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ABSTRACT
Some aspects of behaviour of spins in the presence of random molecular
motions are discussed. Various theories which deal with the approach of the
spin system to thermal equilibrium are reviewed. It is emphasized that two
types of description are used. One is the 'p(t) formalism', where the spin
behaviour of one randomly moving molecule is considered. The other is the
'(Q) formalism', where the average behaviour of all the spins which are
momentarily in the same environment is described. The conventional relaxa-
tion theories make use of the p(t) formalism, whereas the stochastic Liouville
method for line shape calculations uses the (Q) formalism. In the first type
the approach to equilibrium has been dealt with for a long time. In the second
type the approach to the thermal equilibrium state of 15(Q) was formulated
only recently in the form of the modified stochastic Liouville equation. It is
pointed out that this equation has important implications for both line shape

calculations and for relaxation theory.

I. SEMI-CLASSICAL THEORY

A. The density matrix p(Q)
This paper deals with spins which are in random motion. The simplest

example of such a type of motion is that of spins which jump back and
forth among a number of sites with different chemical or magnetic environ-
ment. We label the sites with the numbers v = 1, 2,. . . , n and define the
distribution vector p(t) as the vector of the probabilities of finding spins
in the sites v at the time t. Another example is the case of translational motion.
The position of a spin is then characterized by the spatial coordinate and the
distribution function is p(?, . The case of rotatory motion of molecules
is very common. The orientation of the molecules is then defined by the
Eulerian angles, Q. We shall treat all these cases in one formalism and choose
Q as the notation of the random coordinate. Thus the function p(Q, t) will
denote the probability density of finding spins in the environment character-
ized by a particular Q. We shall sometimes call this parameter 'position' or
'orientation', but this should be considered as a general term which also
stands for 'site', 'conformation', etc.

To begin with, let us assume that the spins can satisfactorily be described
in terms of elementary magnets , which can differ in direction but not in
magnitude rn. The state of the whole spin system is then given by the com-
bined probability density P(Q, m), which we take to be normalized:
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S 5P() dQ diii = 1 (1)

From this function we can extract the following quantities: the molecular
distribution function:

p(Q) $ P(Q, iii) dñi (2)

the distribution function of the magnetization:

f(iii) 5 P(Q. hi)dQ (3)

the average magnetic moment:
= $$niP(Q,ii)dQdi (4)

the macroscopic magnetization of the sample:

M0 = N<ii>0 (5)

where N is the total number of spins per unit volume; and finally the quanti-
ties

<n (Q)> = 5 rnP(Q, iii) dth (6)

and
= N<iii(Q)> (7)

which may be called the Q-dependent magnetization density.
These last two quantities have the following physical meaning. Suppose

that we could measure separately the total magnetization of the molecules
which have their orientations between Q and £2 + dQ. Our measurement
would then yield M(Q) dQ. Or suppose that we could measure the total
magnetization of the sample, but with an £2-dependent weight w(Q). We
would then measure $ w(Q)M(Q) dQ.

We can define <ni(Q)> in a slightly different way by writing

P(Q, ni) = p(Q)q(Q, hi) (8)

where q(Q, hi) is the normalized probability density of finding the magnetic
moment at the value hi, provided that we know that the molecule is in £2.
We then have

= p(Q) $ hiq(Q, hi) dhi (9)

This notation emphasizes that (hi(Q)> is the average magnetic moment of
the molecules with orientation £2, multiplied by the probability of finding
the molecules in £2. Thus (hi(Q)) contains information on the internal
magnetic state of the molecules and on the molecular distribution in £2-space.
It is important to appreciate this point when the theory is applied to systems
where p(Q) is not a uniform function, as is the case with chemical exchange
between unequally populated sites, or with partially oriented molcules.

Needless to say, in the case of jumps the parameter £2 is replaced by an
index v and the integrations over £2 become summations.

Let us now consider molecular spin systems which are not adequately
represented by a single magnetic moment hi. The state of the spins has then
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to be described quantum mechanically by the wave function lt or the
density matrix p. As for the density matrix, we should distinguish between p
of each separate spin system (whose matrix elements Pnm are the products
aa of the coefficients in the expansion of ) and its ensemble average,
which we denote by 2 If the spin system consists of a single spin I =
there is a one-to-one correspondence between ñ and p, and between <iii>
and . However, if the spin system has more than two levels, this com-
parison cannot always be made. Nevertheless it is often convenient to
visualize the behaviour of complicated spin systems through a model of
magnetizations. Here we start to utilize this analogy and assume a com-
bined probability density P(p, Q)4, from which we derive the distribution
function of the density matrices,

1(p) = S P(Q, p) dQ (10)

The functions f and P are defined in the space of all the possible density
matrices p. This space is restricted to ps with matrix elements which are pro-
ducts of a and a taken from normalized sets of coefficients a . These are the
matrices which satisfy the conditions of so-called pure states'. Note that the
space of ñz was also restricted to vectors with a constant modulus m

The determination of the functions P(Q, p) and f(p) is very difficult.
However, it will turn out that we do not need an exact knowledge of their
functional form, and we shall not attempt to evaluate them.

In Section II we shall adopt a complete quantum mechanical description
of the whole system. This will mean that we do not need distribution functions
but can work with a density matrix which is an ensemble average from the
beginning.

We now come to the main subject of this introduction. We define what we.
somewhat unexactly, call the Q-dependent spin density matrix

p3(Q) = 5 pP(Q, p) dp (ii)
which is the analogon. of <z()>. It may be used to compute the ensemble
average of the expectation value of any physical quantity Q(Q). which also
depends on Q,

= 5 tr [pQ(Q)]P(Q, p) dQ dp
= 5 tr [5(Q) Q(Q)] dQ (12)

In most experiments performed on the spin system we measure a property
Q which is independent of Q. It is then sufficient to know in order to calcu-
late

= tr Q0; = 5(Q) dp
By analogy with equation (9) we can also write

(Q) = p(Q) 5 pq(Q, p) dp = p(Q) (13)

which emphasizes that (Q) is the product of the local ensemble average
and the probability of finding molecules in Q.
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B. The density matrix p(t)
Thus far we have only considered the instantaneous description of the

system of molecules and spins. However, we are actually interested in the
dynamics of the system. We assume that the interactions of the spins are
describable by an Q-dependent spin Hamiltonian '(Q), i.e. a Hamiltonian
which is different for spins belonging to molecules with different positions.
How, then, does P(Q, p, t) develop in time if the molecules are moving ran-
domly in Q-space?

The relaxation theories of Bloembergen, Purcell and Pound5, Wangness
and Bloch6, Bloch 7,8 and Redfield9' give a partial answer to this question,
in that they provide an equation of motion of the average ' (or (>0). This
is the so-called master equation of the density matrix' 1, which is valid under
conditions of sufficiently rapid molecular motions.

The usual semi-classical derivation of the master question makes use of the
the following concepts". One starts to look at one particular spin system
in the ensemble. Since this system belongs to a molecule which moves
rapidly from one Q to the other, a time-dependent Hamiltonian '(t) is
observed by the spins. *'(t) is now written as the sum of a constant
and a time-dependent local Hamiltonian *'(t) with vanishing time average.
The density matrix of the spin system in question changes according to this
Harniltonian:

(d/dt)p(t) [p(t), *0] + [p(t), '(t)] (14)

This equation is first solved by following a perturbation treatment, and then
the ensemble average is taken. This yields the master equation. An essential
point in the averaging procedure is that the correlation between p(t) and
'(t) is neglected. This is only permissible if the correlation times 'r of the
matrix elements of "(t are so short that

h (15)

It is important to stress the difference between the density matrices p(t)
and (Q). p(t) is a pure state' and 1(Q) is an ensemble average. They yield
the same average upon suitable averaging, but they are not interconvert-
able: since the correlation with Q is abandoned in the p(t) formalism, p(t)
can give no information on the distribution of ps in Q-space; and since the
microscopic dynamics is not involved in o(Q), this quantity can given no
information on the individual behaviour of single molecules.

A well-known difficulty related to the master equation is that its steady
state solution implies an infinite spin temperature". Thus the present
theory does not account for the approach to thermal equilibrium. This
problem can be overcome by the ad hoc assumption that should be
replaced by — , where is the Boltzmann density matrix'1.

Let us now consiler the analogon of equation (14) in the magnetization
picture:

(d/dt)ñi(t) = yñi(t) x + fr(t)] (16)

where fi is a constant field and H'(t) is a randomly fluctuating field. Under
certain conditions (one of them being fast motion). yH')-r 1) it is possible
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to derive from this equation a Fokker—Planck equation for the density
function f(i, t)'2. Upon averaging, this yields rate equations for the com-
ponents of the macroscopic magnetization M, which can be considered as
the magnetic analogon of the master equation. These equations of motion
are identical with the Bloch equations, the only difference being that the term
— 110/7j is missing, similar to the lack of in the master equation.

The interesting aspect of equation (16) is that it can be modified to account
for the term —A0/T1: equation (16) looks like the Langevin equation inthe
classical theory of Brownian motion,

mü(t) = — flu + F(t) (17)

where F(t) is a random force and —flu is the friction. Kubo'2 proposed the
addition of a friction force to equation (16), and wrote

(d/dt)h(t) = yii(t) x (i + fr(t)) — jii x (h x i) (18)

where the friction force is of the Landau—Lifschitz type1 3 A friction of the
form —finz might seem more obvious'4, but cannot be correct, because
m should remain constant. The value of the friction coefficient j is assumed

to be related to the random field in a way similar to the Einstein relation
between fi and F(t). In the limit of extremely fast motion (y H0 ,y H' 1/'r)
this leads to the complete Bloch equations.

This treatment is perhaps the most elementary justification of the ad hoc
corrections of the master equation. It has a purely phenomenological
character, since no microscopic justification is given for the friction force.
But even when the friction term is taken for granted, it is impossible to deal
with a finite correlation time r' 2 The development of a Brownian motion
theory on the basis of equation (18) is very difficult, owing to the non-linearity
of this equation'5. The problem becomes even more complicated if one
tries to solve the quantum mechanical analogon for p(t).

C. The stochastic Liouville equation
Equation (14) is a stochastic equation which defines the stochastic process

p(t) in terms of the stochastic process *'(t). More precisely, by writing

(d/dt)p(t) = [p(t), + '{Q(t)}] (19)

we see that the process p(t) actually depends on the stochastic process Q(t).
In most problems dealt with in magnetic resonance theory some model is
assumed for the description of the stochastic process Q(t). In nearly all cases
this is a stationary Markoffian process. It is then assumed that the prob-
ability density p(Q, t) satisfies the equation

(/t)p(Q, t) = Fp(Q, t) (20)

where F is a time-independent Markoffian operator, operating on functions
of Q. More generally, Q(t) is the projection of a Markoffian process, i.e. Q
should be supplemented with additional variables to form a complete set
of random variables which make a Markoffian process. In order to retain
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a simple notation we assume that Q itself is a Markoffian process. Equation
(20) fits well in the formalism of Section A but it can be less directly applied
to further development of equation (14). Thus we follow Kubo's development4
and write formally for the rate equation of P(Q, p, t)

P(Q, , t)
{

— [p, (Q)] + F} P(Q, , t) (21)

This can be regarded as a composite Markoffian process. It is a coarse-
grained description of the complete Liouville equation of the density of
states of the combined system of lattice and spins, utilizing the stochastic
property F. Thus we may call it a stochastic Liouville equation4' 16

We first multiply equation (21) by p and integrate over p. This yields,
with equation (11),

(/t),(Q, t) - [15(Q, t), '(Q)] + F5(Q, t) (22)

This is the equation which we shall refer to as the stochastic Liouville
equation (SLE).

In this derivation of the SLE an important approximation has been made.
It is assumed that the molecules execute their random motions regardless
of the state in which the spins find themselves. Thus the reaction of the spin
system to its surroundings is ignored. In other words, we neglected the
energy exchange between the lattice and the spins. However, as Kubo
stated4, 'this is permissible, for instance, when the temperature of the bath
is sufficiently high compared with the possible energy exchange. Many
examples in NMR or Mössbauer effects belong to this category because the
reaction to the molecular motion of the bath is extremely small.' Thus
equation (22) has a wide range of application in line shape problems in
magnetic resonance16

In the case of jumps the operator F is a matrix and the SLE takes the form

(d/dt)5 = ] + Fv,f (23)

where F are reciprocals of mean residence times.
The StE for the magnetization is derived in the same way, and the

analogons of equations (22, 23) are 16, 17

(/öt)1f(Q, t) = yM(Q, t) x Q) + FM(Q, t) (24)

and

(d/dt)At(t) = yA(t) x fI + fA(t) (25)

Obviously, equations (22)—(25) can suitably be extended with pheno-
menological relaxation terms. However, one must realize that the relaxation
processes introduced through such terms must originate from stochastic
processes other than the one represented by the operator F.

Equations (23) and (25) have been derived earlier in several ways and are
extensively used in the theory of the effect of chemical rate processes on
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magnetic resonance. The theory and the applications of these equations are
reviewed in an article by Johnson'8.

The situation where Q is a continuous variable has found application only
in recent years, with one exception: In 1956 Torrey19 derived rate equations,
similar to equation (24), for spins undergoing translatory diffusion. These
are the Bloch equations with diffusion terms, which found important
application in the spin echo technique.

Like the master equation, the stochastic Liouville equation has the
shortcoming that its stationary solution implies an infinite temperature.
This is closely related to the neglect of the reaction of the spins to the random
motions. It has been suggested16 that the main reason for the difficulty of
this problem lies in our inability to solve a non-linear quantum mechanical
Langevin equation, as we mentioned at the end of the previous section.
However, we feel that even ii such a Langevin equation could be dealt with,
this would not help us to properly correct the stochastic Liouville equation,
since the Langevin equation belongs to the p(t) formalism, whereas the
stochastic Liouville equation is a rate equation of j5(Q). In fact, in Section II
we shall point out that an appropriate rectification of equation (22) in terms
of a (Q) description can be made.

D. Torrey's diffusion equations
In the case of translational diffusion in an inhomogeneous magnetic field

H(fl, the random molecular coordinate is the displacement vector and
the operator F becomes V. DV, where D is the diffusion coefficient. Thus
equation (24) becomes

(a/at)M(, t) = yM(i, t) x i) + V. DVA!O', t) (26)

As mentioned above, the rate equation of &t(i') was first given by Torrey19.
His derivation was based on the theory of Brownian motion and the result
was

M(i, t) = y(Ai x — + V . DV(M —
Mxeq)

Mg', t) = y(1f x — ± V . DV(M —
Myeq) (27)

t) = y(AI x — MzMzeq + V.DV(M Mzeq)

These equations are the same as equation (26), but supplemented with
extra relaxation terms and an inhomogeneous term —V . DVMeq(P)• Here

Mq(fl is the i -dependent equilibrium magnetization,

= x0ñJ') (28)

x0 being the static susceptibility. The origin of the various terms in Torrey's
equations is as follows. The first term describes the change of the magnetiza-
tion within each molecule due to the Larmor precession about the local
field R(). The term V. DVM represents the change in the spatial
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distribution of the magnetization due to the Brownian motion of the mole-
cules. The inhomogeneous term —V. DVM results from the force which
acts upon the magnetic moments of the molecules which move in an
inhomogeneous magnetic field: since molecules which have their spins in
opposite directions are drawn to different regions of the magnetic field, a
net 'drift current' of the magnetization results.

In the absence of the relaxation terms the 'drift terms' ensure that the
magnetization approaches its equilibrium value. Thus Torrey's equations
can serve as a simple classical explanation for the approach to a finite spin
temperature. Interestingly, Torrey's article19 appeared almost simultaneously
with the quantum mechanical relaxation theories of Bloch7 and Redfield9.
These rather complicated theories give a fundamental justification of the
ad hoc modification of the master equation by which the approach to
equilibrium is established. Apparently these authors thought that the use of
a quantum mechanical description of the lattice was the only practical way
of justifying the ad hoc assumption.

It is surprising that Torrey's 'drift terms' were never considered an
important aid to the understanding of the process of relaxation towards
equilibrium. We can think of two reasons why this explanation remained
unnoticed. One is that, in the case where Mq/T >> V. DVM, the 'drift
terms' have no effect on the solutions of equation (27). Since this is the case
in the situations where the equations are applied (spin echo experiments)19,
these terms were generally overlooked. Secondly, the lack of communication
between the two theories might stem from 'language difficulties': the con-
ventional relaxation theory used the p(t) formalism, whereas equation (27)
is written in the ,(Q) formalism (see above).

IL QUANTUM MECHANICAL THEORY
A. p(Q) in equilibrium

In a previous publication20 we used a formalism where quantities such as
p(Q), F, p(Q) were defined quantum mechanically. This formalism permitted
calculation of p(Q) in thermal equilibrium in the high-temperature approxi-
mation. The first-order result was

Peq(12)
= Peq( 12)4 1[ — r(Q)/kT] (29)

where Pe is the equilibrium distribution and A is the number of spin states.
Thus PetQ) is, at least to first order, equal to the Q-dependent Boltzmann
density matrix

PB() = Peq(�2) exp [— '(Q)/kT]/tr exp[— *'(Q)/kT] (30)

Furthermore, the stochastic Liouville equation could be derived quantum
mechanically. This derivation was to a large extent inspired by the quantum
mechanical derivation of the master equation, and, indeed, led to a modifica-
tion of the SLE which accounts for the approach to thermal equilibrium20:

(ô/t)p(Q, t) = ih1[p(Q, t), (Q)] + F{p(Q, 0 — Peq(�2)} (31)

Since Peq commutes with *(Q), it is easily seen that p(Q) = Peq(12) is the
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steady state solution of this equation. Clearly Torrey's equations are a
special case of this equation. For the details of the derivations we refer to
the original paper20. Here we confine ourselves to some general remarks.
For the sake of comparison we recall the assumptions and main features
of the derivation of the master equation.

B. Master equation
There exist three derivations of the master equation with slight differences

between them. i.e. those of Wangness and Bloch0. Redfield9 '° and Abra-
gam2t. We take the latter as the most suitable example for our treatment.

The total Hamiltonian is

(32)

where *3 is a pure spin Hamiltonian and *3 is the perturbing coupling
between the lattice and the spins. *3 can be expanded as

*35FqAq (33)

where the Fq and the Aq are lattice and spin operators, respectively. The
total density matrix of the combined system of lattice and spins, 5T' is assumed
to be of the form

CT = CLP (34)

where CL is the lattice density matrix and p is the spin density matrix

<1npm') L<imcrTun> (35)

where i> denotes a lattice state and m> a spin state. The fundamental
assumption is that the lattice, because of its very large heat capacity, remains
in thermal equilibrium, so that PL = PLeq

The equation of motion for PT is transformed to the interaction repre-
sentation,

= [at, *t(t)] (36)

This equation is integrated by successive approximations up to the second
order. The trace over i gives

(d/dt)p* = — tr Th [Ye°(t), [W1(t — r), a?(O)]] dt (37)

Now the following assumptions are successively made. The correlation
times of the matrix elements of F(t) are so short that

(38)

Further,
(39)

and

p_c1 (40)
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This leads to the master equation,

dp*/dt = — 4 tr [i'(t), [.r(t'), p — Peq]]5Leq dt' (41)

where the relaxation is clearly towards the Boltzmann density matrix

Peq = A[l — r0/kT] (42)

The equation is further transformed to a more useful expression, containing
Fourier transforms of the correlation functions

gqq(t) = <iFqIf> <fFqI> exp [i(E1 — E)t/h] exp(—E/kT) (43)

The main problem in statistical mechanics of irreversible processes is to
obtain the rate equation (or transport coefficient) of an irreversible process
from the deterministic classical Hamilton equations or the quantum
mechanical Schrödinger equation22. In our particular case, the problem
is to deduce the irreversible relaxation equations from the deterministic
equation (36). The present derivation does not give a fundamental solution
of this problem. Instead it is merely assumed that the lattice behaves in an
irreversible way. The irreversibility of the lattice is then utilized in equation
(43). In this equation we identify the deterministic expression at the right-
hand side with the phenomenological correlation function gqq(t). Through
this replacement irreversibility is introduced. since gqq(t) is assumed
to tend to zero for t > r. (The same assumption was also made in the
application of the condition of equation 38.) In order that we may use
equation (43), it is further assumed that the lattice remains in equilibrium,
such that the way in which it manifests itself in gqq(t) remains unaltered
throughout the entire process.

Finally, we notice that in most cases the practical evaluation of the
correlation times is taken from some coarse-grained classical description
of the lattice motions; mostly a Markoffian process10 23, 24

C. The stochastic Liouville equation
The assumptions made in the quantum mechanical derivations of the

SLE2° are summarized in Table 1, alongside the corresponding assumptions
of the master equation.

Both theories assume a high temperature (assumption 1) and separability
of the total a. into the equilibrium lattice density matrix Leq and a spin
density matrix a or p (assumption 2). They differ in that p is a pure spin
operator (equation 35), whereas o operates in the space of the lattice as
well as in that of the spins. This difference is the reason why the SLE can
deal with the correlation between the state of the lattice and that of the
spins, whereas the master equation cannot: in the formalism of p(Q) we
have different spin states for different Qs, whereas in the formalism of the
master equation no such differentiation can be made.

Weak coupling between lattice and spins is expressed by Van Vieck's
condition20. This assumption states that only pairs of lattice states whose
energy differences are smaller than kT are mixed by the spin Hamiltonian.
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Table 1. The assumptions made in the quantum mechanical derivations of the stochastic
Liouville equation and the master equation

SLE Master equation

1. I(Q)I<<kT j04kT
-

2.

3.

5.

6.

T = aLeqS
Van Vieck's condition

=
Rq(Q)Bq

—l/A<<1
(/öt) p(Q, t) Fp(Q, t)

1

J

= aLCqP

p—1/Al
gqq'(i) = <Fq(t)F_q(t + t)>, equation (43)

7. ,'(Q) = F(Q)A —

8. —

Van Vleck's condition is not explicitly formulated in the master equation
theory, but it is implied in the assumption c =

Assumption 4 means that the spin part of the density matrix can be
written as the sum of products of algebraic functions of Q and pure spin
operators. Obviously, also, assumption 4 is implied in j =

The two theories agree in that they assume a small deviation of the spin
density matrix from uniformity (assumption 5). The final similarity is found in
the assumption of a certain coarse-grained description of the lattice motions
(assumption 6). Also, in the SLE derivation this is the point where irreversi-
bility is introduced through the replacement of a deterministic expression
by a phenomenological stochastic expression, involving the Markoffian
operator F20. As we have already remarked in connection with equation
(43), in most applications of the master equation the correlation functions
are calculated from some assumed Markoffian process. Assumptions 5 are
then identical.

The last two lines of Table 1 indicate the difference between the applicabili-
ties of the two rate equations. The SLE is only valid if the spin Hamiltonian
consists of Q-dependent spin operators (assumption 7), but, as we have
remarked, in nearly all relaxation mechanisms of practical significance
this is the case. The only important difference then remains the requirement
of short correlation times for the validity of the master equation assumption.
Therefore the master equation should follow from the SLE if we supplement
it with the condition of short correlation times. In another publication it
will be shown that this, indeed, is the case.

IlL CONCLUSION
Until recently two problems in the theory of magnetic resonance were

unsolved: the question of the orientational dependence of the equilibrium
spin density matrix Peq(2) in tumbling molecules; and the problem of the
inability of the stochastic Liouville equation (SLE) to describe the approach
to Pe (Q). A solution to both problems is now found in the form of the
modihed SLE.
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The SLE in its modified form is more versatile than the original equation,
because it is able to deal with situations where the spin system is far removed
from equilibrium. This has consequences for the theory of line shape calcu-
lations27 as well as for the relaxation theory26.

The SLE and the (Q) formalism are usually applied to the calculation of
line shapes, especially in the slow motion limit16 17 It can be shown that
line shape calculations find a more reliable basis in the modified equation
and that saturation effects can now easily be treated27.

Since the modified SLE accounts for the approach to equilibrium, it is
a suitable tool for the description of relaxation mechanisms. This new
approach26 to the theory of relaxation shows that the (Q) formalism is also
of value for this branch of magnetic resonance theory. We even believe that
the 4o(Q) derivation of the relaxation formulas has several conceptual advan-
tages over the conventional p(t) derivations. These have to do with the
correlation between the states of the spin system and the surroundings,
which is retained in the 15(Q)description but abandoned in the p(t) picture.
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