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ABSTRACT
Crazing in glassy polymers is strongly influenced by heterogeneities at many
levels starting from the dense molecular entanglements that can produce
micropores by obstructing localized shear, and going up in scale to different
polymer phases, particulate inclusions, patches of oriented polymer produced
by shear deformation bands, and finally, surface grooves and scratches which
can act as internal or surface stress concentrators to initiate dilational localiza-
tion to form the crazes. These points are discussed semi-quantitatively in the

light of some recent experiments on crazing.

1. iNTRODUCTION

The mechanical properties and behaviour of polymers are influenced
strongly by heterogeneities. Such heterogeneities may either occur accidentally
or could be incorporated deliberately. Their effects could be either beneficial
or deleterious. Such opposite effects are often produced by one and the same
heterogeneity: it is essential therefore, that their role be properly understood.
Heterogeneities can produce some non-synergistic effects which can be
accounted for merely in the proportion of the volume they occupy, indepen-
dent of size and distribution of the heterogeneity. Elastic moduli, and some
transport properties such as permeability, etc., are of this type. In many other
instances, however, heterogeneities catalyse effects which depend also on their
size, shape and distribution. Much of mechanical behaviour, especially as it
relates to ultimate performance, is of this latter type. We will concern our-
selves in this contribution primarily with some of the more important
synergistic effects of heterogeneities on ultimate mechanical behaviour of
polymers.

2. TYPES OF HETEROGENEITIES iN POLYMERS

The word homogeneous refers to a uniform constitution of matter, which
in polymers can only be considered as an idealization. Leaving out differences
in molecular weight distribution and differences in tacticity, and concentrating
only on states of aggregation on a scale much larger than molecular diameters
or size of monomer repeat units, it would be difficult to find any solid polymer
which is truly homogeneous. A widely appreciated form of heterogeneity
in single-component polymers is their degree of crystallinity and the ways it
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can be affected by thermomechanical treatment'—4. A more elusive and
controversial form of heterogeneity is the nodules which have been reported
to occur on the scale of tens of ángströms in glassy polymers, based on direct
observation in thin fi1ms57 and on indirect experiments on reactivity8.
Their presence has, however, been doubted on thermodynamical grounds9,
and specially designed neutron diffraction experiments'0 have given negative
results. By far the technologically most important heterogeneities, however,
relate to multi-phase structures resulting alternatively: from the blending of
generally immiscible components of polymers; or from phase separation
of block and graft copolymers. The shapes and dispersion of such hetero-
geneous phases can be controlled to a wide degree by control of composition
affecting the nature of the phase separation1 1—13, and by thermomechanical
treatment'4. In the instances when the heterogeneities consist of an elasto-
meric phase in a normally brittle glassy polymer, they can impart very attrac-
tive toughness by initiating modes of inhomogeneous deformation in the form
of localized bands of shear or dilatation (crazing). These tend to interact with
each other to nucleate more of the same and give rise to large amounts of
energy absorbing inelastic deformation. In addition to such natural hetero-
geneities, a whole range of artificial heterogeneities in the form of hard spherical
particles or short fibres have been used to approximate to the behaviour of the
natural heterogeneities1 5.We distinguish these latter applications fromthe very
wide range of applications of polymers as a matrix material in composites
where the main advantage is derived from the properties of the reinforcing
phase of fibres or plates, and where polymers act merely as a binder and as a
traction transmitting agency'6' 17 The subject of composites has been ex-
tensively investigated and will not be part of our concern. The interested
reader can consult many excellent treatises on this subject, such as, e.g.,
that of Kelly' 8•

Finally, however, two other types of heterogeneity must be considered
which have profound effects on ultimate behaviour: accidental particulate
inclusions and surface scratches, which can both nucleate inhomogeneous
deformation and cause fracture.

In this contribution we will be primarily concerned with the restricted area
of heterogeneities in glassy polymers which synergistically affect their ultimate
behaviour, and with the mechanisms of inelastic deformation which such
heterogeneities initiate. We will not be concerned with the role of hetero-
geneities in non-synergistic behaviour such as elastic and viscoelastic
properties. The interested reader is referred to the treatments of these subjects
in the recent literature'922.

3. PROCESSES OF INELASTIC DEFORMATION IN GLASSY
POLYMERS

Below the glass transition temperature the strain rate response of glassy
polymers to increasing shear stress is first linear but then becomes increasingly
non-linear. For stresses significantly less than 0.01 of the shear modulus the
polymer shows a linearly viscoelastic response. With increasing stress the
response becomes non-linearly viscoelastic above a stress-to-modulus ratio
of 0.01, and finally plastic when the ratio exceeds about 0.05. This ratio where
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plasticity sets in increases with decreasing temperature and reaches an
asymptotic value of around 0.1—0.12 at OK. For a given stress the strain rate,
whether viscoelastic or plastic, has a temperature dependence which is of a
nearly Arrhenius form. In addition, the plastic flow stress for a given strain
rate increases somewhat with increasing pressure. This is the dilatation-free
distortional behaviour of glassy polymers the mechanisms of which have
recently been discussed by Argon23. It obeys a pressure dependent Mises
yield criterion, and may in some cases localize into intense shear deformation
bands, when a molecular strain softening process exists. Here we will not be
overly concerned with the distortional plastic behaviour of glassy polymers
beyond stating that when shear deformation localization occurs, the resulting
shear bands incorporate highly aligned polymeric material which can then
act as a new form of planar heterogeneity.

Of more interest to us will be the crazing process (dilatational plasticity) in
polymers, which occurs in all glassy polymers below the level of distortional
yielding when the applied stress has a negative pressure (dilatational) com-
ponent. Crazes are zones of cavitational deformation occurring in initially
unoriented polymers, always normal to the maximum principal tensile
stress. They are often precursors of cracks. The morphology of crazes and
their phenomenology have recently been reviewed extensively by both
Rabinowitz and Beardmore24 and by Kambour25. The uninitiated reader is
strongly advised to refer to these papers. A physical mechanism for formation
of crazes has been proposed by Argon26. Since this mechanism will be of
central importance in our discussion on the ultimate behaviour of glassy
polymers, we will give a brief review of this mechanism and then apply it
to the case of nucleation of crazes from heterogeneities.

4. MECHANISM OF CRAZE NUCLEATION IN GLASSY POLYMERS
The kinetics of nucleation of crazes and the complex stress condition which

describes their isochronous formation suggest that crazing consists of three
relatively distinct stages which are, in order: thermally activated production
of stable micro-porosity under stress; formation of a craze nucleus by plastic
expansion of holes in a small region while elastically unloading the surround-
ings; and extension of the craze nucleus into a planar 'yield' zone.

Apart from the small amount of free volume which every polymer has at a
molecular level below its glass transition temperature, we assume that the
starting polymer is continuous and free of holes. In Stage I, under an applied
stress, below that of general yield, the polymer undergoes a stable, thermally
activated cavitation in regions of stress concentration which produces holes
of 100 A size. This is the process that has been studied in detail by Zhurkov
and co-workers27'28 by low-angle x-ray scattering and e.s.r., and has recently
been observed by Baer and Wellinghoff29 directly in thin polystyrene films
stretched on Mylar films and subsequently examined in the electron micro-
scope where the holes have been revealed by precipitation of iodine. Zhurkov's
observation on the stress dependence of the cavity generation rate is of the
form

d$ / U—cjv'\
0exp— kTN ) (1)
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where fJ is the porosity, J is a constant pre-exponential term, U is the extra-
polated activation energy at zero stress, aN is the applied tensile stress and
v is an activation volume. Both U and v are obtained by analysing experimen-
tal data.

For several reasons which will become clear later we find it necessary to
derive a more specific expression for porosity formation.

Molecular
heterogeneity

Figure 1. Formation of micro-cracks by arrest of micro-shear bands

In Figure 1 we consider a region of stress concentration, either at the root
of a surface groove or near the interface of an internal heterogeneity where
thermally activated plastic flow is possible under the locally amplified shear
stress o If a molecular strain softening process exists at least over a very local
scale, it becomes possible to treat the initiation and small-scale localization
of the plastic shear process as a one-step nucleation event in the form of a
shear patch of radius R and of vanishing thickness which, as discussed by
Thierry, Oxborough and Bowden30, is the energetically most advantageous
form for local stress relaxation. Based on the analogue of dislocation loop
formation, the free enthalpy AG for activation for the shear patch under an
'applied shear stress a could then be written as a first approximation as

where

AG = AF — AW = 2irR — irR2aço

g 0.15 Iup2

is the line energy stored around the periphery of the sheared patch per unit
length, 4u is the shear modulus and çø is the relative displacement across the
sheared region, which must be of the order of the molecular diameter t.

t The magnitude 0.15 for the coefficient of the line energy is a good estimate which incorporates
interactions of all segments of the circumference of the patch and is chosen for a ratio of patch
radius to sheared displacement, (R/q,), of about 4—5. Theactual computation of the saddle point
in the free enthalpy is far more complicated than the simple asymptotic form given here. It is
strongly model sensitive and depends on the particular form of the intermolecular shear resistance
where that resistance reaches its maximum value.

250

_1'
xç.

Micro -crack



ROLE OF HETEROGENEITIES IN THE CRAZING OF GLASSY POLYMERS

The saddle point in the free enthalpy is obtained from

(aAG/R), = 0 (4)

which gives

R* f/ (5)

and

AG* = = (0.15)27t(RIa) (1wp3) (6)

Considering that glassy polymers have shear moduli 4u 1010 dyn/cm2
and average molecular diameters ( = 3 x o 8, the activation free enthalpy
for a shear stress ci (RI25) would give R* 4p and AG* 0.3 eV—values
which are quite reasonable for a room temperature process. Once the patch
reaches its critical configuration, the shear deformation can continue to
spread out in the plane of the patch at a falling stress, without being dis-
persed23. The growth of the patch could be arrested at molecular hetero-
geneities with higher shear resistance. These heterogeneities may, e.g., be
dense molecular entanglements. It is of no great concern to us here whether
or not such heterogeneities represent regions of higher crystallinity. We require
from them only a higher than average plastic shear resistance capable of
stopping the patch of micro-shear. At the ends where the patch is blocked
local stress concentrations will arise which produce a normal stress Nof the
order of31

cr(L/p) (7)

Since the ratio L/cp of the heterogeneity spacing to relative displacement is
likely to be of order ten, local tensile stresses in excess of three times the shear
resistance can be produced which could well equal the cohesive strength of
the polymer to open up micro-cracks as shown in Figure 1. The only additional
requirement for such cracks is that enough energy be stored in the local region
to provide for the surface free energy of the micro-cracks, i.e.

1 1 /L\2 IL\3 1 IL\2
a ,J—) rr 2)) ci (8)

(9)

where x is the specific surface energy of the polymer and E is its Young's
modulus. The condition given in equation (9) is in a realizable range. It is
interesting to note that the formation of micro-cracks just discussed could
occur entirely by separating molecules against their intermolecular attractions
without necessarily severing any primary bonds. Recent e.s.r. measurements by
Nielsen32 in which no detectable free radical generation was observed during
crazing lends support to this possibility. We observe, furthermore, that as
long as inequality (9) is satisfied, pore nucleation is all but accomplished when
the energy barrier for the shear patch has been overcome, without requiring
overcoming any additional energy barrier.
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On the basis of the above mechanism, we expect that the initial develop-
ment of micro-porosity with time will have a form of

/3(t) = /0t exp (—AG*(s)/kT) (10)

where the activation free enthalpy is given by equation (6) and where we
have already generalized the result from an applied shear stress to the local
deviatoric shear stress s (the root mean square shear stress in multi-axial
stressing) in the vicinity of the surface or interface stress concentration,
given by the well-known expression involving the principal stresses:

s= [(l/6){(a1 — a2) + (a2 — a) + (a3 — a1)2}] (11)

It is well to emphasize here that in our model pores form as a result of
local inhomogeneous plastic deformation at stress levels a factor of two or
three below those of general yield hence, stress concentrations play a
fundamental role.

When the local porosity reaches a critical magnitude, depending upon the
local stress state, a condition of rapid plastic expansion of holes becomes
possible in an equiaxed region at the expense of elastically unloading the
surroundings. This is Stage II, in which visible craze nuclei form during a
comparatively short time governed by the rate of plastic expansion of the
holes.

fa\° ) :,e/ o U

H::: ::D1
kELastIc

Rigid plastic
Figure 2. Rigid plastic region about to undergo cavitation under the action of a negative pressure

applied by elastic surroundings

As shown in Figure 2, we consider a porous, roughly spherical region
of radius r0 in which the material is idealized as rigid with a tensile plastic
resistance Y which is strain rate, temperature and pressure dependent, and
equal to ,/3'r(p, 7 i'), where t is the distortional plastic resistance in shear
discussed abovet. Outside the porosity inhomogeneity the material is
idealized as perfectly elastic. Rice and Tracy33, who have analysed the fully
plastic growth of initially spherical holes under arbitrary states of stress, have
concluded that the net growth of a hole in a rigid plastic material depends
substantially only on the negative pressure, with the shear stresses contribut-
ing to this growth only in a secondary manner. The effect of the deviatoric
shear stress, however, cannot be entirely neglected. When it is very large and

t The plastic resistance of a glassy polymer increases with large extension ratios. Incorpora-
tion of such hardening into the equations, however, produces no significant change in the condi-
tion for pore expansion26.
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near yield, only relatively small amounts of negative pressure are sufficient to
expand holes, albeit rather slowly. McClintock and Stowers34 have recently
analysed the growth of holes under combined negative pressure and deviatoric
shear stress. Their results, shown in Figure 3, demonstrate that when the
porosity is small (-'O.O1), only deviatoric shear stresses greater than O.8t
begin to play a significant role in reducing the required negative pressure for
hole expansion. On the basis of these results, we can now write the stress
condition for expansion of pores as (see reference 26 for further details):

p = (2Y/3) ln (1/fl) [Q(s/Y)] (12)

where p stands for negative pressure and Q(s/Y) is the normalized locus for
pore expansion given in Figure 3. The value of Q is near unity for s/Y < O.8/\/3,

1.0

0.5

0

J3 s / Y

Figure 3. Locus of pore expansion under a combination of negative pressure and deviatoric
shear stress: solid curve after McClintock and Stowers34; dotted box, asymptotic idealization

where its effect can be neglected. As a first approximation we will replace Q
by the box-shaped locus shown in Figure 3, which amounts to computing
asymptotic and non-interacting behaviour for the s- and p-components of the
stress tensor. This will give satisfactory results except for the discussion of
asymptotic craze densities, where Q and its specific dependence on s/ Y are
of crucial importance.

The negative pressure given in equation (12) is not a sufficient condition for
the rapid extension of pores in the region of porosity inhomogeneity. Since
this negative pressure for the continued plastic expansion of the holes is
applied over the boundary of the region by the elastic surroundings which
would be unloaded by the expansion of holes in the region of radius r0,
we must require also that the rate of decrease of boundary traction
due to external elastic unloading be less rapid than the allowable decrease
of the negative pressure with increasing porosity, i.e.

fda/dr < dp/dr (13)

The left-hand side of inequality (12) is the radial stiffness of a spherical
hole in an elastic continuum and is given by

chi/dr = — 4z/r0
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where r0 is the initial radius of the inhomogeneity. The right-hand side of
inequality (13) is obtainable from equation (12) and the condition of compati-
bility as

(dp/dr) = — (2Y/fl1r0) (1 — f3)

for the start of the process where f3 = fl, where, as stated above, Q was set
equal to unity. The condition given by equation (13) prescribes a critical
initial porosity, /3crit' which cannot be exceeded if the Stage II process of
craze nucleus formation by an elastic—plastic unloading is to occur. This
critical initial porosity is

$crit = 1/(1 + 2u/Y)

Hence, the two conditions for craze nucleus formation in Stage II can
be stated as

p = (2Y/3)ln(1/f3)

< 1/(1 + 2i/Y)

(16a)

(1 6b)

The development of Stage II is sketched in Figure 4. The curved line gives
the asymptotic negative pressure (for Q = 1). For a local level of applied

C'4

0.()

6

5

1.

3

2

0

Figure 4. Process history for elastic—plastic cavitation (from reference 26, courtesy of Marcel
Dekker Inc.)
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negative pressure Pa' the process of cavitational localization cannot start
before the porosity reaches f31 by the micro-pore formation process. When $
finally reaches this magnitude, provided fl1 < the local radial stress will
unload from A along the slanted line to B, producing an initial volumetric
crazing strain of fl — in the interior of the spherical region. Figure 4 is
drawn to scale and the construction is for a ratio of Y/ji = 0.12, (i//A = 0.07),
which represents the conditions for polystyrene at room temperature for
which flcrit = 0.057. If the local negative pressure at a root of a surface scratch
is such that 3Pa/2Y5 about 3.5 (a rather high ratio), then the cavity expansion
process will begin at an initial local porosity of 0.03 and the initial volumetric
cavitation strainwilibe only0.072. Thus the normally reported large volumetric
strains for mature crazes must develop after the nucleation.

We note that as temperature increases, Y/ii and flcrit decrease. Above a
temperature where '3crit < fl for the given applied negative pressure Pa'
craze nucleation is no longer possible, since the rate of elastic unloading of
the surroundings exceeds the allowable rate of drop of negative pressure for
hole expansion. Naturally the polymer could still go on cavitating in a quasi-
homogeneous manner. Combining equations (10) and (16a) gives the general
conditions for craze nucleation as

3p/2Y = — ln J0t + AG*(s)/kT (17)

We take this as the local condition for craze nucleation, where p and s stand
for the local concentrated stresses. This is then the criterion which must be
applied for craze nucleation at interfaces of heterogeneities, etc., where, of
course, the local stresses may first have to be found by the solution of a
boundary value problem. We now proceed to compute the external stress
conditions for craze nucleation on a sample with a collection of average
surface scratches.

5. EFFECF OF SURFACE STRESS CONCENTRATIONS ON CRAZE
NUCLEATION

In experiments under biaxial stress (cr3 = 0) Sternstein and Ongchin35
have found a phenomenological, isochronous (10 mm) crazing criterion for
glassy polymers which they have stated as

oi — = —A(T) + B(T)/(a1 + 2) (18)

We will now show that if the local craze nucleation criterion derived in the
preceding section is applied to a polymer with surface stress concentrations,
Sternstein and Ongchin's equation is obtained.

To begin, we assume that, unless extreme precautions are taken, the
surfaces of all polymers have a large collection of accidentally produced
scratches and grooves which would be randomly oriented relative to applied
biaxial stresses r and As shown in Figure 5, let us consider a typical
surface scratch at an angle 0 relative to the principal stress a. Thus, in the
natural coordinates of the scratch it is subjected to stresses o, a22 and a12,
of which a22 and a12 will be concentrated, while au will not produce a
significant concentration. There are, of course, scratches at all angles and
of a variety of depths. For the time being, we consider them all of constant
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depth producing the same stress concentration under similar orientations
with the applied principal stresses. Since the craze nucleation criterion
involves both a deviatoric shear stress and a negative pressure, it is not
necessary that the scratches which nucleate crazes in the shortest time be
oriented normal to the maximum principal tensile stress, even though this is
the direction across which crazes tend to grow. The scratches which are most
effective in craze nucleation are those which minimize the crazing time in

a11

Figure 5. Surface groove under the application of a biaxial state of stress

equation (17). Hence, we proceed by obtaining the deviatoric shear stress and
negative pressure for an arbitrary scratch at an angle 0, substitute these
stresses in equation (17) and minimize the craze nucleation time.

The stresses a11, a22, 12 referred to the axes of the scratch are

a22 = 2(a1 + a2) + (a2 — a1) cos 20 (19a)

a11 (a1 + a2) — (a2 —
a1) cos 20 (19b)

a12 (a2 — a1) sin 20 (19c)

where a2 <a1 was assumed. Considering an asymptotic behaviour for
only deep scratches, and that the material will be at yield at the grooves of the
scratches, we can write the concentrated stresses, a'2 2' a'1 a'12, as:

a2/Y =f + fij cos 20 (20a)

a'1 / Y = + cos 20 (20b)

= f'i sin 20 (20c)

wheref stands for the asymptotic stress concentration factor for deep scratches,
which is assumed to be equal for plane strain and anti-plane strain, where the
significant stress a'11 is considered to arise primarily from plane strain
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conditions, and where in anticipation of later ease the following normaliza-
tions were introduced: = (a2 + a1)/2Y and , = (a2 — a1)/2Y The local
normalized deviatoric shear stress and negative pressure can now be obtained
by substitution of equations (20a)—(20c) into

s2 = [(a'11 — °22) + (a'2 — a) + (a'33 — a'i)2] + a (21a)

p = [a'11 + a22 + a33] (21b)

where = 0 is assumed. This gives

s2 =f2Y2( + i cos 20)2 + f2Y2( sin 20)2 (22a)

p fY( + , cos 20) (22b)

We require that upon substitution of the contents of equations (22a) and (22b)
into equation (17), the crazing time in the latter be minimized with 0, i.e.

ôlnj0t — (A/Y (4(p/Y) — 0 (23)— 0k. slY) O kQ(s/Y)
—

whereA = iu2/pkT is the coefficient of the reciprocal deviatoric shear stress

in the exponential of equation (10) giving the time law of porosity develop-
ment. But

in /0t — ( in0t'\ a(s/Y) + ( in f0t'\ (p/Y) 24
\a(s/Y) ) O . (p/Y)) O

Computation of the various partial derivatives gives for the condition of the
minimum

[( 2(/Y)3
+

2(s/Y)Q2
f2(3n2 cos 20 — ?1) + sin 20 = 0 (25)

The first condition for an extremum in the time for craze nucleation is

sin 20 = 0 (26)

The second condition is obtained upon inspection of equation (25). In this
equation the first two terms which are always negative dominate in absolute
value the last term by an order of magnitude or more; hence, a second con-
dition for an extremum is

cos 20 = (27)

Substitution of conditions (26) and (27) into equations (22a) and (22b) and
these into equation (17) gives in abbreviated notation two crazing conditions:

(1/f)lnf0t = (A/Yf2)/(c + ,) — ()()( + 'i) (28a)

(1/f) in f0t = (A/Yf2)/[2 + 2]4 — (28b)

Of these two conditions, the second one nearly always governs, as will become
clear further below. We abbreviate further by calling = A/YJ2 and ö =
(in f0t)/f As wiii be demonstrated below, the value of the average surface
stress concentration factor is around 3.5, which together with the previousiy
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introduced magnitudes for the activation free enthalpy gives x 0.55. The
value for (5 is less readily obtainable from fundamental considerations. To
obtain a reasonable fit to the phenomenological stress condition of Sternstein
and Ongchin35 we pick (5 = Fx. This would give for the pre-exponential
factor f = 2.6 x o 2 l The isochronous biaxial locus for craze initiation
computed from equation (28b) is shown in Figure 6 for x = 0.55 and (5 =

Figure 6. Biaxial locus for craze initiation: solid curves, computed on basis of equation (28b);
broken straight line sections, computed on basis of equation (28a); broken cuspy curve, experi-
mental observation of Sternstem and Ongchin35. The elliptical distortional yield locus is given

for comparison

together with the locus for distortional yielding for comparison. On the other
hand, the condition given by equation (28a) for the same coefficients cx and (5
is given by the dotted straight lines in Figure 6. Clearly, since this condition
requires considerably larger stresses than those given by equation (28b),
it will not govern in the range of interest. If the surface contains more severe
stress concentrations or if the activation free enthalpy given in equation (6)
should have been overestimated, the isochronous craze nucleation loci would
lie below the upper curve shown in Figure 6. Two other curves computed for
coefficients cx = 0.4 and cx = 0.2 are also plotted in Figure 6. The one for
cx = 0.2 corresponds more closely to the phenomenological curve presented
by Sternstein and Ongchin35 for PMMA at room temperature which is also
reproduced in Figure 6. The craze initiation locus computed from our theo-
retical model produces a good fit to the experimental locus obtained by
Sternstein and Ongchin everywhere except in the region of nearly equal
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biaxial stress, where it lies considerably below the experimental locus. This
could have two reasons. First, our theory as described above considers stress
concentrations only in an asymptotic form as if they were of singular nature.
This could therefore artificially suppress the locus in certain regions. Second,
the experimentally obtained craze condition of Sternstein and Ongchin is
most likely not purely for craze nucleation alone but must involve some craze
growth as well. Therefore, if the real isochronous craze nucleation condition
were as given by equation (28b), in the equal biaxial stress region shown by
point B in Figure 6, crazes would nucleate as rapidly as those given by the
stress state at point A, but would grow considerably less rapidly than those at
point A. Hence, in experimental observations there would be a tendency to
overestimate the crazing condition in the case of equal biaxial stress.

Finally, it is worth pointing out here that the distortional yield locus shown
in Figure 6 is truly a surface of a plastic potential for which an associated
flow rule will hold (see reference 23 for the correct interpretation of the associ-
ated flow rule for a pressure dependent yield condition). The craze locus
shown in Figure 6, on the other hand, is only a 'plastic potential' for the
minute inelastic strains associated with the craze nucleation. Once crazes have
nucleated in an initially isotropic polymer, they grow in a direction perpen-
dicular to the maximum principal tensile stress regardless of the magnitude
and sign of the other principal stresses (so long as they do not produce general
yielding together with the maximum principal tensile stress). Thus the in-
elastic strain increments resulting from craze growth will not form a set that
is normal to the locus of craze initiation. A most important corollary to this
observation is that the craze initiation locus does not outline the regions in
stress space for craze-free operation. Experiments36 show that pre-existing
crazes grow in response to a tensile stress acting across the plane of the craze,
when such a stress exceeds a certain value, and presumably independent
of the other principal stresses so long as they are algebraically smaller and
do not produce general yield. This important point, however, has not been
fully substantiated.

The stress conditions and the actual mechanisms for the growth of crazes
from nuclei formed by the process discussed above are not yet completely
understood. Initial attempts in modelling the growth of crazes as a repeated
process of craze matter production ahead of the craze has shown that this is
not likely to happen because of the insufficiency of the levels of deviatoric
shear stress and negative pressure ahead of the craze. Instead, craze matter
extension both longitudinally and transversely appears to be by the repeated
convolution of the polymer—air interface in a manner identical with that
observed in the well-known instability of a concave air—liquid meniscus
displaced in the direction of the liquid. The details of these findings will be
reported in greater detail elsewhere37.

6. EXPERIMENTAL OBSERVATIONS ON THEEFFECT OF
SURFACE STRESS CONCENTRATIONS

Nucleation of crazes from spherical particles
Wang, Matsuo and Kwei38 have performed experiments on craze initia-

tion from both spherical rubber and steel inclusions in a polystyrene matrix
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subjected to uniaxial tension. They found that the position of craze formation
occurs along the equator on rubber particles and that this is predicted by a
great variety of craze criteria. On the other hand, in the case of spherical steel
inclusions crazes appear at an angle of 37° from the point on the sphere
immediately under the tensile axis. Among all crazing criteria studied by
Wang, Matsuo and Kwei, this is predicted only by a critical tensile strain
criterion, and is, e.g., not in agreement with the generalization of the crazing
criterion of Sternstein and Ongchin35. It was pointed out by several
authors26' 39, however, that Sternstein and Ongchin's interpretation of their
so-called stress bias criterion is at best ambiguous. In contrast, the local
crazing criterion given in equation (17) has no ambiguity. When it is applied
to the findings of Wang, Matsuo and Kwei, it gives as good an agreement as
the critical tensile strain criterion.

The local deviatoric shear stress and negative pressure can be given in
terms of the distortion energy density W and the elastic dilational strain A
used by these authors as

s = (2/IWD)4 = T[W/(1 + v)]4 (29)

p = p0A/A0 = T(A/A0) (30)

where % = 2(1 + v)WD/T2 is a normalized distortion energy density,
A0 and p0 are the dilational strain and negative pressure far away from
the particle and T is the applied tensile stress at which craze initiation at the
particle interphase was observed. Substitution of s and p into equation (17)
gives

1 — (A/Y) 3J'( T\(A(O) (31)n 0 -
f(T/Y) {WD(O)/(1 + v)} 2 3Y) A

where an allowance is made for small stress concentrationsf on the interface
between the polymer and the spherical steel inclusion. Dividing by f gives

ln f0t — — ci 1 (\(4\ (32)f — —
(T/Y) {WD(O)/(1 + v) 2\Y)\\ A0)

The crazes will occur predominantly in the location 0 where the function
5 expressing the craze initiation time is minimized. Figure 7 shows the change
in the craze initiation time ö as a function of angular position 0 for the two
values of ci used in Figure 6, by making use of the angle dependent plots of %
and A/A0 given by Wang, Matsuo and Kwei. Clearly, the case for ci = 0.4gives
excellent agreement with their observations. In the computations of the curves
given in Figure 7 a yield stress Y = 5700 lb/in2 was used by taking the Young's
modulus of 1.27 x iO lb/in2 given by the authors and by taking the ratio
x/ji of the yield stress in shear to the shear modulus as 0.045 at room tempera-
ture, for polystyrene, as given by Argon40. The external stress T at which
crazes initiated at the interface was taken as 2850 lb/in2, as given by the
authors.

The results in Figure 7 show that at the minima the ratio of ci/5 =2 which
was assumed in Figure 6 is not preserved. This must be due in part to the
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Figure 7. Minimization of craze initiation time as a function of position on surface of rigid
inclusion, based on computations of Wang, Matsuo and Kwei38

inhomogeneous stress field around the spherical particle which is incorporated
in the computations of % and zl/z10, but also reflects that a fundamental
understanding for the magnitude of the pre-exponential factor / in equation
(17) is lacking.

Nucleation of crazes from surface imperfections
In a study of the kinetics of the nucleation of crazes from surfaces subjected

to states of stress with different combinations of deviatoric shear, and
negative pressure, the details of which will be reported elsewhere41, it became
clear that reproducibility of results is strongly affected by the reproducibility
of the surface roughness. As a first step in assuring reproducibility, surfaces
of carefully machined tubular specimens were given the highest degree
possible of metallographic polish with alumina powders of decreasing sizes
down to 0.1 j.tm until the surfaces became optically featureless and impossible
to focus on with a light microscope. The initiation of crazes on such surfaces
showed very large scatter. In some instances no crazes could be obtained at
all at stress levels under which the same polymer having no special surface
preparation was known to show extensive crazing. The stress could be in-
creased on such specimens to values about halfway between the normal
craze initiation stress and the macro-yield stress before fracture initiated
from an internal particulate flaw, or from the inner surface of the specimen
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U

b

Figure 9. Surface density distribution of sites with different stress concentration factors obtained
from traces such as the one shown in Figure 8

densities of crazable sites, with increase in the deviatoric shear stress, is of
a subtle origin. It will be recalled that the discussion in Section 4 on the
mechanical coupling of the porosity inhomogeneity to the elastically strained
surroundings led to a requirement, given by equation (15), that the cavita-
tional localization must take place while the local initial porosity fl <f3crjt
This requires the presence of a local concentrated negative pressure Pa that
must exceed a critical value given by

Pa > Yln flcrjt = Yln [1/{1 + (24u/Y)}] (34)

for localization to occur. Thus when the stress concentration is too small to
elevate the applied negative pressure to the critical level, no localization is
possible. Hence, for any given level of applied stress there will be a critical
magnitude for a stress concentration factor below which no localization can
occur. This critical stress concentration factor will decrease with increasing
stress. Therefore with increasing stress an increasing portion of the distribu-
tion of the surface stress concentrations becomes potentially available for
craze nucleation. As was discussed earlier in connection with Figure 3, the
required negative pressure for pore expansion decreases somewhat with
increasing deviatoric shear stress. Thus, even when the externally applied
negative pressure is held constant, an increasing deviatoric shear stress allows
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Figure 10. Increase of craze density as a function of time in specimens under different applied
deviatoric shear stresses and constant negative pressure, at room temperature. Solid curves

on basis of equations (37), (38), (40)

this constant negative pressure to expand an increasing portion of the poten-
tial crazable sites of the surface. Hence the increase in the level of asymptotic
craze density with increasing deviatoric shear stress under a constant nega-
tive pressure. We will now proceed and put this qualitative description on a
quantitative basis.

Let n'(f') be the lineal density of grooves with a stress concentration between
f' and f' + df', as is obtainable directly from a surface topographical scan
shown in Figure 8. If, as discussed above, there is an additional secondary
roughness with a wavelength of ) which tends to amplify the local stress
concentrations f' by a constant factor q, then it is possible to define a new
areal density of sites n(f) with stress concentration between f and f + df,
given by

n(f) = (1/2)n'(f) (35)

f = qf' (36)

Under a given set of normalized applied stresses i and , the cumulative
density of surface crazes which will have nucleated after a time t is then given
by

1 ('oo
N(t) =

2Jf(t)
(Ico

n'(f)df = , t)
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where f(, , t) is obtained by solving equation (28b) for f. This gives

ln/0t ç[ 4(A/Y)
1= 2 [ +

ln 0t {1 + 2/32}4]
— (38)

which is then used as the lower limit of integration in equation (37) and
gives the time dependent advance of the operational process front of craze
nucleation from right to left on the stress concentration spectrum of Figure 9.
New craze nucleation will cease when the operational process front arrives
at the cut-off stress concentration explained above for which the initial local
porosity is just flcrit given by equation (15). To find the critical cut-off stress
concentration factor, fcut off' we start with the actual 'locus' for pore expan-
sion under a local set of stresses s and p, given in Figure 3, and approximate
this by the following expression (for small fi):

(3p/2Y) in (1/fl) {1 — 9(s/Y)4}4 (39)

Substituting for fi = flcrjt and for the local s and p the functional forms given
in equations (22a) and (22b), subject to the restriction of equation (27), we
obtain a quadratic equation for f0ff in terms of the externally applied

and t. The solution of this quadratic equation gives

J cut-off —

— [/ln {l + (2/Y)}]2 ± {1 + (2ji/Y)}]4 + 36( 2/3 + ,2)2]
l8(2/3 + p2)2 (40)

Using equations (37), (38) and (40), it is possible to fit them to the experimental
data for four deviatoric shear stresses of Figure 10. This requires shifting the
centre of gravity of the spectrum of stress concentrations to f = 3.45,

choosing f = 1.75 x 106 1 and 2 15 cm. The fit obtained is satisfactory.
Some of the discrepancies shown in Figure 10 are attributable to the unavoid-
able variation of surface topography between specimens which was detect-
able from the interference line plots of the type given in Figure 8 for different
specimens.

7. CRAZE NUCLEATION FROM RUBBERY HETEROGENEiTIES
AND THE PARTICLE SIZE EFFECT OF HIGH IMPACT POLYMERS

It has been found empirically that the incorporation of a certain volume
fraction of a rubbery phase in glassy polymers eliminates their brittleness
and imparts rather attractive amounts of toughness. The actual mechanism
of this increased toughness was established only relatively recently by Bucknall
and Smith42 as being due to the production of a large number of crazes from
second-phase particles into which the rubbery phase segregates. In this
manner, by a proper choice of the second-phase particle size and spacing, it is
possible to fill the volume of the glassy polymer matrix between second-phase
particles with a large volume fraction of craze matter and thereby enable the
polymer to undergo a dilational mode of plasticity. Experience has shown that
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in order to achieve high toughness it is necessary to nucleate and develop
as many internal crazes as possible without permitting either these crazes
to transform into cracks or the second-phase particles to decohere from the
matrix. For this it has been necessary to use a high molecular weight glassy
polymer to assure craze matter stability, to graft the rubbery phase to the
matrix, and to control the particle shape and size for a given volume fraction
of second phase. Many of these details have been thoroughly discussed by
Kambour25, to which reference the reader is referred for additional detail.
We wish to concentrate here only on the effect of size of the second-phase
particles.

It has been generally appreciated that for a given volume fraction of second
phase the toughness reaches a maximum for a particle size in the range of
1—2 j.tm43. There appear to be several contributing reasons for this result.
Figure 11 shows second-phase particles in a microtomed and specially
stained section of a rubber modified polystyrene which had been subjected
to tension that had produced a large number of crazes between the particles.
As can be seen from this figure. the particles themselves are tightly filled with
occluded spherical particles of matrix polystyrene for which the rubbery
phase appears to act merely as a cement. Hence, the incorporation of a small
volume fraction J' of rubber produces a much larger volume fraction of
second-phase particle if the volume fraction Vm of matrix material in the
particle is large, i.e.

= 1'/(l —
Vm) (41)

Experience shows that although there is some variation in the size dm of
occluded matrix particles inside the second-phase particles, there is no clear
relationship between the second-phase particle sized and dm• Thus, while large
second-phase particles can contain a great number of tightly packed matrix
particles, very small second-phase particles may contain only a few matrix
particles or none at all. The stress concentration around such composite
particles depends on their effective shear modulus. Bucknall44 has computed
from Goodier's45 theory the stress concentration on the equatorial regions of
spherical particles. Since the special form of the phase distribution shown in
Figure 11 inside the particles produces only a small increase of the effective
modulus above that of rubber, which itself is only a small fraction of the glassy
polymer, there will be no significant change in the stress concentration from
that for a particle filled with rubber alone. Since the initiation of crazes depends
on the local deviatoric shear stress s and negative pressure p, and not on
any single component of tensile stress, it is necessary to compute these
stresses from Goodier's45 theory. When this is done, we find for the local
stresses s and p along the equator of the particle:

s = 1.9781 (T/,/3) (42)

p 2.1836 (T/3) (43)

where T is the applied tensile stress at a large distance from the particle, and
the terms in parentheses give the deviatoric shear stress and negative pressure,
respectively, in the distant field. Broutman and Panizza46 have investigated
by a numerical technique the interaction between particles and have shown
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calculable that additional principal stresses along the interface will be pro-
duced which are

0rr = 0rro

a00 = = O.8arr

IT

Occluded
matrix particles

filler

(45a)

(45b)

Figure 12. Touching occluded matrix particles inside a composite second-phase particle applying
additional stresses on the interface when the matrix is extended

These then combine with the previously computed (equations 42 and 43)
stresses s and p to give rise to new net stresses s' and p':

s' = 1.9646(T/,/3)
p' = 2.5054(T/3)

(46)

(47)

Comparison with the magnitudes in equations (42) and (43) shows no
change in s' but a significant increase in p'. Based on this, preferential craze
nucleation should occur on the interface in the region between two occluded
particles. Figure 11 shows a high incidence of this mode. Thus large composite
particles are considerably more effective as craze initiators than small homo-
geneous particles. For a given volume fraction of second-phase particles,
the mean distance between the particles

l=dI()
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will increase with increasing particle diameter d. Very large crazes are known
to convert into cracks when, say, their volume equals a critical value T',
where the maximum craze opening displacement reaches a critical value b.
Thus crazes nucleated from large particles of large separation tend to turn
into cracks before being re-arrested by other particles, and the polymer
tends to be brittle. In this range the strain c. to fracture is

— nV — — (4 V 49Cf —
Pd

—
2 dl2

—
2) dmd2

where is the terminal strain in the crazes and n = d/dm gives the number of
of crazes a particle could nucleate. Here the ductility decreases proportional
to the inverse square of the particle size.

When the particle size, and mean particle spacing, decrease, the crazes
will be re-arrested by other particles and will not be permitted to convert
into cracks prematurely. In this range, then, all crazes bridge across particles
and fracture occurs when their opening displacement reaches the critical
value b. The over-all strain to fracture should then reach its highest value

= Cfl 2bl2/l2d = 8 bcldm (50)

independent of particle size.
The strain to fracture will decrease again with decreasing particle size

when the particles become homogeneous at a size d dm and lose their
craze initiation efficiency. Bucknall44 has pointed out that another reason
for the loss of craze nucleation efficiency of small particles is the shrinking
size of the region of enhanced stress to the point where no pores could
nucleate in the regions of high stress.

This is a semi-quantitative account of the particle size effect in rubber-
modified polymers. Clearly, to formulate a ciuantitative theory for the optimum
particle size, it is necessary to have knowledge of the terminal dimensions
of crazes when they convert into cracks. Such information is still lacking.

8. DISCUSSION

Our discussion in the preceding sections has amplified the role of hetero-
geneities in the crazing of glassy polymers and especially their role as stress
concentrators. The importance of stress concentrations in mechanical
behaviour of materials has, of course, been recognized for a long time. There
are few instances where stress concentrations play so decisive a role as in
crazing.

First, it must be recognized that polymers are most remarkable materials.
They deform plastically by reaching their ideal shear strength, i.e. their low-
temperature yield strength in shear is one-tenth of their shear modulus40.
Even the strongest of steels falls short from such a performance level by at
least a factor of ten. This, however, makes polymers more vulnerable to
stress concentrations. Heterogeneities with relatively small differences in
mechanical properties and a molecular size level that tend to obstruct
inhomogeneous shear could produce enough stress concentration to locally
cavitate the material. Homogenizing the material at a molecular level and
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finding means for preventing strain softening that tends to make plastic
deformation inhomogeneous would suppress premature cavitation and void
formation.

Second, stress concentrations at surface grooves or at interfaces of the
polymer with particulate inclusions produce local plastic flow that not only
initiates such cavitation but also effectively concentrates negative pressure
that expands the cavities to form craze nuclei. Absence of such stress concen-
trations would bring the polymer homogeneously to yield and the insufficient
negative pressure in the homogeneous stress field would prevent craze
nucleus formation before molecular alignment altogether suppresses crazing.
These same processes are, of course, active in the very same sense in rubber-
modified polymers.

Heterogeneities in polymers are, naturally, not always detrimental.
They can often be used to compensate adverse effects of other heterogeneities.
For example, the second-phase particles in rubber modified polymers, dis-
cussed in Section 7 above, do not only initiate crazes but they also arrest
them. Alternatively, bands of inhomogeneous shear which can form micro-
cracks in a manner discussed in Section 4 or in a more macroscopic manner
by impingement on another band48 can also act as effective craze arresters49.
In fact, often it becomes possible to obtain toughness with very small rubber
particles by initiating shear bands from these particles which have become
too small to be effective craze initiators provided the polymer is of a type
that undergoes strain softening so that deformation tends to localize into
shear bands. These shear bands then interact with and stop the growth of
crazes49'

Although much of the behaviour which we have discussed can be quali-
tatively and semi-quantitatively understood, fully quantitative description
of phenomena requires a much higher level of understanding of molecular-
level deformation processes involving strain softening and strain hardening
as well as the morphology and stability of craze matter.
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A. S. ARGON

APPENDIX 1

Development of secondary stresses on interfaces of composite second-phase
particles

The radial displacements along the interface of a soft spherical inclusion,
of radius a in a stiff, elastic matrix of infinite extent, subjected to a tensile
stress T at a large distance from the inclusion is, according to Goodier45,

A 3B [15—4v\C B1U = — — - +
[i — 2vjr2

—

9_jcos2O
(A.1)

where

A — Ta3
(6_— (A.2a)

8'L \7 — 5v1j

B (A.2b);
Ta 5(1 — 2v1)

(A.2c)
8u1 (7 — 5v1) 8'L (7 — 5v1)

where 0 is the spherical altitude angle measured from the tensile direction;
' and v1 are the shear modulus and Poisson's ratio for the matrix material;
and the constants A, B, and C are evaluated for a very soft inclusion for which' 'Li•It can be shown from Goodier's solution that the average radial inter-
facial traction on the soft, homogeneous inclusion is of a smaller order than
the two tangential stresses on the side of the matrix at 0 = ir/2.

If the occluded matrix particles inside the composite particle are tightly
enough packed to form a bridge across the heterogeneity, then the radial
displacements in equation (A.1) will be prevented by local indentations as
sketched in Figure 12. Such indentations then produce additional radial
tractions which can be computed from the Hertz theory of contact between
two spherical objects47.

The indentation of an internal spherical surface of radius d/2 by a smaller
sphere of radius dm12 is, from this theory,

= 1.23 ((2P2/E2) (d — dm)Iddm) (A.3)

Equating c to Ur we find the indentation force P

= (0.0339)4ui (d)2 {()3 [(did) — 1]}
(A.4)

where the constants A, B, C were evaluated for v1 =0.3 and substituted
into equation (A.1), setting 0 = ir/2, r = d/2.

Considering the indentation forces to be distributed as a sinusoidally
varying traction of a wavelength dm and having compensating regions of
negative pressure so as not to violate the condition of negligible average
radial traction, one computes the peak local radial traction to be

a — T00339J('I\ (dldm)4
(A 5)—

2 (dldm — 1)J
which is the form given in equation (44) of the text.
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