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ABSTRACT
Fourier Transform spectrometry has been applied to nuclear quadrupole
resonance (NQR). This increases the sensitivity and avoids the creation of
side-bands produced by the usual superregenerative spectrometer. It provides
also the possibility of determining the true spectral line-width and studying

the fine structure of NQR spectral lines.

INTRODUCTION

The equivalence, under certain conditions, of the Fourier Transform of
the free induction decay (FTFID) of nuclear magnetization and the corre-
sponding slow-passage line-shape in nuclear magnetic resonance is now
well-established1'2 and forms the basis of commercial high-resolution NMR
spectrometers. In this context the main advantage resides in the improvement
in sensitivity brought about by the FTFID technique. With certain modifica-
tions the theory of free induction decay of quadrupole resonance closely
follows that of nuclear magnetic resonance3'4 and the same relationship
obtains between the Fourier Transform of decay and the line-shape. In the
context of NQR the gain in signal/noise ratio that this technique could bring
about is perhaps of secondary importance. since it is by no means easy to search
for an unknown resonance with a pulse spectrometer. In certain circumstances,
for example, Zeeman studies of single crystals or powders where the operating
frequency remain fixed, this aspect would, however, become significant.
More important is the fact that the most commonly used and most sensitive
spectrometer used for the detection of NQR is a superregenerative oscillator
which considerably distorts the line-shape as well as introducing side-bands
separated from the central line by integral multiples of the quench frequency.
Even regenerative or crossed-coil spectrometers suffer from modulation
broadening which obscures fine structure in the line-shape. Such fine struc-
ture can be expected to arise from direct or indirect spin—spin coupling or
from isotope effects and have hitherto only been observed in the rare cases
where such splittings exceed several kHz.
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THEORY

The main difference between the free induction decay of a pure quadrupole
system present in a polycrystalline sample and that of a similar spin system
in nuclear magnetic resonance lies in the fact that the length of the pulse, t,
producing a maximum amplitude of the free induction decay is no longer
given by the expression H1t t/2, but by an analogous expression,
xH1t = ir/2, where the factor x depends on the nuclear spin. For example.
for I , = 0, x has the value 1.774. The value of x is different for a single
crystal from that for a powder and also depends on the value of . Apart
from this factor, which only affects the optimum instrumental conditions,
the Fourier Transform relationship between the line-shape and the free
induction decay is identical with that obtaining in NMR5 and the exactitude
of the relationship is subject to the same conditions in the two cases. The
most important of these is t <l/4A, where LI is the width of the spectrum.
The majority of pure quadrupole resonance lines have widths of not more
than 10 kHz—which implies t 20 ts--but in some cases much greater
widths do occur and very high r.f. fields become necessary if t is to be kept
to a satisfactory level.

The Fourier Transform procedure is of course normally applied to an
accumulation of free induction decays and an important factor is the maxi-
mum pulse repetition rate. This is essentially governed by the spin—lattice
relaxation time, T1, and 7, the interval between successive scans, should be
approximately T 5T1. With the exception of 14N compounds, quadrupole
spin lattice relaxation times at temperatures down to 77 K are seldom
greater than 1 s and usually very much less, and quite high repetition rates
are possible. Should the length of T1 become a problem, this difficulty can be
overcome by reducing t below the optimum2.

Another factor influencing the repetition rate is the resolving power. It
can be shown6 that the relationship between the smallest frequency which
can be resolved, Vmjfl, and the pulse interval is 'min = 0.6/7. Pure quadrupole
resonance lines are usually of the order of 1 kHz in width, but it is conceivable
that it might be desirable to resolve fine structure of the order of 100 Hz.
Even this, however, implies a pulse interval of 100 ms, which will usually
be much less than that imposed by considerations of T1.

There are thus so far two major differences between NQR and NMR in
this context, both brought about by the larger line-widths and shorter
relaxation times of the quadrupolar systems. The advantages in a higher
allowable repetition rate that these allow are of course off-set by the higher
radiofrequency powers which are necessary in NQR if the pulse-width, t,
is not to be excessively long.

If the above conditions are all satisfied, the remaining problem is to carry
out the Fourier Transform operation on the accumulated free induction
decay, f(t):

F(w) = J f(t) exp ( iwt) dt

= f(t) cos wt dt — i f(t) sin Cot = F(w) iF(w)
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The solution to the problem of performing the Fourier Transform on mini-
computers is now well established and the Cooley-Tukey Fast Fourier
Transform algorithm7 produces the separate cosine and sine transforms
corresponding to the absorption and dispersion spectra-respectively,
within a minute or so. It should be noted, however, that whereas the integra-
tion in equation (1) goes from c to —x, we are operating in real time and
can only go forwards. As it stands, therefore, one would only obtain one
half of the absorption or dispersion curve if the operation mode was as
above. The solution is to artificially shift the frequency origin by setting the
operating frequency, v', slightly higher or lower than the resonance frequency,
v0. The free induction decay is then modulated by the difference frequency,
w/2n = (v' —

,f(t) = g(t cos 2it(v' — v0) (2)

The Fourier Transform of this is then centred about (V — v0) and both
halves of the spectra can be obtained provided (v' — v0) > 3Av. This,
however, results in a folding of the spectrum (Figure 1), since it is immaterial
whether v' be higher or lower than v0 (see Appendix). Any doubt as to this
can of course be eliminated by repeating the measurement at a slightly
different frequency.

B 5OkH

27.589 27. 669 27.717 27 798 27 867

1 (MHz)

Figure 1. Folding of the spectra in 35C1 NQR spectrum of (PNC12)3 (ioom temperatures).

The question of frequency offset introduces an instrumental problem in
NQR, whereas in high-resolution NMR the whole frequency range, even
for polyelectronic nuclei, usually extends over only 10—20 kHz, it is quite
common in NQR to have a spectrum spread over several MHz. There are
two factors which prevent the simultaneous presentation of such a spectrum.
The first is that of course all the frequencies in the spectral range must be
amplified and detected by the spectrometer receiver, which normally has
only a restricted band-pass. This is commonly a few hundred kHz. The second
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arises from the finite number of data points which accommodate each free
induction decay. If At is the dwell-time per channel, the total frequency
domain is 1/2At Hz8. Thus for a dwell-time of 1 ps---the lowest we have used
in this study—the total frequency domain is 500 kHz. Both these considera-
tions therefore show that the spectrum can only be displayed in intervals
of a few hundred kHz at a time. The total spectrum must therefore be recon-
stituted section by section, but of course in most cases the line positions will
have been obtained by a conventional spectrometer and the Fourier Trans-
form method applied just in the region of the known resonances.

A further problem with the Fourier Transform method arises from the
phase shift which is introduced by a variety of instrumental factors. There
are two main sources of this. The first arises from delays introduced by the
various filters in and after the phase-sensitive detector and is essentially
constant at least over the 500 kHz or so of a spectrum. The second arises
mainly from the amplitude of the pulse, H1, being insufficiently great. This
phase shift is frequency-dependent over the displayed spectrum. The conse-
quence of these phase shifts is of course that the real and imaginary parts of
the Fourier Transform are now mixtures of absorption and dispersion
signals.

Two methods may be forseen in the FFT programme for overcoming
these phase shifts. In the first the phase shifts-- -one constant and the other
linearly frequency-dependent----can be applied by the operator after inspec-
tion of the transformed spectrum, and the process is repeated until pure
absorption and dispersion signals are obtained. This procedure is very
appropriate for NMR, where the operating frequency is constant and once
the phase-shifts have been determined they remain constant and may be
automatically applied thereafter. For NQR, however, they will vary from
nucleus to nucleus, from frequency to frequency and from compound to
compound. The correction process must thus be applied manually each time.
The second method is to compute the modulus (power spectrum), i.e.

Fm(W) = {F(w + F(w}
which is independent of phase shifts (see Appendix). This method has the
disadvantage of broadening the line, as is shown in Figure 2 for a Lorentzian
line-shape, but has the advantage of rapidity for routine measurements.
Surprisingly enough, although the lines are broadened, the resolution of
two overlapping lines is if anything improved, since the calculation of the
modulus increases the separation between the two maxima of the composite
line. This is illustrated in Figure 2 for a theoretically constructed pair of
Lorentzian lines with gradually increasing separation and in Figure 3 for
an experimental wide-line NMR spectrum where both absorption and power
spectra are obtained.

The Lorentzian spectral line in the modulus representation Fm(W) is
modified in the following manner:

= T/(1 + w2T)2 ± w2T/(l ± o2T)2 = T/(l + w2T)

We can see that the Lorentzian spectral line in the modulus representation
is proportional to the square root of the absorption, F(w.

202



NUCLEAR QUADRUPOLE RESONANCE BY FOURIER TRANSFORM

Abs Mod.

(a)

(b)

(c)

(d)

Figure 2. Computer-simulated two-line Lorentzian spectrum in the absorption, dispersion and
modulus (M2 = A2 ± D2) representations. The splitting A of the spectrum is variable and the

line width 2/T2 is constant: (a) A = 0; (b) A 1/T2; (c) A = 2/1;; (d) A = 5/T2

Figure 3. Comparison of an FT-NMR spectrum of MBBA liquid crystal (nematic phase) in the
modulus (A) and absorption (B) representations

EXPERIMENTAL

The pulse spectrometer, forming the basis of the present equipment, is
the Bruker 323-s spectrometer, operating from 4 to 60 MHz. The only
modification has been to the probe unit, which was designed for insertion
in a magnet pole gap and in which the sample could not be cooled below
100 K. The probe used here (Figure was based on the bridge circuit
employed by Jeffrey and Armstrong9. The maximum r.f. field-atom dis-
position was sufficient to produce a '90° pulse' for 35Cl nuclei in a sample
volume of 1.5 cm3 in a time of 10 .ts at a frequency in the neighbourhood of
30 MHz.
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Figure 4. Probe used for FT-NQR measurements at low temperatures

Temperature control is very important in pulsed NQR spectrometry,
owing to the temperature dependence of the resonance frequency. Typical
temperature coefficients of 35Cl resonances are 1—5 kHz deg , and since
a line of 1 kHz width will usually be accumulated for 5 mm, the temperature
should not vary by more than about 0.1 °C over this period. Most measure-
ments reported here have been carried out at 77 K, with the sample assembly
plunged directly into liquid nitrogen. At room temperature satisfactory
temperature stability may be achieved by placing the coil assembly in an
empty Dewar vessel and allowing the system to come to equilibrium with the
pulse input, a by no means unimportant source of heat.

The output from the receiver is monitored by an oscilloscope and sampled,
digitalized and averaged by a Nicolet 1074/4K signal averager, equipped
with a high-speed digitizer (SD 77) and sweep control unit (SW 77). The
minimum dwell-time per channel is 1 p.s. This combination is not entirely
satisfactory for three reasons: in the first place, the minimum dwell-time is
still a little long for many purposes; in the second, the SD 77 digitizer has
only 4-bit conversion; and finally, the SD 77 uses half the 4K memory of
the signal averager as a buffer store and only averages over 2K points. The
Nicolet 1074 is interfaced with a PDP 8/L 4K computer and the Fourier
Transform is calculated by use of the Cooley—Tukey algorithm7. In the
'Computer Control' mode the 4K memory of the Nicolet 1074 is available
to the PDP 8/L, so that the combined system has an effective 8K capacity.
After transformation the spectrum is returned to the store of the Nicolet 1074.
where it may be viewed on an oscilloscope or read out on a chart recorder.

Of particular utility is the 'Numerical Display' accessory of the Nicolet
1074, which presents digitally the contents of any selected channel. This
makes location of peak maxima, measurements of line-widths, etc., particu-
larly easy and free from operator errors.
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RESULTS
The spectra presented here have all been measured at 77K. unless otherwise

stated, and the figures show the power spectra.
Although, as indicated previously, increased sensitivity is not the primary

aim of Fourier Transform NQR spectrometry, it is of interest to ensure that
this aspect is, at least qualitatively, achieved. Figure 5(a) shows a 35C1
spectrum measured on a Decca superregenerative spectrometer with a total
scan time of 5 mm and a time constant of 3 s. while Figure 5(b) shows the
spectrum of the identical sample accumulated for 5 mm. We have made

Figure 5. The 35C1 NQR spectra of 2,2,6,6-tetrachloro-tricyclo(5, 10,06 7) octane at 35.892 MHz
(room temperatures). (a) cw-spectrum. (b) FT spectrum

no attempt to investigate the sensitivity enhancement quantitatively and
systematically, but qualitatively there is no doubt as to the much improved
signal/noise ratio. It should be stressed, however, that the sweep rate on the
superregenerative spectrometer corresponds to approximately 4 M Hz/h,
whereas, although a similar sweep rate could no doubt be achieved on the
pulse spectrometer, it would necessitate the continuous presence of an
operator. It should, however, be possible to eliminate his presence, although
the effort required to do so would be by no means trivial. Figure 6 shows

F igure 6. 35C1 FT-NQR spectrum of the cyanuryichioride (room temperatures). at 36.290 MHz
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another example, this time of a spectrum with lines which, according to the
crystal structure, should be in a 2 :1 intensity ratio. An example of a four-
line spectrum- -of (PNCI2)3- is shown of course in Figure 1, where it was
used to illustrate the 'folding' phenomenon. It also illustrates a problem
concerning intensity measurement. Because of the band-pass characteristics
of the receiver and the power spectrum of the exciting pulse, resonances
further and further removed from the exciting frequency are progressively
attenuated. The crystal structure of (PNC12)3, combined with single-crystal
Zeeman studies, show that lines A and D arise from pairs of equivalent
chlorine atoms, whereas B and C arise from single chlorine atoms. The
integrated intensities of A and D should thus be twice as great as those of
B and C, but this is clearly not the case. Accurate relative intensities of line
close enough to be observed in the same measurements can, however, be
obtained by the following device. The spectrum of two lines, frequency VA
and VB. is observed at an exciting frequency -(vA + vB) + (5. where (5 is a
fraction of the frequency difference, VA — V. The integrated intensities are
measured as 1 and I. The spectrum is again measured at +(vA + v) — (5to
yield intensities l, I'. Provided that the band-pass function of the receiver
is symmetric, the true relative intensities are given by IA/JB:

= (Ik/I.1;:/l (4)

The following spectra are devoted to illustrating the question of fine
structure in NQR lines. One of the earliest observed examples of this, the
35C1 resonance in BC13, shows two lines of unequal intensity separated by
4.15 kHz. It is now fairly certain that this is due to an isotope effect, the mole-
cules '°BC13 (18.8 %) and 1 1BC13 (81.2%) having slightly different frequencies,
although the possibility that it arose from spin—spin coupling was also
considered. Figure 7 shows the FT 35Cl spectrum of boron trichioride. The
main doublet is clearly marked, but more interesting is the much narrower

Figure 7. 35C1 FT-NQR spectrum of BC!3 at 21.535 MHz

and just-resolved dOublet structure of the more intense peak. It would
seem very likely that this structure arises from direct or indirect B—35C1
spin—spin coupling. The fact that it is not visible on the less intense peak—
which we suppose to be due to '°BC13———is a natural consequence of the
relative magnetic moments and spins of' 1B and '°B (1 'B: I = 3/2, p 2.6880
nuclear magnetons; lOB: I = 3, p = 1.8005 nuclear magnetons).
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Figure 8. Presence of a shoulder in an FTNQR spectral line of (PNCl2) at 28.585 MFIz.

Figure 8 shows one of the lines of (PNC12)4 showing a very pronounced
asymmetry. A more marked shoulder is seen in one of three lines of Au2C161°
In both these cases the source of the underlying structure could be either
isotope effects or spin—spin coupling.

The final example of fine structure is shown in Figure 9, which illustrates
the Zeeman effect in the NQR spectrum of p-dichlorobenzene. The small
external magnetic field perpendicular to the sample coil axis removes the
degeneracy of the NQR transition and the original one spectral line is split
into four components.

D

C

B

Figure 9. Line shape of the 35C1 resonance of a polycrystalline paradichlorobenzene in the
presence of a magnetic field parallel to the coil axis; (A) no external magnetic field; (B-D)

gradually increasing field

CONCLUSIONS
In conclusion, the application of the Fourier Transform to the NQR free

induction decay has produced the expected gain in sensitivity and reveals some
details of fine structure, not observable by other means.
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APPENDIX: GENERAL EXPRESSION FOR THE MODULUS
MODE

The free induction decay for n spectral lines is given by the superposition
of n individual interferograms:

f(t) = g(t cos (2myt + (Al)

where g(tj = T decay of the ith spectral line; y = Vhf
—

V1 (v is the reson-
ance frequency of the ith spectral line); and '/ = frequency-dependent phase
shift of the ith interferogram.

The real part of the Fourier Transform of f(t is given by:

F(v) = J g (t) cos (2ity1t + 4) cos 2itvt dt
i=1 0

= [cos 1{A1(v + y + A(v — yj} — sin 1{D1(v + y —D(v y)}] (A2)

where

A(v) = g(t) cos 2itvt dt (absorption mode)

D(v) = g(t) sin 2itvt dt (dispersion mode)

Equation (A2) shows two important properties of FR(v). (1) The phase
shift 4 causes the mixing of absorption and dispersion modes. (2) Any
absorption or dispersion line consists of two equivalent components, shifted
from the v frequency by ± y. This is the 'mirror phenomenon' as stated
in the main text and presented in Figure 1.

The similar expression may be developed for the imaginary part of the
Fourier Transform. F1(v).

For the further development of the expression for the modulus mode,
FM(v), we neglect the interference between the 'mirror' components and
develop the functions of (v — y) only. The final expression is:

F(v) = [A( —) + D(

+ [A(—)A(—)cos41cos4 + D1(—)D(--)sin41sinq1i=1 j=2
i<j

— A1( —) D3(—) cos 4 sin 4 — D1( —) A( —) sin q cos
+ D( —) D3( —) cos çb cos çb + A1( —) A3(—) sin 4 sin 4

+ D1( —) A3( —) cos j sin 4. + A1( —) D( —) sin 4cos 4] (A3)

where A1( —) is the simplified notation for A(v — y).
The analysis of equation (A3) shows that the modulus mode eliminates

the absorption and dispersion modes mixing in two cases:
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(1) The interference between the individual spectral lines may sometimes
be neglected (particularly in NQR); in this case all cross-terms in equation
(A3) vanish and F(v) is given thus:

F(v) = [A( —) + D( —)] (A4)

(2) The spectral lines are near to one another and the phase angles may be
considered to be frequency-independent (4 = 4)):

F(v) [A(-) + D(-)]

+ [A1(—)A3(—) + D1(—)D(--)] (A5)
i=1 j=2

1<j

In this case the phase angles 4) and the absorption—dispersion cross-terms
are eliminated, but the absorption—absorption and dispersion—dispersion
cross-terms remain. The latter are for the most part responsible for increase
of resolution', as has been shown in Figures 2 and 3.
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