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ABSTRACT
A few of the problems associated with UPS of medium-sized organic mole-
cules are discussed (UPS = ultra-violet photoelectron spectroscopy). Attention
is drawn to some of the pitfalls which occur, if the widely used independent
electron' or the semi-empirical treatments2 are taken at face value and applied

without due caution.

I. The primary process investigated in UPS is the photoejection of an
electron from a singlet ground state molecule M, to generate a radical
cation M + in a doublet state 2,:

M(0) + liv —* M(2 ± e (1)

If the states ' and are written as

1,/, (2)
and

(3)

(cI(P PNN
and q. being the SCF canonical molecular orbitals (CMO of M(10)

and respectively, then the ionization energy 1 associated with
band j in the PE spectrum of M is

= — [M('0)] (4

For medium-sized molecules the numerical expenditure necessary for
calculating equations (3 and (4 for each j is rather formidable, even with
modern computing facilities. Therefore, almost all interpretations of PE
spectra use the approximation q ? (Koopmans's approximation3). If
this simplification is introduced into equation (3), it is found that

lj=_j (5)

where is the orbital energy of the CMO p (Koopmans's theorem). This
approximation neglects electron reorganization and changes of correlation
in M(2. Experience has shown that for molecules from first- and second-
row elements the results obtained according to equation (5) are respectable,
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especially if they are scaled empirically, i.e.

IA+B8 (6)

with (in general) A 0, B + —1. However, significant failures are sometimes
encountered4 which can be rationalized in terms of differences in charge
redistribution depending on the state 2iT, of M +

The main objection to the way in which Koopmans's approximation is
often interpreted concerns the assumption that the 'observed' orbital
energies = — 1 from equations (5) or (6) and the CMOs associated
with them yield a 'true' description (3) of M(1*0). There is, however, a great
ambiguity of SCF orbitals. A unitary transformation

U°=4' (7)

of the set fr° ofCMOs will yield a different set ' without any change in the
expectation values for true observables. In particular, the transformation

L°=.). (8)

yields localized molecular orbitals (LMO) according to a preselected
localization criterion: e.g. reference 6. In contrast, equations (5) and (6) are
no longer applicable to a description of M(1*0) in terms of 4/or A.

II. Semi-empirical procedures are usually calibrated to fit a particular
property, e.g. CNDO/2 to reproduce ab initio results7, MINDO/2 to yield
enthalpies of formation8 or SPINDO to predict PE band positions9. To
compare the different models in a chemically and heuristically useful way,
one first transforms the set 4,° of CMOs into LMOs A (cf. equation 8). The
matrix elements F, of the transformed Hartree—Fock (HF) matrix

LFLt show a high degree of transferability from compound to com-
pound, and their configurational and conformational dependence is similar
within a given semi-empirical model. In contrast, the absolute values of the
F, jj differ considerably from one theoretical procedure to another1 .

To take advantage of symmetry, the LMOs ,1 are transformed into
symmetry-adapted (semi-) localized molecular orbitals (SLMO) p:

RA=p (9
The resulting matrix elements of the blocked-out HF matrix F =
RFR show that the models disagree with regard to the relative values of
it—it, a—it, n—it and n—s interactions, which leads to completely different
interpretations of a given PE spectrum in terms of traditional electronic
'effects'10. This result points to the danger of assigning PE spectra on the
basis of a single preselected model, which may well be inadequate for dealing
with a given type of interaction. In this context it should be emphasized that
what is usually called an assignment depends both on the observed spectrum
and to a large degree on the assumed model. As a consequence, UPS cannot
yield answers to questions which depend heavily on the choice of a hypo-
thetical reference system, e.g. questions concerning 'aromaticity'.

IlL The discussion of PE spectra of organic compounds in terms of
'through-space' and 'through-bond' interactions has become very popular
(e.g. reference 12). A typical example is provided by the analysis of the PE
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spectrum of 1,5-cyclooctadiyne13. To integrate the above concepts into a
many-electron SCF model it is proposed to characterize the 'through-space'
interaction between two (symmetry-related) LMOs , and by comparing
the diagonal elements F and F of the HF matrix F with the diagonal
elements FP,kk, F,11 of the HF matrix F based on the SLMOs p,, Pi which
have been derived from 2, 2 according to equation (9. As an example we
choose norbornadiene, in which = it and )L = itb are the LMOs of
maximum ir character. Transformation (91 yields Pk = (ira + it/j2 and
Pi = (ita — 1r/\/2. For symmetry reasons we have the degeneracy F =
F, = A, i.e. the basis energy of the LMO ira and it,,. The matrix elements
F, kk and lie, respectively, below and above A, (by equal absolute
amounts). The difference F,11 — FPkk measures the 'through-space' inter-
action between ira and it,,.

An estimate of the 'through-bond' coupling between two LMOs 1 is
obtained by the following procedure14: removal of the SLMOs Ik Pi from
the set p and diagonalization of the remaining F, HF matrix of order N — 2
yields a set fr of 'precanonical' orbitals The matrix elements F,Jk and
F, ji between the precanonical orbitals t/i and the SLMOs Pk' Pi measure
the 'through-bond' interaction. This procedure has been discussed in detail
for norbornadienet4. Again it can be shown that different semi-empirical
methods used to calculate the CMOs P? differ considerably in their assess-
ment of the factors which are relevant for the observed pattern of a particular
PE spectrum.

IV. For the description of electronically excited states of M, i.e. M(1*)
orM(3, one has to rely on configuration interaction treatments1 5, although
simple orbital diagrams suggest that

Is_li = E(j,k) — E(i,k) (10)

where E(j, k) and E(i, k) are the one-electron excitation energies for the
promotion of an electron from the CMOs q, to the same virtual CMO
p. However, it follows from the well-known matrix elements of the Hamil-
tonian for the ground and singly excited states of M15 that

'E(j, k) — 'E(i, k) = — 1 + J1 — jk + 2(KJk — Kk (11)

For the transition to triplet states the last bracket of equation (11) vanishes.
Depending on the relative size of the Coulomb and exchange integrals in
equation (11), the separation 1 — I between PE bands j and i, may be
smaller'6, equal to 17 or larger18 than the difference between the corres-
ponding excitation energies 1E(i, k) — 'E(i, k in the electronic spectrum of
M.

V. To conclude, attention is drawn to the fact that the analytical potenti-
alities of UPS are poor19 despite some isolated instances where UPS has
contributed towards establishing the structure of an unknown.
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