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When I was asked to give this talk, I was told that there would be a wide-ranging audience
and therefore one should try and avoid equations if at all possible. I don't know quite what
that reflects on the average chemist, but I thought that it would be quite a challenge to
present a talk entitled "The Theory of Liquids Without Equations". I decided also that there
was a moral to a title of that kind, and at the end of the talk I will reveal to you what the
moral actually is.

At the outset I would like to consider what is essentially a map of a system that one wishes

to study, namely, the phase diagram. The phase diagram tellsyou where you are and tells you
something about what you're doing. I would like initially to put emphasis on phase diagrams
because many people do experiments on systems (that is, on solutions) for which the phase
diagram is either not known or very poorly known, and this always annoys me. If I am listen-
ing to a talk I often ask the question "Well, what was the phase diagram for your system?"
and find nine people out of ten are unable to answer that question, simply because the phase
diagrams are unknown. And of course, when one is dealing with solutions these diagrams can
be exceedingly complex.

I will take a very simple case of a solution, the case of neon mixed with argon. Fig. 1 is
taken from a paper by Streett & Hill and is perhaps the simplest phase diagram for a solution
that you can have, and already it is to me an exceedingly complex diagram (1) . The lines EA
and EH represent the coexistence lines for pure liquid argon between liquid and gas, and
liquid and solid, and the region in the PT plane between these lines corresponds to pure
liquid argon. The third axis denotes the composition of neon, and the heavy solid lines
represent isotherms that were measured by Streett & Hill. So, for example, if you take a
certain concentration of neon (W) and a certain temperature (T4) then you will find that for
a wide range of pressures a box of the material of this composition will divide into two
phases, a liquid-like and a gas-like phase each of which has a different composition or ratio
between neon and argon. What one tends to do when one takes a solution is to think of a
section of the phase diagram at constant pressure so that one tends to think of a horizontal
section to this diagram, and one tends to plot a curve at constant pressure as a function of
composition and temperature; in this way you get a phase boundary line of a certain shape
with a critical point at the top of such a line. The line of critical points that you then
get for all possible cases is represented by the dotted curve, A through to B. Most people,
I think, do their experiments in a region which is above this line of critical points where
the solution exists for all possible compositions.

So I think the first point I wish to make is simply that, in order to understand your sub-
stance, you need to measure this whole phase diagram first of all and to figure out where you
are, and if you are going to explain the properties of the solution in terms of a theory you
would like a theory which will cover this entire function. Very frequently you will find
that both experiments and theories are confined to a limited region of such a function. It
may be a region at a low temperature and relatively high densities, as at the upper rear part
of this three-dimensional diagram, or it may be a region near the lower front part where the
temperature is higher and the density lower. You tend to find that experiments are done in a
very confined part of this space, and models are developed which apply in a confined part of
this space also, and on the whole that is a very unsatisfactory feature. To really under-
stand the system one has to look over the whole function and explain it all. And, of course,
from the forma1 point of view there are ways of writing problems down in such a way that they
are general enough to cover everything.

One of the conventional ways of doing that is to discuss the interactions between the mole-
cules forming this solution in terms of pair poteptials and three-body potentials and four-
body potentials, and a similar series of correlation functions. So I would like now to look
at that formal structure and to see just what it entails. I will simplify the problem and
discuss these functions for the case of rigid linear molecules; this is obviously a substan-
tial simplification. So what one is really saying is that one could discuss all the proper-
ties throughout the entire phase diagram if one knew everything represented in Fig. 2.
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Fig. 1. Phase equilibria in neon-argon.
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The lowest-order function of interest is the pair function. What we imagine here is that we
have a molecule denoted by an arrow which is oriented in the direction and we place our
origin at its centre of mass arid we ask questions about another molecule, nuniber 2, which is
a distance R12 from the first one and oriented in the direction 2• Well then, first of all
we'll have a potential energy U2 between these two molecules in this configuration, and then
we'LL have a probability g2 of finding this second molecule at the distance given and orienta-
tion 2• So these are the two simplest, lowest-order functions which we would like to know.
And in fact iist theories today tend to cut this whole set off at this point and work only
with these, and suggest that the remaining functions -- the remaining potentials in parti-
cular —- may be neglected. However, that is not so in reality because molecules are polar-
izable and deformable in various ways, and therefore when you bring a third particle up, the
first two can be slightly deformed and additional energy is developed, the so-called three-
body energy. So what we show next in Fig. 2 is our molecule 1 and our molecule 2 and then we
have a third molecule number 3 at the position and orientation shown, and an additional
energy that is beyond the simple sum of the pair energies for this combination, additional
energy U3. An then of course, we will have a three-body correlation function, g3, to descrftm
the probability of finding three molecules in this configuration. And if we wish to describe
the entire system we will have to carry on this scheme of things up to a number N, being the
total number of molecules that we have in our box. So the first problem facing the theorist
is that there is this huge number of functions we would really like to know to understand the
full system.

Let's go back to the beginning and ask a very simple question. Let's just think of this
energy U2 and ask: can we understand U2, and secondly, can we actually measure it in any
given case? Well, I have drawn a simple example in Fig. 3, with which most of you will be
familiar, to show how this function will vary. I am thinking now of a rather simple case --
again a rigid molecule -- with the potential energy between two such xrlecules in particular
orientations l and 22, and we could pick some orientation. If this were a polar molecule,
so we could essentially treat it as a positive and a negative charge with some separation,
then if we brought like signs together we'd have a repulsive system and the pair potential
would look something like that illustrated, and if we brought unlike charges together, we
would then have a potential like the lower illustration, with an attractive part to it. But
these would be extreme situations, and there would be an average potential in the middle as
shown. So that all cases of all possible orientations of the molecules will produce values
of this function which lie between these two extremes, and we could therefore think of theor-
etical models of treating this system on the basis that this amount of variation was all that
was allowed. Well, as I say, one can dream up models of that kind, and I will discuss what
one might do with those models later.

I think it is useful to think of how the experimentalist would approach this problem, saying
"well, we have this great sequence to measure; let's start with the first member U2 and try
and measure it", and what I've put in Fig. 4 is the ideal experiment one would like to
conduct in order to measure that lowest function. What one would have to do would be to take
a beam of molecules, and align the molecules in the beam (as I've drawn all the arrows
parallel to represent an aligned beam). One would define the wave vector; that is, one would
define the direction the beam was going and the velocity of the molecules, and one would fire
them at a target of similarly aligned molecules. That is you would have to take a target and
somehow align all the molecules in this target, getting them to point in a certain direction.
And of course if you want to have single scattering events that you are going to observe
beyond the target, the target will have to be very thin; you might think of somehow aligning
them in a crystal, but in that case you would have to have a very thin crystal. And then
beyond the target, as shown, at certain angles of scatter you would try to observe the
scattered molecules, and you would have to measure the direction and the velocity with a
detecting system. You'd also have to measure the change in orientation of the molecule on
scattering and I've drawn a number of different orientations for these scattered molecules in
the figure. And if you measure all that, you could then invert the data and find the pair
potential between two molecules. There is a list at the side in Fig. 4 of all the things
that will be required for that purpose. When I put the problem in that way you can see
immediately that it is an impossible problem to the experimentalist, not only impossible now,
but likely to be impossible for a very, very long time into the future. This applies to even
the simplest of all possible cases that one could pick, simply because of the difficulty of
defining these directions. The corresponding case for an atom such as argon or neon is of
course soluble in principle, although very difficult in practice, because for an atom we
don't have to worry about these directions, and we only worry about the angles and the
velocity. But once you add the directions, which you obviously need as soon as you go to the
molecule problem, then you make the whole situation quite impossible to the experimentalist.
Therefore, even the lowest order function of that list I had is not accessible experimentally,
and the best one can do is to make some intelligent guess about it and try and evaluate the

consequences.
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Well, how do theorists do that? Let us look at one of the methods by which that is done, and
I think this kind of method was discussed in the theoretical section where all the equations
will have been given, so I need only to sketch out the main steps that are used. But I do
wish to emphasize really the very large number of severe approximations which are made here.
First of all, we are going to assume that no potentials higher than the second matter. Then
we are going to say that we cannot measure that potential. There is no technique known to
people to measure it, so we are going to guess it. So we guess the potential. Now there are
two kinds of guesses as I have outlined in the scheme of Fig. 5 but when we have made the
guess we still can't proceed, so we are going.to make some theoretical approximations using
perturbation theory. In the first guess we'll assume that the largest, nest significant part
of the potential is spherical, and that we can initially therefore start with the hard-sphere
system, for which we have some results, and we can modify the hard-sphere system by introduc-
ing a small change to steepness of the hard core, and work out the effect of that small chan
via perturbation theory. Then we can add on a small attractive part, and we can perturb that
combination with an angular-dependent part to introduce the anisotropy. So there are three
perturbations added to that hard core. That, number 1, is the sinlest version. Or secondly,
we can start off in a more conlicated way with a different model potential and say that,
instead of having a spherical core, we will have acore of some shape, a shape corresponding
roughly to the shape of the molecule, and by some means we discover the properties of a fluid
made of those hard objects. Then we do the same thing: we modify the steepness and add
attractive parts and anisotropic parts. And this form of the theory is considerably more
complicated that the first form because you are starting with a more complicated system. And
these results are to be used for various calculations.

(1) Assume a model potential with spherical core:
Know properties of hard sphere fluid:
Use perturbation theory:

Hard sphere + small change to steepness
+ small attractive part
+ small anisotropic part

OR
(2) Assume a model potential with hard shaped core:

Know properties of hard shape fluid:

Use perturbation theory:

Hard shape + small change to steepness
+ small attractive part
+ small anisotropic part

(3) Calculate (e.g.) thermodynamic propertiàs
Adjust model parameters to fit measured properties of real fluid or
compare to computer simulated properties of the model fluid.

Fig. 5. Theory using pair potential alone.

The most common application is to calculate the thermodynamic properties of the system, and,
having calculated the thermodynamic properties, there are two objectives. One is to look at
some real fluids that you might think will correspond to your theoretical model and adjust
the parameters in the model to get a reasonable fit to the properties of the real system.
Now that is quite a good thing to do, because it gives you a way of describing and correlat-
ing the properties of the real system over some range, or some part of that phase diagram I
showed initially. I think what you are trying to do there is to produce what I call an
engineering recipe for the system. You are producing a recipe by means of which you can con-
dense a large amount of information into a smaller and more basic set of quantities, namely,
these model parameters. So that is. useful but not necessarily fundamental, because these
model parameters may not correspond too well to the real system.

Now the second objective is to try and develop the theory itself, and for this purpose what
you would like to know are the real properties of a system which interacts with this pair
potential alone. So that's an artificial fluid, a man-made fluid if you like, rather than a
nature-made fluid. And you'd like somehow .to discover the properties of this artificial
fluid, and then compare that with the properties you calculated by this theoretical procedure.
In that case you would be able to test your theoretical procedure and perhaps develop it
further, and of course the method which one uses for that purpose is the method of computer
simulation, and I will now briefly outline that method and make one or two comments on it.
Again I think you will have heard of some examples of the use of this method previously. So
I need only sketch through it briefly (Fig. 6). .
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1. Box of N molecules; N - 256 perhaps.

2. Given pair potential find probability of this configuration.

3. Move a molecule - find new probability
- repeat nany times

4. Evaluate weighted average for property of interest.

5. Correct for quantum effects.

What one does is to take a number of molecules -- it might be 256 -- and place them in a box

at convenient positions and with convenient orientations. Then you assume that a certain
pair-potential exists between any pair of these molecules, and you figure out from that the
energy of the total system, and hence the probability of finding that configuration. Then, if
you are using the Monte Carlo method, you would move one of the molecules. That gives you a
new configuration and you find the new probability, and then you repeat that many times to
find the thermodynamic probability for the system at that temperature and density. And then
you can evaluate a weighted average for any property to find the predicted value for that
property. If you're going to make a comparison with a real system you would need to do step
5, correct for quantum effects. That can be quite a serious correction in some cases, but if
you are just going to make a comparison with your theory, it may be sufficient to work through
steps 1 to 4 in a normal classical calculation, so you are treating this purely as a classical

system.

Computer simulation results are therefore used for two independent purposes. On the one hand
they can be used for comparison with theoretical results for your artificial model fluids in
order to develop theoretical techniques; and on the other hand they can be used to compare
with experimental results on real fluids, simply because computer simulation represents the
only satisfactory method to date of finding the consequences of a model potential and of
making sensible predictions which may be compared with real experiments. So you can see from
this that one faces a dual difficulty in studying molecular liquids, and especially in study-
ing molecular solutions, the dual difficulty being first of all that one doesn't know how the
molecules interact (and there is no way of finding that out), and secondly, one doesn't know
how to do the theory. Thus the only way that is really open is that of computer simulation,
which suffers from two defects. One is that it is a classical method, and secondly, that it
is very difficult to use that method generally because of limitations in the range that can be
covered on a conventional computer. That doesn't mean we should despair. Let's look at what
has been done to date; am enormous amount of useful work has been done. You might think from
what I say "well, everybody's crazy; they must all be barking up the wrong tree, going in the
wrong directions". That may be true, of course but, however, obviously a lot of good has
come out of the investigations and a lot of good could come out of further investigations.
I'm just trying to put things in a framework which makes it possible to see the limitations
and hence how limited are the things that we can really accomplish.

Fig. 6. Computer simulation of a fluid.
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Because the things we can really accomplish are limited, it's nice to think about the way
things should be done. What are the most sensitive things that one could do, and what are
the ways in which one could construct information that would tell you the right model to use?
I'd like rather briefly to consider questions of that kind. sow, with these models and with
these theories I've been mentioning, one of the things frequently worked out is an atom-atom
correlation function. These are worked out because they are, after all, fairly fundamental
to the structure of the fluids. So I would like now to refer to Fig. 7 which will help to
define what a partial correlation function is. What I've drawn here are first of all some
wavy lines which in both parts of my diagram represent the fluid. They represent the bulk of
the fluid, and then I've drawn here and there particular molecules which I wish to pick out
of the whole mass of molecules in the fluid. In the upper part I have a linear rigid
triatomic molecule ABA, which is molecule number 1 as far as our correlation function goes,
and to the right of that is placed a similar molecule, number 2. And as this is a pure fluid
made up just of those molecules, we can have then three partial correlation functions. We
can start with A and we can look out from A and we can say "what is the chance of seeing an A
on another molecule?" That would be from one A in molecule 1 to one or other A in molecule 2.
That is the AA correlation function, the chance of finding another A on another molecule if
your origin is on the first A. And then we can sit on a B and we can look out to other
molecules and ask "what's the chance of finding another B?" It will be one of the illustrat
B's looking at the other one. That gives you a second function; and then of course there is
a third function looking from a B to find an A on a neighbouring molecule, or looking from
the A to find a B. Those last two functions are the same. They give you a single cross
correlation function. So in the case of this linear triatomic there are three correlation
functions which one could consider. If one goes to a solution, and I have drawn a solution
in lower Fig. 7, with positive and negative ions in it and some solvent molecules, then of
course you can have a correlation function, for example a particular ion looking out at the
solvent molecules, or an ion of opposite charge looking out at the solvent molecules, and
many, many others. In general you will have a much larger number of correlation functions
for the case of a solution than for a simple fluid.

PARTIAL ATOM-ATOM) CORRELATION FUNCTIONS

A-B-A rigid molecule pure fluidwwwwwwwwwwf wWWWj'
A

Awwwwwwwwww
PARTIAL CORRELATION FUNCTIONS IN SOLUTIONS

Solvent f ) Moleculewmwwwwwww
Fig. 7.
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So let's come back to the case of the triatomic molecule and look at the kind of function we
would obtain in a liquid composed of those molecules. And what I have sketched in Fig. 8 are
examples of the results obtained by using theoretical methods. In particular the RISM theory
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of Chandler and co-workers has been used to produce results of this kind, and also there have
been molecular dynamic calculations on the computer by Streett and Tildesley for this case
(2,3) . They have given us the form of these functions for a model in which the linear
triatomic is treated as a set of fused hard spheres. So we have a hard sphere representing
A; overlapping it a smaller hard sphere representing B; and then another overlapping hard
sphere of A at the end of the molecule. Then the AA correlation function has the form
illustrated, starting off with a step as the two hard objects strike one another. I have
drawn in the little insert a moledule 1 and a molecule 2 in contact; the distance r' is the
contact distance from A to A, as shown. In addition to this step, there is a cusp at r"
corresponding to the other distance shown across the two molecules. The cross correlation,
g has a similar step initially and also a cusp, and these arise at distances which can be
related to the molecules in contact as drawn. Finally, g has a similar shape with a step
and a cusp, and the distance r11 is produced when the molecules are in the configuration
shown in which one molecule is viewed end-on (lower left). So to describe just the most
elementary partial correlation functions for a fluid composed of these simple triatomic
molecules, you need these three different functions. They look quite different and they are
quite different, and for the initial phase of your perturbation theory you have functions of
exactly this kind with these cusps in. Then as you develop the different stages of your

perturbation theory, you'd obviously blur out all these sharp things, and you'd end up with
a rather smooth function for the final real case.

Well, obviously those functions, while insufficient to describe the system, are nevertheless
very illuminating concerning what is actually happening. Now I would like to turn to the
question of solutions rather than pure fluids, and describe some of the ways those functions
have been studied for solutions. I am afraid, although the title of this meeting is
Nonaqueous Solutions, that I'm going to slip in some work on an aqueous solution. The work
I am going to refer to is that of John Enderby and his .Group in England, who have worked on
neutron diffraction from solutions of various salts in heavy water (4). (The heavy water is
there because of its convenience in the neutron diffraction technique.) He has made some
extremely interesting measurements on these partial correlation functions. And,as I mentioned
before, the situation for a solution is far, far more complex than the situation for the
simple pure fluid -- even the triatomic-molecule fluid that I discussed earlier. So one must
use a technique in which one can isolate one or two of these partial correlation functions,
selecting by this technique those functions, which are most significant in setting up a model
for the solution.

Neutron

Beam

1(e)

4(i)sin(
6

Fourier Transform shaded part to get gN

Coherent Neutron
Isotope Scattering Amplitude

Ni58 1.44 x lO2 cm
Ni6° 0.282 x 10—12
Cl35 1.18 x 10—12
Cl37 0.26 x 10—12

Fig. 9.

_____ .60— Ni.

Ni57

in solutions of
NiCl2 in water
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What Enderby and his co-workers do is the following: they do a neutron diffraction experi-
ment as outlined in Fig. 9, taking a monochromatic neutron beam, scattering it from a sample
of their solutions through angle 0 into a detector. So they measure intensity as a function
of this angle, andthat is plotted in conventional way as a function intensity against
.2isin(O/2); and they do this twice. In the example I am going to show, they took a solution
o nickel chloride in water, and they took two samples, one containing nickel-60 and one
nickel-58, and they obtained two diffraction patterns, the solid line is the case where they
had nickel-60 and the broken line is the case where they had nickel-58. And there is a
difference between the diffraction patterns obtained with the wo nickel isotopes. The
reason is shown in the figure where the actual neutron scattering amplitudes for both nickel
and chlorine isotopes are listed to illustrate that one can do this trick with the chlorine
as well as the nickel. You see that by changing the isotope, what you've done is to change
the scattering amplitude of the nickel ion in the solution and, importantly, you've done that
without changing the chemistry of the system. The big advantage of this method is that you
change the isotope and hence change the way the neutrons see the solution without altering
the chemistry of the solution. Secondly, you haven't altered the scattering of any other
component, so the change which I have shaded in this diagram is due to correlation functions
involving the nickel. In other words, if you take this shaded region and subject it to a
Fourier-transformation, you will then get a radial distribution function which you would see
if you sat on a nickel ion as your origin. Similarly, if you let the nickel alone and change
the chlorine isotopes, 35 and 37, and do the same experiment you will get a radial distribu-
tion function for the situation viewed from a chlorine ion as the origin.

The big advantage of this neutron technique as exploited by Enderby is that you can pick out
an ion-solvent correlation function, and Fig. 10 shows an example of his work. This depicts
the pair correlation function g for sitting on a nickel and looking at X, where X is anything
that might turn up in the solution. Now one sees nothing for a while of course, because
there is nothing within the size of the nickel ion, then one sees two sharp peaks, and then
one comes to something which is almost down to the level that represents nothing being there,
and finally one sees the remainder of the solution. The question is, what are these two
sharp peaks due to? If you actually look at the distances involved and consider the inten-
sities corresponding to the areas of these peaks, you realize that what you must be looking
at is the water in the neighbourhood of the nickel. And if we suppose that there is a
charged nickel ion as shown at the bottom of Fig. 10, and that the oxygen is facing the
nickel with the deuteriurns away from it, that picture would indeed fit in. In other words,
there will be a certain number of oxygens at r' and there must be twice the number of
deuteriuxns at r", and that would fit in with the exact ratios of the areas of these two peaks.
If you make this model assumption here, you can then obviously relate these two distances,
namely the position of the peak r' and the position of the peak r" to the two distances in the
lower drawing. Also, if you know these latter distances and the size of the molecule, you can
figure out the angle shown as 400 in the drawing. The conculsion from this experiment is that
one can say from the areas of the peaks that there are six water molecules in a sphere around
the nickel ion, and that the water molecules on the average are inclined to the nickel-oxygen
axis by an angle of 40 degrees. So with this kind of partial correlation function experiment
one can in fact deduce very positive information about the hydration shell, and from this one
can in principle try and construct a model for the solution.

Now while there are many more static experiments of that kind which one could undertake, I'd
like to turn in the remainder of this talk to dynamic studies. We have had at this meeting
several papers on Raman and infrared experimental results, but unfortunately we'll have no
experimental results on inelastic neutron scattering. So I would like to compare these three
techniques and comment on how inelastic neutron scattering can be used for studies of
solutions with the same object as those diffraction experiments I was just showing, namely of
studying the cage of solvent atoms that might form around a solute. Well, let's look at the
three techniques and see how they compare with one another. I have made in Fig. 11 a very,
very brief summary. First of all there is the momentum which the radiation will transfer to
the system from which it is scattered. Because electromagnetic radiation corresponds to
photons of zero mass, the momentum transfer is extremely low in this case whereas, of course,
with neutrons being massive particles the momentum transfer can be quite large depending on the
energy and the angle that you use. In fact, the momentum transfer is a variable experimental
quantity in this case, and this can be very useful in a number of experimental applications.
In those that I shall show, however, this particular feature will not be exploited. Then we
come to the question of selection rules. One of the disadvantages, as well (I may say) in
some cases an advantage, of optical methods is the existence of these selection rules which
allow you to see certain transitions and do not allow you to see others. With neutrons there
are no selection rules. Neutrons just see everything, which is very good in some cases, but
again very bad in others because you see too much, and you don't know how to interpret the
data you get. And then finally of course with neutrons we have this big advantage that you
can use isotopic substitution to change the scattering from different parts of the system
without changing its chemistry. In addition, some properties such as the moment of inertia,
may be changed by isotopic substitution leading to effects observable by both optical and
neutron techniques.
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Fig. 10. Nickel isotope difference (g(r)
in 4.41 molal solution of NiC12 in heavy water.

Well, how are these neutron experiments done? One takes a pulsed monokinetic beam of neutrors,
fires it at a solution, and looks at the scattered neutrons with a detector as shown. Now if
a pulse of neutrons, all of which have the same velocity, were scattered without any change
in velocity then they would obviously arrive at the detector all at the same time. Thus if
the intensity is plotted as a function of the time of arrival at the detector a sharp peak
would be obtained. In practice, however, a distribution of the kind shown in this diagram is
found, and this corresponds to the fact that the neutrons are Doppler-shifted by the motion
of the nuclei in the sample. As the nuclei move around in the sample, whether by translation
or rotation or any other motion, the neutrons observe that motion and receive a Doppler shift.
Sometimes that Doppler shift will correspond to an acceleration, so the neutrons travel more
rapidly over their path and arrive early, and sometimes the shift will correspond to a
deceleration so they travel more slowly and arrive late at the detector. And so one gets a
broad distribution of times of arrival, that corresponds to the motions that are going on in
the solution, and all motions that are going on are in fact observed.
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Momentum Selection Isotopic
Method Transfer Rules Substitution

I.R. absorption
. Low Yes No

Rainan Scattering

Inelastic Neutron Wide No Yes
Scattering Range

Neutron Time-of-Flight Technique

Intensity

Fig. 11. Comparison of optical and neutron techniques.

Now as an example of this method I will give some results that were obtained roughly ten
years ago by Eder & Chen on a solution of hydrogen in argon (5). Here I would like to
emphasize a point, namely that in studying solutions it would be an advantage to study very
simple things. One is forced to some extent by the selection rules in IR and Raman work to
choose complicated things, whereas with neutrons you can choose simple things because you
can observe effects in simple things. Theoretically it is an advantage, of course, to pick
a simple molecule like hydrogen and a simple solvent like argon; I mean, that makes a system
which is much more amenable to a theoretical understanding. It would also be nice to pick
spherical molecules and study a spherical solvent and a spherical solute, but that creates
difficulties, of course for IR and Raman work but no difficulty for neutrons, as I will show
in an example in a moment.

The example given in Fig. 12 is hydrogen dissolved in argon at the temperature and pressure
shown, and these are results taken with 5.3 angstrom neutrons at an angle of 45 degrees. The
intensity has been converted to a differential cross section, and the inverse of the neutron
velocity (that is, the time of arrival of the neutrons at the detector) is plotted as
abscissa. The little peak at the shortest time (that is the fastest neutron) corresponds to
conversion of ortho to para hydrogen, j=l to 0 conversion. Of course this is a line which is
forbidden in the optical work, but is accessible in neutrons because with the interaction of
the neutrons with the protons you can flip the spin of the proton and hence change the spin
state of the molecule. So you get this ortho to para conversion line, but that is not really
of great interest. What is of greater interest are the remaining two features in the spectrum.
The peak marked A corresponds to the translational motion of the molecules, a diffusive
motion; and the peak marked B corresponds to the motion of the hydrogen molecule in the cage
of surrounding argon atoms. You can try to invent a theoretical model to describe the
confining influence of that argon cage, and the frequency with which you might imagine the
hydrogen molecule would vibrate in the potential well created by those argon atoms. Sears
has worked on such a model, called the intinerant oscillator model, which produces the broken
line which has all the qualitative features of the experiment but does not have the quanti-
tative features (6). So this kind of experiment tells you something, but really not enough
again about the nature of the cage of solvent atoms that form around a solvent molecule.
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It would be nice if we could look at how that cage begins to form; how do these molecules
pack stepwise as you increase their number around the hydrogen molecule? With a system like
this we can do that because we have the whole of the phase diagram readily accessible. So we
take the case, which I think is very neglected, of the solution of one gas in another. We
can take hydrogen gas mixed with argon gas and in that case even in a dilute solution we'll
have just a few argon atoms which are in the neighbourhood of the hydrogen molecules, and we
can study the interaction on that scale. McPherson has made a measurement of that kind, and
in Fig. 13 is shown one simple example of his results to demonstrate in principle how it

works (7). In this case he has 20% of hydrogen in argon at room temperature and a pressure
of 6000 p.s.i., and of course in this case, rather than compare with a model, experimental

results can be compared. This is rather analogous to the way Enderby was thinking in his
work. You take two experimental results and compare them, to make or draw your conclusions.
In the first case, one can use pure hydrogen gas as the reference system, and here of course
the hydrogens are being scattered from other hydrogen molecules of light mass. When the
argon is introduced the curve narrows. It narrows because the hydrogen is now being scatter
from a much heavier mass: the neighbouring particles to the hydrogen molecules, being argon,
are of heavy mass. In the collisions you lose energy and therefore the width of this
spectrum, which corresponds to the rate at which the neutrons lose energy, is less. Again
with the aid of a model of this cage you can try and describe this difference between

hydrogens being scattered from hydrogens compared with1drogens being scattered from argons.
So the point I wish to make very simply is that, by exploiting the full range of the phase
diagram, you can try and understand the model you are putting forth -- namely of a cage
surrounding the hydrogen. You can try and understand that model in greater detail.
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The last example I would like to consider, and one I think we ought not to leave out of a
talk of this kind, is the case where we have an internal modeof motion of one of the
molecules, either the solvent or the solute. Obviously the simplest case we would like to
take is the case with the highest symmetry, and the example I have chosen is that of methyl
chloroform dissolved in carbon tetrachioride. Methyl chloroform is essentially the same as
carbon tetrachloride but with lone of the chiorines removed and replaced by a CH3 group. The
size of the CH3 group is almost the same as that of a chlorine, but now there is an internal
mode of rotation in the molecule. If I were thinking of this in terms of pair potentials I'd
then have a lot more variables to take account of. Not only would I have all the variables I
discussed in my rigid molecule case, but I'd have additional variables to take account of the

internal degrees of freedom of the molecule. That would hopelessly complicate the problem.
What I would like to be able to say, of course, is that the internal node is independent of
the environment of the molecule, so I can treat it as an independent oscillator. In that
case I could construct a model of the interaction of the solvent and solute on the basis of
independent oscillators. But to do that, I have to study that internal mode of rotation by
some technique and see how it changes with the environment.

Fig. 14 shows some work carried out by Litchinsky on solutions of methyl chloroform in carbon
tetrachioride (8). This particular case is that for a 5% solution at room temperature and
one atmosphere pressure. The figure shows a section of the neutron inelastic scattering
pattern, a section of the pattern corresponding to situations in which the neutrons have been
highly accelerated. The situation in which the neutrons were scattered elastically would
correspond to a point on the inverse velocity scale which is way off the diagram at 610 I.lsec/m.
The peak which he observes corresponds to the torsional oscillation of the methyl group; this
is the first-order peak at A and there is a weak second-order peak or bump at B. Two cases
are plotted, that of the 5% solution, and the second case is that of the pure methyl chloro-
form. So we imagine in the 5% solution that the molecules are relatively isolated from other
molecules of the same kind, and we are seeing the shape corresponding to the independent
oscillator. Then when we transfer to the pure methyl chloroform there may be couplings
between neighbouring molecules and therefore the peak shape should be distorted. The amount
of distortion is extremely small, showing that the picture of the independent oscillator is
roughly correct. Thus, within the goodness of that approximation we can use a picture of
methyl chloroform in carbon tetrachloride which is analogous to the picture we could use for

hydrogen in argon.

So I have tried in this simple way to show how one might do experiments to construct models,
and hopefully then with the models to develop a theory to explain the properties of the
system. I mentioned in the beginning that my title had a message in it. The message is
really that we are working in an impossible field because we cannot measure the basic infor-
mation and put the field on a proper footing, and therefore we have to leave out a great deal,
and I have tried to emphasize that by leaving out the equations. In the absence of the
equations I have tried to sketch some of the considerations one might include in building a
crude but perhaps representative model of the systems we would like to study.
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