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VISCOELASTIC PROPERTIES OF DILUTE POLYMER SOLUTIONS

John D. Ferry

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA

Abstract - The frequency dependences of the intrinsic storage and loss shear moduli
can be predicted from molecular theories for flexible random coil polymers (bead-
spring models) and for rigid elongated macromolecules. Comparison with various
experimental data extrapolated to infinite dilution shows good agreement with both
these extreme types. For semi-rigid helical macromolecules, and for highly charged
polyelectrolytes, experimental data correspond to hybrid relaxation spectra which
are attributed to rigid-body rotation together with certain internal motions --
probably flexural modes for the helices, configurational rearrangements for the
polyelectrolytes. At high frequencies or in high-viscosity solvents, additional
energy dissipation mechanisms appear in random coil polymers, whose nature is still
conjectural.

INTRODUCTION

The dynamics of isolated polymer molecules have been extensively treated theoretically in
recent years (1,2). Experimental data on dilute solutions are being provided from various
sources, including viscoelastic properties, dielectric and nuclear magnetic resonance relax-
ation, and quasielastic light scattering. Of these, the first has furnished information on
the motions of a wide variety of macromolecules. This review emphasizes viscoelasticity
studies which have been completed since the earlier comprehensive review by Osaki (3).

Dynamic viscoelastic measurements on dilute polymer solutions in the audiofrequency range in
low-viscosity solvents provide information on motional modes associated with relatively long
relaxation times (e.g., 10 * §). Most of the data cited here were obtained with the
Birnboim-Schrag multiple~lumped resonator (4) in the frequency range from 100 to 8000 Hz.
Shorter-range motions with smaller relaxation times can be probed at higher frequencies as
by Wada and collaborators (5) or in high-viscosity solvents such as chlorinated diphenyls,
for example in the modified Birnboim transducer apparatus (6).

THEORY

When a viscoelastic material is subjected to small sinusoidally oscillating shearing defor-
mations, the in-phase and out-of-phase stress/strain ratios are termed the storage (G') and
loss (G") shear moduli. Theories based on models for the motion of isolated molecules predict
the ratios of these moduli to weight concentration (c) extrapolated to infinite dilution, viz.

[G'] = 1im G'/c, [G"] = 1lim (G" - wn_)/c (1)
c>0 c0 8

in which the solvent contribution to the loss modulus, wns, has been subtracted; w is the
radian frequency of deformation and ng the solvent viscosity. The intrinsic moduli [G'] and
[G"] can be converted to the dimensionless reduced moduli [G']R and [G"]R by multiplying by

M/RT, where M is molecular weight (usually uniform, but if not, number-average), and the theo-
retical predictions are most conveniently expressed in this form.

Flexible random coils
The theory of Zimm (7) is based on the bead-spring model for a linear molecule, according to
which the molecule is divided into N submolecule springs (a large number), each of which
stores elastic energy due to changes in configurational entropy when distorted, while fric-
tional resistance to motion through the solvent is concentrated at the submolecule junctions
(beads). It predicts

[6']. = ¥ w?t 2/(1 + w?t %) : )

R p=1 P P
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¢"]_ = Yoot /(1 + wt 2 3
[6"]p = pw,/C ) (3
If N is large, the results are insensitive to N except at very high frequencies. The longest

relaxation time T corresponds to a mode of configurational change in which the ends of the

molecule are moving in opposite directions; it is related to measurable quantities by

Ty = [n]nsM/RTs1 (4)

where [n] is the intrinsic viscosity (low-frequency limiting value of [G"]/wng and
Sl = ZTP/T1 = 2.37. The other relaxation times Tp correspond to more complicated motional
modes and their ratios TP/T1 are obtained from eigenvalues of a matrix which describes the
forces on the beads. The frequency dependences of [G']R and [G"]R are portrayed in Fig. 1.

The dimensionless frequency used here is convenient for comparison with experimental data.
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Fig. 1. Reduced intrinsic shear moduli [G']R and [G"]R plotted logarithmically
against dimensionless frequency wns[n]M/RI for flexible random coils (Zimm

theory) and rigid cylinders (Yamakawa theory with very high length/diameter
ratio).

The original theory is applicable to solutions in O solvents. For other than O solvents,
the theory can be modified with introduction of a hydrodynamic interaction parameter which
changes the form of the frequency dependence somewhat and can be determined empirically by
matching to experimental data; it appears to be inversely proportional to the linear expan-
sion factor in good solvents (3). Also, the theory can be modified to describe branched
molecules with star and certain regular comb structures. Branching changes the form of the
frequency dependence and diminishes the magnitude of [G']R at low frequencies (8-10).

Rigid elongated macromolecules
Several theories for rigid molecules (cylinder, ellipsoid, linear array of beads) predict

(6"l = m Wit ? /(1 + szoz) )
[6"]p = wtylm /A + w'ty?*) + m,)] : (6)
T = m[n]nSM/RT (7

\
Here m and m, are numerical coeffiéients which depend slightly on the details of the model,

and m = 1/(m1 + mz). For cylinders of very high length/diaméter ratio L/d, the theory of
Yamakawa (11) gives m = 3/5, m, = 1/5. (If L/d is not extremely large, m, > 1/5 and it de-
pends on L/d.) The same result for large L/d was obtained for a linear array of beads
(centers of frictional resistance) by Kirkwood and Auer (12). In Eqs. 5 and 6, there is a



Viscoelastic properties of dilute polymer solutions 301

single relaxation time which corresponds to end-over-end rotation of the molecule. The
frequency dependences for a very long rigid cylinder are also shown in Fig. 1, and are quite
different from those for a flexible random coil. Moreover, the relaxation time TO can be

calculated from the dimensions of the molecular model. For example, for the cylinder of
Yamakawa,

- 3
Tg = M LF, /18kT (8)
is a complicated function of L/d; when L/d is very large, F

where L is the length and F can

1
be approximated by [1n(L/d)] !.

1

Semirigid elongated macromolecules and highly charged polyelectrolytes: hybrid spectrum
For several macromolecules with characteristics intermediate between those of flexible random
coils and rigid rods, it has been found empirically that the frequency dependence of [G']R

and [G”]R can be described by a hybrid relaxation spectrum consisting of one longest relax-
ation time (To) together with a set of shorter times (Tl, 12, etc.) whose spacings corres-

pond to the ratios given by the Zimm theory (13, 14). This specifies

[6'ly = mlwz'roz/(l + wz‘coz) + 22" (uty) 9

: " 2 2 "
[G ]R wro[ml/(l + W T ) + m2] + zZ (le) (10)
where Z' and Z" are the reduced intrinsic moduli given by Eqs. 2 and 3 and z is a weighting
factor, in practice set equal to unity. The longest time TO is still given by Eq. 7 with

= -1 -
m (ml + m, + Slle/TO) . The ratio To/‘rl as well as m and m, are taken as adjustable

parameters. The relaxation time TO is attributed to end-over-end rotation of the molecule;

the others are attributed to some kind of internal motions which may differ depending on the
nature of the molecule and may not necessarily be the configurational changes characteristic
of the bead-spring model, as will become apparent in the description of experimental results.

High-frequency behavior of flexible random coils

When the product of frequency and solvent viscosity is large, the sinusoidal deformations
interact with short-range internal motions which cannot be described in terms of the bead-
spring model. Theory here is much more complicated and less well developed but will be
mentioned briefly in connection with experimental results.

EXPERIMENTAL RESULTS

Flexible random coils

Data for linear flexible coil polymers have been well reviewed by Osaki (3). In both O

and good solvents, agreement with the Zimm theory is good, with reasonable choices of the
hydrodynamic interaction parameter. For star-shaped molecules with 4 or 9 branches, agree-
ment with the Zimm-Kilb theory (8) as evaluated by Osaki and Schrag (9) is also good, es-
pecially if a small correction is made for molecular weight distribution (15). For comb-
shaped polymers, the calculation based on the bead-spring model is less satisfactory (16),
probably because of a dense concentration of polymer segments near the center of such a
molecule. Some data on randomly branched polymers (17, 18) indicate that a very small amount
of long-chain branching can be detected by viscoelastic measurements if the molecular weight
distribution is narrow. At high frequencies, all flexible coil polymers show deviations
from bead-spring model theory which will be mentioned in a separate section.

Rigid elongated macromolecules
The first molecule which was found to display rigid rod behavior was tobacco mosaic virus

o o.
(19), molecular weight 3.9 x 107, length 3000A, diameter 180A, whose rodlike shape is clear-
ly evident in electron micrographs. Logarithmic plots of [G']R and [G"]R against wnSM/RT

are shown in Fig. 2, and the agreement with Eqs.-5 and 6 is reasonably good within experi-
mental uncertainty. In this case, the value of [n] needed to match the abscissas of Figs.
1 and 2 was taken from the literature (27 ml/g).

Tobacco mosaic virus aggregates spontaneously end-to-end when aged. Similar measurements on
an aggregated sample with a number—average degree of polymerization of 3.6 also agreed very
Well with the theory, although because of a much larger relaxation .time (note the dependence
of Ty on molecular length in Eq. 8) the data covered only the frequency region well to the

right of the inflection in [G"]R. These results confirm the theoretical value of 3/5 for o,
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and also that the end-to-end aggregates are highly rigid (especially in contrast to the re-
sults for semirigid molecules to be discussed below).

Oligomers of fibrin, prepared by thrombin-induced polymerization of fibrinogen in the pres-
ence of 1,6-hexanediol, which prevents the polymerization from progressing to the ultimate
3-dimensional fibrin clot, have also been studied (20). The frequency dependence of [G']R

and [G"]R agreed with the predictions of the Yamakawa theory with a relaxation time
T = 1.25 x 10" ® s reduced to the viscosity of water at 20°. A structure frequently pos-

tulated for this oligomer is a lateral dimerization of fibrin units with staggered over-
lapping leading to two parallel end-to-end chains  With an average degree of polymerization
of about 20, a length of 4600A and a diameter 60A. For such a model, T calculated from

Eq. 8 is 1.4 x 10 % s, in quite good agreement. Again, the oligomer appears to have a
very rigid structure, reinforced no doubt by the staggered overlapping.

log [6']5. log [6"],
o

log wngM/RT

Fig. 2. Logarithmic plots of [G']R and [G"]R against wnsM/RT for tobacco

mosaic virus in a glycerol-water mixture, compared with the Kirkwood-Auer

theory, Eqs. 5-7 with;ml = 3/5, m, = 1/5 (solid curves). Open circles,

measurements at 37.8°C , slotted circles at 25.0°C. (Dashed line is theory
for elongated ellipsoid model.) (19)

Semi-rigid elongated macromolecules

Poly (y-benzyl-L-glutamate), in certain solvents, has an extended helical structure, but it
is evident from measurements of intrinsic viscosity, light scattering, and dielectric dis-
persion that the helix is not absolutely straight; it has enough flexibility to be dis-
torted by thermal motions, to an extent that increases with molecular length. Viscoelastic
measurements (13) on a sample with weight-average molecular weight 570,000 in two helico-
genic solvents with different viscosities are illustrated in Fig. 3. The frequency depen-
dence does not follow either of the extreme types shown in Fig. 1 but is fitted exceedingly
well by the hybrid model of Eqs. 9 and 10 with the values of the parameters shown in the
legend of the figure. Similar behavior was found for two other samples of lower molecular
weights.

Measurements by Wada and collaborators (21) on samples of still lower molecular weights at
higher frequencies, extrapolated to infinite dilution, were analyzed in a somewhat similar
manner in terms of a long relaxation time attributed to end-over-end rotation together with
shorter relaxation times attributed to internal motions. They combined the data of Refs.
13 and 21 with some other non-mechanical data to plot T logarithmically against molecular

weight in Fig. 4. The relaxation time T, is nearly proportional to M’ (or L®) and agrees
extremely well with the calculation from molecular dimensions from the Kirkwood-Auer theory
(Ref. 12, very similar to Eq. 8). This leaves no doubt that the longest relaxation time is
associated with end-over-end rotation. The other relaxation mechanisms will be discussed
below.

Poly(n-hexyl isocyanate) is another synthetic helical molecule which is highly extended but
evidently somewhat flexible. For molecular weight 99,000, in Tetralin and Tetralin-Aroclor
solvent mixtures, viscoelastic data were in close agreement with the hybrid spectrum of Egs.



Viscoelastic properties of dilute polymer solutions 303

I I I -
-1 o ! 2

log w[n]nsM/RT

Fig. 3. Logarithmic plots of [G"]R and [G"]R against wns[n]M/RT for
poly(Y-benzyl—L—glutamate)(Mw 570,000)in dimethyl formamide (open

circles) and m-cresol (black circles). Curves drawn from Eqs. 9 and 10
with m = 0.555, m, = 0, z =1, and TO/T1 = 4.7 (13).
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Fig. 4. Logarithmic plot of T against molecular weight for poly(y-benzyl-

L-glutamate) in m-cresol at 25°. Open circles, Ref. 21; black circles, Ref.
13; square, from dielectric data, Ref. 22; triangle, from birefringence data,
Ref. 23. Line calculated from molecular dimensions by Kirkwood-Auer theory
(12), similar to Eq. 8. (From Ref. 21)

9 and 10; in this case, m = 0.25, m, = 0, z =1, and ‘[0/1.'1 = 8.6 (24). At higher molecular
weights, the behavior more nearly resembled that of flexible coils, suggesting that this
helix is less rigid than that of poly(y-benzyl-L-glutamate).

Paramyosin is a rogd-like biomacrgmolecule consisting of two a helices coiled around each
other, length 1180A, diameter 16A. Data for [G']R and [G"]R were closely fitted by Eqs. 9
and 10 with o = 0.6, m, = 0.1, z = 1, and ‘[0/1.'1 = 8.43 (14). It is not clear why in this
case m, is non-zero, but this may be related to the more elaborate structure of the two

associated helices as contrasted with the single-helix molecules for which m, = 0.
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Nature of internal motions in semirigid molecules. The relaxation mechanisms with shorter
times in the hybrid spectrum have been attributed to some kind of internal motions. The
slopes of the [G']R and [G"]R curves at high frequencies in Fig. 3 and the spacing between

them clearly correspond to a set of relaxation times with Zimm-like spacings, but that
does not mean that the motions necessarily resemble those of flexible random coils, where
elastic energy is stored due to changes in configurational entropy; other modes might have
similar ratios of relaxation times. For helical molecules, plausible internal motions are
flexure, and elongation either by accordion-like extension or by untwisting.

Wada and collaborators (21) have calculated the relaxation time for the fundamental flexural
mode of a rodlike molecule as

Tp = 5.53 x 1o'3nnsL“/31n(L/d) (11)

where B, the flexural rigidity, is a conventional measure of the resistance to bending.
Rosser (25) has calculated the relaxation time for the fundamental extensional mode as

1, = n L?/d*Eln(L/d) (12)
where E is Young's modulus of the rod. Since To is approximately proportional to L® (Eq. 8),
it would be expected that with increasing molecular weight the spacing between TL and TO

would widen, whereas the spacing between T_ and To would narrow and T, would eventually

F F
overtake Ty s° that the rotational relaxation would no longer be identifiable. The latter

behavior is actually observed in poly(n-hexyl iso-cyanate) and is beginning to be apparent
for poly(y-benzyl-L-glutamate) in the last point in Fig. 4 which deviates from the predic-
tion for the rigid rod as pointed out by Wada (21). It seems very probable, therefore, that
the internal motions are flexural.

By combining Eqs. 8 and 11, Wada (21) obtained the convenient equation

B = 0.10 LkTTO/TF (13)

and, if Ty can be identified with T, of the hybrid spectrum, we calculate for paramyosin

1
B = 4.0 x10 '°® dyn/cm® at 20°C. For poly(y-benzyl-L-glutamate), Wada calculated 5 x 10 !°
dyn/cm2 from persistence length data. From B, assuming a cylindrical rod of uniform struc-
ture, one can obtain Young's modulus:

E = 64B/md" (14)

For paramyosin, E = 1.2 x 1010 dyn/cmz, a rather high value corresponding to that of a poly-
mer in the glassy state. The fact that the molecule is flexible, in spite of the high calcu-
lated modulus, reflects its small diameter and small d/L ratio. On the other hand, if E

were calculated from Eq. 11 by identifying T with TL’ an unreasonably small value of

6.5 x 10° dyn/cm2 would be obtained. A molecule with this low modulus would bend so easily
that it would scarcely appear rigid.

Polyelectrolytes

A highly charged polyelectrolyte in aqueous solution at low ionic strength has a very ex-—
tended configuration due to electrostatic repulsion, as shown by intrinsic viscosity and
light scattering, but would not be expected to have as much rigidity as the helical macro-
molecules discussed above. Viscoelastic measurements on the sodium salt of the strong
electrolyte poly(styrene sulfonic acid) have been made in glycerol-water mixtures of

various dielectric constants and at various ionic strengths (26). Extrapolation to infinite
dilution necessitates dialysis of each solution against a solvent of fixed ionic strength

to maintain constant chemical potential of the salt component of low molecular weight (27).
An example of the frequency dependence of [G']R and [G"]R is shown in Fig. 5. It can be

fitted very well with the hybrid model of Eqs. 9 and 10 with the values of the parameters
shown in the legend of the figure. Similar behavior was found for another sample of higher
molecular weight and also at different glycerol and sodium ion concentrations. The ratio

TO/T1 decreases with increasing molecular weight and increasing glycerol concentration; TO

. . +
increases with increasing molecular weight, decreasing Na concentration, and (after correc-
tion for viscosity difference) with decreasing glycerol concentration.



Viscoelastic properties of dilute polymer solutions ' 305

log [6']5. log [6"],

1
N

-3 1 1 1
| (o] [

log wns[n]M/RT

Fig. 5. Logarithmic plots of [G'] and [G"] against wng [nIM/RT for

sodium poly(styrene sulfonate) molecular weight 3.3 x 105, in 25%
aqueous glycerol. Na't concentrations from trisodium salt of ethylene
diamine tetraacetic acid: points half black, 0.002M; full black,
0.0051, Pip right, 1.0°C; up, 15.0°C. Curves drawn from Eq. 9 and 10
with m = 0.6, m, = 0, z =1, and TO/T1 = 4,0 (26).

The longest relaxation time Ty is again attributed to end-over-end rotation of the molecule

in its highly elongated shape. A rough calculation from Eq. 8 of the molecular length based
on a cylindrical model gives a value (for aqueous solvent without glycerol) of the order of
half the maximum extended contour length of the polymer backbone (0.6 for Mn = 3,3 x 10°,

0.4 for Mn = 7.8 x 10%) showing that the elongation is indeed extreme. However, values of
To for two molecular weights correspond to a proportionality to M1'7, considerably less

dependence than for a fully extended rod. The shorter relaxation times are attributed to
modes of configurational change similar to those occurring in uncharged flexible random
coils.

Earlier measurements by Wada and collaborators (28) on the weak electrolyte poly(acrylic
acid) neutralized to different extents reached rather similar conclusions. These measure-
ments were made at finite polymer concentration, mostly 1.6 g/l. In this case the degree of
neutralization is an additional variable. The magnitude of the longest relaxation time
(identifiable with TO) is plotted against degree of neutralization in Fig. 6. With decreas-

ing neutralization, the magnitude of Ty drops and it finally disappears. At complete
neutralization, it was found that Ty was approximately proportional to M. There are

several possible reasons for the difference between this exponent and the smaller one of
1.7 found for poly(styrene sulfonate), the most likely (25) being that the poly(acrylate)
data were not extrapolated to infinite dilution and the concentration dependence may in-
crease rapidly with increasing molecular weight (29).

Experiments by Wada and collaborators on poly(methacrylic acid) neutralized to different
extents (30) also indicate the presence of a hybrid relaxation spectrum at high degrees of
neutralization. At low degrees of neutralization, the molecular configuration is influenced
by hydrophobic interaction of the methyl groups.

High-frequency behavior of flexible random coils
The discussion of flexible coils above refers to frequencies which are not too high compared
with T1 1 ; the product wT, must be below a figure which increases with increasing molecular

weight and for M = 10° is of the order of 100. At higher frequencies (or higher solvent
viscosities) divergences appear which are illustrated in Fig. 7; G" - wn_ goes through an

inflection and at high frequencies becomes directly proportional to w (slope of unity on
logarithmic plot). Such measurements have usually been made at somewhat higher concentrations
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Fig. 6. Plot of rotational relaxation time against degree of neutralization
for poly(acrylic acid) with two degrees of polymerization. as shown. NaCl
concentrations 0.01 M (DP = 1300), 0.021 M (DP = 3300). (28)

than the low-frequency measurements described above, and extrapolation to infinite dilution
has been made only in the high-frequency region where the concentration dependence is rela-

tively slight (31-34).
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Fig. 7. Logarithmic plots of G' and G" - wng reduced to 25.0°C. for poly-

styrene, M = 2,67 x 105, in chlorinated diphenyl solvent, concentration
55.4 g/l. Pips refer to measurements at different temperatures from 9.9 to
34.,9°C., The shift factor a; was determined empirically (32).

The proportionality of G" - wn_ to w implies that the dynamic viscosity, n' = G"/w, becomes
independent of w at high frequencies and levels off at a value n'w greater than Ngs

corresponding to a finite high-frequency intrinsic dynamic viscosity [n']w. The latter can
be obtained as the slope of a plot of In (n'/ns) against ¢ (32). It is independent of

molecular weight, and for polystyrene (33) it is also independent of branching (both star
and comb shapes). However, for different polymers it depends considerably on the chemical
structure (34,35). (At extremely high frequencies, there is some evidence (3) that [n']
attains another lower plateau, so that the designation [n']w may be ambiguous.)
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The Zimm theory and the modifications of it which have been mentioned, including the hybrid
spectrum when m, = 0, predict that [n'] = 0, but they are obviously inapplicable at

frequencies which interact with local motions within the fictitious submolecules. A finite
[n']o° implies that there is an additional mechanism for energy dissipation besides that
described by the frictional resistance of the beads in the bead-spring model. Several im-
portant theoretical treatments of this phenomenon have recently been completed (36-42),

but since the subject is developing rapidly at the present time it is inappropriate to
review it here.

It was observed by Lamb and Matheson (43) that finite-concentration plots of G' and G" - wny
against frequency, where n, was an empirically chosen viscosity higher than ns, correspon-

ded to the frequency dependence predicted by the bead-spring theory with no hydrodynamic
interaction (Rouse theory, Ref. 44). Recently, Schrag has analyzed an extensive series of
viscoelastic data by plotting G' and G" - wn'  against frequency, where n'_ is determined
experimentally. The resulting frequency dependence appears to be independent of molecular
weight and concentration over considerable ranges and corresponds to the bead-spring theory
with very little or no hydrodynamic interaction (45). The significance of this behavior
has not yet been resolved.

. CONCLUSIONS

Viscoelastic measurements clearly distinguish molecular motions characteristic of flexible
random coils, rigid rod-like structures, and elongated macromolecules with partial flexi-
bility. The latter include helical molecules and polyelectrolytes. The internal motions
detected in helical molecules appear to be flexural, and a micro-Young's modulus can be
calculated from experimental data. In strong polyelectrolytes and fully neutralized weak
polyelectrolytes, the internal motions are probably configurational changes similar to
those in uncharged polymers. At high frequencies, flexible random coils show additional
energy dissipation which is not yet well understood.
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