overlap of double layers.

2. The mid-plane potential increases, and the potential at all separations increases.

3. Thus 11 increases, and since

[H5] = H exp(-e/kT),

H+ decreases, and since

K: = [AH]

5. [AH] sites decreases by dissociation and since o is given by o = e([AH] -

o decreases and since 0 is related to i1) via equation (7), then
0 0 0—

7. 11) decreases.

Regulation minimizes changes in 11 during interaction and it works best as pK decreases.

REGULATION - A More General Approach

The previous methodology is, with the wisdom of hindsight, rather restrictive. It is more
useful to express the electrostatic energy of interaction between any two surfaces 1 and 2
distance L apart in terms of the pressure in the system. Thus,

PPel+PosPco, (18)

50 00 50

Separation, A
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where the pressure in the system of overlapping double layers is split into

electrostatic term, ie,

P =
2n0

kT [{]2 + (coshy - l)j
where no is the bulk electrolyte concentration and, again, y is the reduced
plate separation and is related to the distance (x) from one plate by

X = KL,

an osmotic and

(19)

potential; L is

where K' is Debye length, ie,

where

P = -2n kT(C + 1),0

2
C = ½--1 - coshy.

taxj

(20)

(21)

C is a function of potential () separation (L) and ionic strength (K), and is a constant

anywhere in the system for a given set of .conditions.

By evaluating C at each surface (1,2), we obtain

and

C+l=½my-(coshy1 -1)

C + 1 = ½ - (coshy - 1)

(22)

(23)

As before, for each surface we have a charge term (½2 1Z) and a potential term (coshy - 1),
both of which are greater than or equal to zero.

If the charge term is greater than the potential term, (C + 1) is positive, which corresponds
to attraction or a negative pressure. Similarly, if the charge term is less than the

potential term, repulsion or positive pressure is observed.

In the equations (22) and (23) above, it can be seen that C - -l at L ÷ co,
which corresponds to zero pressure at infinite separation.

Combining the charge and potential curves gives us the value of surface charges and

potent ials at any separation. For identical surfaces (ie, two ½ a2 2 curves that super-
impose) the form of the solution is shown in Figure 1• We have chosen a positive surface

Figure . A schematic plot of the charge parameter (½ a2 y2) •and potential
parameter (coshy - 1) for a positive surface > 0) as a function of the

reduced potential, y.
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and a particular pK (ie, a particular ½ ct2y2 curve) to yield four crossing points or four
solutions. Since C ÷ 1 must be zero at infinite separation, and since y N' only point a
is acceptable. In Figure 5, the region around point a is enlarged to identify the movement
of y0, the surface potential and a, the surface charge, during approach of the two surfaces.

Figure 5. An expansion of
potential curves of Figure
curve as shown by the arrow.

the region of the intersection of the charge and•
4. As L -' 0, the system moves along the charge

Note that for such a case of identical surfaces, the pressure must be repulsive at all

separations and that y0 as L -* 0 and a (or a2y2) 4- 0 as L ÷ 0.

For dissimilar surfaces the solution is a little more complex. Consider two surfaces, shown

in Figure 6, that are both negative at infinite separation, ie, y0 and y0 respecitvely,

Figure 6. Charge and potential curves for two dissimilar surfaces, both
negative at infinite separation.

,cosh y—I

y
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and let N I < 'N ie, p110 for surface 2 is less than p110 for surface 1. We shall also

let 12 > 1i ie, su'face 2 has more surface sites than 1. Further,, let tpK for surface I be
greater than pK for surface 2. This makes the charge curve for surface 2 somewhat "flatter"
than that of surface 1; surface 1 is more nearly Nernstian. This example could be, say,
pH 6.3 and 10 2 mol dm for

Surface 1 Si02 (pzc pH0 = 3) N 5 sites/nm2

Surface 2 Ti02 (pzc pH0 = 5.8) N5 = 12 sites/nm2

For this condition the Nernst potentials given by Equation (11) are -l95. and -29.6 mV for
Si02 and Ti02 respectively. As we proceed to solve the electrostatics of this system in
terms of charge regulation, Figure 6 can be used to highlight the physically significant

steps that emerge, ie:

The infinite separation values of the potentials on each surface (y - Si02 and

y02 - Ti02) must both lie below their respective N values and for iie above system
are -115.6 and -29.1 mV for 5i02 and Ti02 respectively.

The zero separation value (y*) for both surfaces must be the same, viz., -57.2 mV,
and both surfaces have negative surface charges.

At zero separation the charge on the Si02 is negative since in magnitude y* falls
below the y0 and N values of 5i02.

- At zero separation the charge on the Ti02 is positive since in magnitude y* lies
above the value for Ti02.

At large separation the pressure is first repulsive so that the potential of both
surfaces must move towards their N values.'

Since the difference between the (coshy - 1) and both the (4y2a2) curves must remain

the same at each separation, at a particular separation the Ti02 surface moves to
its Nernst value, through it, and then moves such that there is zero pressure in

the system.

Beyond this point, as both y0 values move towards y*, we are at points along the
charge curves which lie above the (coshy - 1) curve\, ie, attraction.

These qualitative predictions can be determined quantitatively, as in Figure' 7.

i02/o2M pH 6.3

— _______ Ti02

-50
Si02

_: YNTiOS

— yTiO2

7.59 1

0 repulsion sfl,, yS,O2ii

Figure 7. Quantitative variation of the charge and potential on Ti02 and Si02
surfaces during interaction (for details see text above). The pressure in
the system derived from the charge regulation is shown in dyne cm 2 as a function
'of reduced distance. (Note the arbitrary truncation of the pressure scale
around zero pressure for display purposes.)
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For the parameters above and a Hamaker constant of approximately 4.10 13 ergs, sphere-sphere
(a = 100 nm) interaction produces a barrier to coagulation of approximately 50 kT at a
reduced distance of approximately 0.5 (K 1) At constant potential the barrier under such
conditions is essentially zero, and is very, very large for constant charge interaction.

While the essential effects of charge regulation have been worked out previously, it is

important to use the theory to predict interaction energies in specific real systems. By
way of example, we shall consider a few systems taken from a much larger matrix to be
presented elsewhere (17). The properties of five materials are summarise& in Table 1 below.

TABLE 1. Summary of properties of five representative materials

Material Symbol 1013 Ha l014 N5 pzc pK pK

Carboxyl latex CL 0.9 0.125 4.8

Sulphonate latex SL 0.9 0.125 - -1 -
Amphoteric latex AL 0.9 2.5 7 5 9

Si02 Si 1.7 5.0 3.0 0 6.0

Ti02 Ti 3.9 12 5.8 3.8 7.8

Notes

1. The Hamaker constants, Ha, are A121 values in ergs. A123 values are computed
as (A121 A323).

2. N5 is in units of sites per cm2.

3. LpK values of 4 and 6 have been assumed for Ti02 and Si02 respectively.

REGULATION - Some Examples

For present purposes we have used a simple site dissociation—Gouy-Chapman model of
individual double layers. Addition of Stern layers, discreteness-of-charge, micropotentials,
etc, will serve to improve the model. However, at this stage such sophistication is
distracting while we come to terms with the role of charge regulation in any given inter-

acting system.

It must also be stressed that our present analysis applies in the first instance to inter-
action of two isolated plates or spheres that come together sufficiently slowly to allow
equilibrium to be attained at all separations. Coagulation and peptization (redispersion)
will approximate this condition to a greater or lesser extent. But since Ottewill (8) and
Israelachvili (9) now produce direct measurements of forces of interation, clearly the
regulated interaction is the only possible interaction in such cases.

By way of example, consider the coagulation of the three latex colloids of Table 1 with

carboxyl, sulphonate and carboxyl-amine surface groups, ie, CL, SL and AL respectively.
Again, let us adjust the pH- of the reservoir so that they are each separately at a surface

potential of i -25.0 mV. The Hamaker constant is the0same for each material
(A121 = 0.9 o 13 ergs) and the particle size is 1000 A radius in each case (ie, a = 1000 A).

In Figure 8 are shown the total energy Reg) curves as a function of reduced distance, KH,
where (H + 2a) is the centre-to-centre distance at l0 M ionic strength. We consider
the case of homocoagulation of the three materials and heterocoagulation of amphoteric
with carboxyl latex. From Figure 8 it can be seen that each yields a secondary minimum
depth of circa 3kT with a barrier to coagulation for the carboxyl and sulphonate latices
of circa 7kT. For the ainphoteric latex, the barrier is circa O.5kT and for carboxyl-
amphoteric heterocoagulation the barrier is "2.5kT.

#NB If the rate of ion migration is significantly less than the rate of Brownian collision

(ie, equilibrium cannot be attained), regulation will still operate. Its effect will be to
lower the activation energy for ion migration from that observed in the absence of

interacting surfaces.
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Figure 8. v Reg total energy curves for the interaction of latex colloid
spheres. C, SL and AL refer to carboxyl, sulphonate and amphoteric
latex respectively. Also shown is the CL/AL heterocoagulation case under
the same conditions. (Insert - for details see text.)

Thus for these three homo- plus one heterocoagulation systems, if we set 5kT as a stable-
unstable demarkation, then the carboyxl and sulphonate colloids are stable, the amphoteric
and the carboxyl-amphoteric systems are unstable. The materials are of identical Hamaker
constants, size and surface potential. The amphoteric latex is able to respond via charge
regulation whereas the suiphonate and carboxyl latex cannot. The pH of these systems is
approximately pH 7.0, compared to the pKa values of -l and .8 for these two materials.
The amphoteric latex, at approximately pH 8.2, with pK_ and pK+ values at 5 and 9, is able,
despite its inherently much greater charge, to regulate to oppose the electrostatic
repulsion during approach. Indeed, the detailed calculation shows that at close separation
the charge on the amphoteric changes from negative to positive and at zero separation is
equal and opposite to the carboxyl latex charge, which changes by only 3% from infinite to
zero separation.

The effect of reducing the ionic strength to 102 H and the total double layer potential to
-17 mV is shown in Figure 9, again for the homo- and heterocoagulation of carboxyl and
amphoteric latex colloids. To add further emphasis to the relationship between regulated
interaction and constant charge/potential interaction, we have arbitrarily departed from the
data of Table 1 and chosen for both systems:

Radius
0

= 1000 A

Hamaker constant = 9.10 erg

Concentration = 102 M

(CL)

(AL)

= -17 mV in all cases;

2.5 . 1012 cm2 pK 4.8a
= N N; pK 9; pK_ 5

= 2.5 . 1012 cm2

These parameters, while close to those of the real systems, are designed to make the two
latex colloids as identical as possible.
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ct>I. 4

Figure 9. Total energy curves under regulated approach as a function of
reduced distance (KH0) for homo- and heterocoagulation of carboxyl (CL) and
arnphoteric (AL) latex colloids (* = o2 = -17 mV).

Note again the development of a barrier to coagulation in the carboxyl homocoagulation case
as a result of essentially constant charge type approach. With the amphoteric latex,
regulation is able to decrease the barrier to a value of circa 2.5kT.. The log W values,
where W is the stability index, are 1:4:8 (approximately) for the three systems AL/AL,
AL/CL and CL/CL respectively. More detailed calculations are being considered at present
to see the effect of regulation on the shape of conventional log W-log salt curves. The
several contribution effects are complex but may in certain cases produce non-linear log W-
log salt curves, as illustrated in the insert on Figure 8.

One final example concerns the properties of concentrated dispersions, in particular,
the monodispersed colloidal systems that show order-disorder behaviour (18). We consider
a section of the order-disorder diagram usually plotted as volume fraction of colloid ()
vs log concentration of salt in the system. Again, for purposes of illustration we consider
that there is no two-phase region, or that it is very narrow.

If the volume fraction of particles at a given salt concentration is increased, the average

particle-particle distance of the disordered suspension decreases until the average double
layer overlap results in repulsion. The phenomenon of ordering of such a suspension is in
fact a "regulation response". The system lowers the average particle-particle repulsion
by changing to an ordered state.

Thus those systems that can regulate their surface charges will do so to further aid the
process of minimizing the free energy of the strongly repulsive array (19). We can expect
that the better the system can regulate, the larger will be the volume fraction at which
disordered systems will order. Alternatively, the boundary (or region) of order-disorder
will move to higher volume fractions as one compares constant charge, regulation and

constant potential systems.

SUMMARY

Charge regulation has been shown to be a powerful mechanism in distinguishing between the
stability of colloidal dispersions of materials with ionizable group surfaces. Surfaces
that can regulate will in general coagulate at lower salt and order at higher volume fraction
than those which cannot regulate. The use of regulated interaction instead of the usual
constant charge, constant potential approximations may provide new understanding of direct
force measurements and of biosystems.
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