
NUCLEAR MAGNETIC RESONANCE iN
DILUTE ALLOYS

K. TOMPA

Central Research Inst itute for Physics, Budapest, Hungary

ABSTRACT
The experimental results concerning the electric field gradient and the local
magnetic field around substitutional impurities in copper-based dilute alloys
have been summarized. Comparing the experimental data with theoretical
models we have come to the conclusion that only the first-order quadrupole
wipe-out number characteristic of the asymptotic charge density oscillation

around the impurities can at present be properly interpreted.

I. INTRODUCTION

In the last ten or fifteen years the study of dilute alloys has contributed
substantially to our knowledge of metals and alloys. Nevertheless, there are
still many problems which require further experimental and theoretical
investigations.

The study of microscopic (local) behaviour is expected to furnish new data
in addition to transport, thermal and magnetic properties. The most effective
tool for the study of local properties is known to be n.m.r. spectroscopy.

It is beyond the scope of this paper to review all the results achieved by
n.m.r. spectroscopy. The present considerations will be restricted to the
electric field gradient and the local magnetic field perturbations in the
environment of the alloyant atoms (impurities) in a copper matrix. This
report has been written with three objectives. First we want to summarize the
latest experimental results in this field; second, the results obtained in our
laboratory will be presented alongside those of other authors. Finally, the
interpretation of the experimental data will be discussed in detail without.
however, an attempt at the confirmation of any given theory. The alloys of
copper with 3d transition metals will be specifically considered. The physical
properties and the anomalies observed on these alloys have been dealt with in
a large number of papers. As references, three articles of a monographical
character can be mentioned1 2,

II. REVIEW OF EXPERIMENTAL DATA

Before actually surveying the experimental results, it seems of interest to
consider briefly the type of samples used for the experiments, their preparation
and some consequences of the alloying techniques applied.
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Samples
N.m.r. measurements are usually made on powder samples; monocrystals

have also been applied recently for the study of dilute alloys4' . The samples
introduced in Budapest differ from conventional powder samples. Here
foils about 15 tm thick are sandwiched between insulating layers6. With these
sandwich-type samples the accuracy of the relative amplitude measurement
of the n.m.r. spectrum is found to be around ±1 , and so is better than that
reported for powder samples. It has to be noted that the accuracy of the
amplitude, i.e. intensity measurement, is of critical importance in the evalua-
tion of the quadrupole effect.

Preparation of samples
Two non-trivial problems are worth mentioning in connection with

alloying procedures. One of them is fast cooling, the other the internal
oxidation.

Fast cooling is applied in order to maintain the impurity concentration
in the solution. In this case the vacancies frozen along with the impurities
may considerably affect the result of the measurement8.

Oxidation can occur at high temperatures when the samples happen to be
under an atmosphere containing oxygen, e.g. poor vacuum with pressures
from 1O to iO mmHg, technical grade argon, etc. This has been observed
in the early experiments on dilute copper—gallium alloys9. Depending on the
length of annealing time, practically any experimental value can be obtained
in a poor vacuum, e.g. even the first-order quadrupole effect wipe-out
number of n1 = 0 which holds for the unperturbed case (pure metal). It is
known that many alloyants have a tendency to oxidation in a copper
Thus, it is not the number of the first-order quadrupole effect wipe-out
number that decreases, but the number of 'active' gallium impurities that
can be reduced even to zero.

Experimental methods
Various experimental setups have been used in the measurements referred

to, such as the simplest continuously excited 'broad line' spectrometers, the
field cycling method introduced by Redfield" and the SEDOR (spin-echo
double resonance) technique'2. It is of interest to note that the simplest
technique essentially contributed to the better understanding of the problems.

(1) Field gradient measurements
The literature on the quadrople effect in the n.m.r. spectrum has been

reviewed' . The quadrupole effect in dilute alloys has been discussed in
theoretical papers by Friedel and Blandin'4 and by Kohn and Vosko' .
There are also two important experimental papers to be referred to'6' .
Some results of the theoretical approaches will be discussed below.

The electric field gradient measurements can be divided into three groups,
as illustrated in Figure 1.

Thus the measured values can reflect either the field gradient at the nuclei
on given coordination shells or the average value of the field gradient in the
range close to the impurities or that in the asymptotic range. The latter two
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Figure 1. Separation of field gradient measurements

are characterized by the second and first order quadrupole effect wipe-out
numbers n2 and n1 respectively.

Table 1 lists the parameter values of the field gradients measured at nuclei
on the given coordination shells in dilute copper-based alloys.

Table 1. Electric field gradient (in A-3 units) and asymmetry para-
meter for first and second nearest neighbours of impurities in copper

AHoy Firs
-

t n.n. Second n.n.
q2

q1 ii

Cu—Z&' 0.75 0.27 0.04c
Cu—Ge 0.74 0.91 0.31
—Cd' 0.58 0.04 0.16
Cu_ma 0,84 0.32 0.31

c_sna 0.88 0.64 0.44
Cu—sb' 1.00 0.75 0.66
Cu Agh 0.22 0.75 0.18
CuAub 1.01 0.05 0.31

—Ni" 0.42 0.20

Coe 0.19 0.57
Cu—Mn 0.05 --
(a) Jensen et a!., ref. 5.

(b) Schnakenberg et a!, ref. 4.
(c) Redfseld, ref. 11.
(d)Lo eta!., ref. 17.
(e) Lang et a!., ref. 12.
(0 Tompa, ref. 18.

Table 2 shows the wipe-out numbers characteristic of the first and second
order quadrupole perturbations in copper-based alloys.
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Table 2. Wipe-out numbers for the second (n2) and for the first(n1) order quadrupole effects in
dilute copper-based alloys

Alloy 2 n1 Alloy n2 n1

Qii—Zn 18! 17b 490 ± 251! —Ag 25 590 ± 3Ød1
Cu—Ga 381! 900 ± 30!! Cu—Au 441! 44b 880 ± 401!
Cu—Ge 631! 1400 ± so CjMn 1500 ± 751!
Cu—As Øa --- CU—Fe — 2100 ± iOO
Cu—Cd 321! — Cu—Co — 2050 ± 100
Cu—In 481! — Cu—Ni I9 h 24b 28 1250 ± 1251!
Cu—Sn 671! Cu—Pd 381! 5 335 1200 ± 1001!
Cu—Sb 871! — Cu—Pt 60 h 60b 1900 ± 1001!

(a) Rowland 1! 4 MHz, ref. 16.
(b)Tompa v0 6MHz, ref. 7.
(c) Tompa, ref. 7.
(d)Serfözö et a!., ref. 19.
(e) Tampa. ref. 20.
(t) Tampa cut!., ref. 21.
(g) Tompa, unpublished.
(h) Real-Monod, ref. 22.
(i) Chapman ci a!., ref. 24.

On inspection, no comparable trends can be noticed in the data of Tables
1 and 2. The values of n1 and n2 in Table 2 show several similar tendencies.

(2) Local magnetic field measurements
Listing of the data obtained from measurement of the local magnetic field

in the environment of impurity atoms will be restricted to the values of the
magnetic field measured at nuclei on the coordination shells at a given dis-
tance from the impurity atom. The discussion will not be extended to the
study started by Owen et al.23 and continued by Behringer, Van der Lugt et
aL, Chapman and Seymour, and Sugaware24 which concerned mainly the
broadening and the shift of the n.m.r. spectrum. The coupling constant sd
was determined from these investigations. The anomaly of the n.m.r. spec-
trum at about the Kondo temperature5 will be also left out of consideration
since no local magnetic field measurement has been reported on the same
metal in both the non-magnetic and the magnetic state. The results of the
local magnetic field measurements are listed in Table 3.

Table 3. Local magnetic fields in some copper—3d transition metal dilute alloys

Alloy LXK1/HO AK2/HO AK3/H0 Temp. K

300Cu_Mna —4.87 ± 0.2 —
Cu—Co —3.84 ± 0.04 1.91 ± 0.02 —0.72 4.2
Cu—Ni1! —0.27 ± 0.03 — 4.2

(a) Tompa, ref. 18. (b) Lang ci a!., ref. 12. (c) Lo et a!. , ref. 17.

IlL INTERPRETATION OF THE EXPERIMENTAL RESULTS
(1) Theories

The theoretical relations needed for the interpretation of the experimental
data are briefly referred to. According to the generally accepted definition26
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the field gradient can be attributed to two contributions; one of them is
called size effect' which is due to the lattice deformation caused by the
impurity, and the other is called charge effect' caused by the conduction
electron density perturbation around the impurity.

Lattice deformation around impurities----size effects
The contribution from lattice deformation appears first in terms of the

continuum model of solids as the Blatt correction27
AZ' = AZ — {3/YE}{(1/a)(da/dc)ZO} (1)

where AZ is the matrix impurity valence difference, YE = 3(1 — cr)/(1 + a),
a being the Poisson ratio, (1/a)(da/dc) the relative change in the lattice
constant per impurity concentration, and Z0 the charge of matrix ions.

The contribution from the lattice deformation to the electric field gradient
is given by Sagalyn et al.26 as

27 ida _q=) x—-—r (2)22nyE adc

where r is the distance from the impurity and ) is an empirical parameter.
The meaning of , was discussed more fully in an earlier report28 and in our
direct measurement it was found that )Ls 1.5, which is only one tenth of the
contribution to the field gradient determined by Sagalyn et a!. and thus about
ten per cent of the contribution from Friedel oscillation. However, this
estimation does not permit any inferences to be made on the effect of lattice
deformation in the neighbourhood of the impurities.

The theory of Beal-Monod and Kohn28 has to be mentioned as a compre-
hensive theory of lattice deformation which accounts for both the Blatt and
Sagalyn effects, and also determines the validity of the Blatt correction.
However, in practice one cannot use the prediction of this theory in the
evaluation. The Blatt correction is the only term that we can use from the
size' effect formulation.

Electric field gradient due to charge density oscillation around impurity
According to Kohn—Vosko's'5 and Blandin--Friedel's14 asymptotic

theory, the Z component of the electric field gradient at the matrix nuclei
around the impurity in metals of cubic symmetry can be expressed in the
form 8it

q An r

where is the enhancement factor accounting for both the Bloch character of
the conduction electrons and the Steinheimer antishielding factor29, pre-
dicted'5 for copper as 25.5. Up to this time we have this predicted value for
and an estimation28 of the upper limit of as s 25. The electric field
gradient is directly related to the charge density oscillation An r , and

An r = (AIr3) cos (2kFr + q)

A sin p = (1/2it2) (—1)' (21 ± 1) sin2 i

Acosq =
(1/27t2)(—1)1(2l

+ 1)sinj1cosi1
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where kF is the Fermi wavenumber, and ij stands for the phase shifts of the
scattered partial wave characterized by the quantum number 1 at the Fermi
energy. The phase shifts satisfy the Friedel sum rule

Z = (2/it) (2l+ l)ii
which is the condition of self-consistency for the scattering potential. The
methods used for the evaluation of phase shifts are summarized in ref. 7.

For transition metal impurities the Friedel—Anderson theory14' 30 leads
to the same expression (4) as given above provided that the distance between
the Fermi level and the virtual level is large and that the screening charge
contains contributions from states of different symmetries. If the virtual level
is close to the Fermi level, resonance scattering (i.e. the term 1 2) becomes
dominant, and in accordance with the Friedel sum rule, the phase shift will be

= Nit/b, where N is the number of d electrons.
Blandin3t expressed the charge density oscillation of conduction electrons

with spin ci around the impurity having a localized magnetic moment as

r = — (5/4ir2) sin ir3 cos (2kFr ± i)
where ijstands for the phase shift of scattered electrons with spin a. By making
use of this experession the total electron charge density oscillation is given as

and the spin density oscillation as

Asr AprI —Apr
On introducing the notation used by Souletie32 the description can be
simplified to

= (1 +
= (1 —

According to Souletie ç 0 corresponds to the 'non-magnetic' and c = 1
to the 'magnetic' case. In the 'non-magnetic' case the Blandin—Souletie
description corresponds to formula 4 in the case of resonance scattering. In
the magnetic case 2j2 and i = 0 and the charge and spin density
oscillations are equivalent, i.e.

An r = As r — — (5/4m2) sin 2i2r cos (2kr + 2172)

In this simple model the charge density oscillation is brought about by the
electrons polarized in spin. The amplitude of charge density oscillation in the
'non-magnetic' case is proportional to 2 sin 172, in the 'magnetic' case to
sin 2172, and the amplitude of spin density oscillation in the 'magnetic' case
is proportional to sin 2172 and of course equal to zero when = 0.

In the case of localized moment it is easy to express in the terms of this
theory the hyperfine field due to spin density oscillation31' as

AH r = (16it/3)j8<j (0)2>-�As(r)
66



NMR IN DILUTE ALLOYS

where <j //(O)> is, the wave function of the electron with Fermi energy
at the resonant nucleus in the pure metal, JLB is the Bohr magneton, <Srn> is
the thermal average, S is the spin quantum number, H0 is the external field,
kB is the Boltzmann constant, T is the temperature and As rI is the spin
density oscillation. AH) rt causes a H0/T dependent broadening of the n.m.r.
spectrum.

< /i(O) 12> can be determined if the Ruderman Kittel coupling constant is
known34' This formula reproduces the RKKY formula, except for the
phase factor in As r , if the coupling constant jeff is defined (for = 1) as

jeff (21 + 1)1sd = (10EF/37tS) sin 212 (12)

The relations are utilized for the interpretation of the asymptoic values
obtained from the measurement.

The pre-asymptotic form34 of the charge density oscillation contains
apart from the known Friedel oscillation, a term in r4, that is

Anirl = Ar3 cos(2kFr + q) + Br4cos(2kFr ± ) (13)

The definitions of B and are given by formula (4) in ref. 38 in the form of
sums representing the phase shifts and the derivatives of the phase shifts with
respect to wavenumber, taken at kF respectively. According to the estimation
of the authors B > A, thus the effect of r4 is worth considering for close
neighbours.

The above relations are those which will be utilized for the interpretation
of the experimental results. No numerical agreement is to be expected as the
present theories and also those not referred to here neglect many possible
contributions (the shape of the Fermi surface, the role of the d-electrons in
copper, etc.). It will be seen that the simple asymptotic theories give an
understandable explanation of the phenomena far from the impurities and
that no quantitative description is available for those observed in close
proximity to the impurities.

(2) Interpretation of field gradient measurements
Before reviewing the interpretation, we want to call attention once more

to the problem of . Each evaluation accepts the cx = 25.5 value, calculated by
KohnVosko' , as a revelation, in spite of the fact that no experimental
verification is available and only an estimated upper limit is known28.
Furthermore, nobody can be a priori sure about characterizing the anti-
shielding effect in the immediate vicinity of the impurity by a scalar quantity.

Asymptotic results
In spite of the fact that in chronological order the work of Rowland16 was

the first, we intend to start with the interpretation of the first-order wipe-out
number for in this case, theoretically, an agreement of asymptotic theory and
experimental results might be expected. The interpretations are discussed
in the following groups: impurities with different valence, impurities with the
same valence, 3d transition metal impurities, nickel, palladium and platinum
impurities.

(1) Impurity iiitlz dfferent valence—The evaluation was performed
according to formulae 3 and 4 and every phase shift system available in the
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literature was considered. The details of our evaluation and the above phase
shifts are available in refs. 7 and 19. The measured wipe-out numbers were
compared with those calculated according to the Langer—Vodko theory39.
Within our evaluation, no other size effect than the Blatt correction was con-
sidered. The results are shown in Figure 2. The following conclusions were
drawn.

Calculated by Lariger—Vosko
method taking cx 25.5

o Catculated by Longer— Vosko
method taking cx 18

A Measured values

o Calculated using Alfred—Van

Ostenburg phase shifts

3.0 Z valence difference
Figure 2. First-order quadrupole effect in copper—zinc, copper—gallium and copper—germanium

dilute alloys

The experimental results are described by Langer—Vosko theory only in
the case we are calculating with the = 18 enhancement factor instead of

= 25.5.

Regarding the phase shifts available in the literature, the best agreement is
obtained by using those of Alfred—Van Ostenburg.

The first-order wipe-out numbers calculated by the Kohn-Vosko phase
shifts are some 60 per cent larger than the measured values.

Considering further measured quantities (impurity resistivity, Knight shift
measured on the melt) we came to the conclusion that the three measured
quantities are not described properly by any of the known phase shift systems.

We to get a graphical solution based on the Faber—Ziman diagram
of the relation concerning the three physical quantities. The empirical' phase
shifts and the values of the n1, impurity resistivity and of the Knight shift,
calculated by them, are summarized in Table 4. The results, shown in Table 4,
seem to prove the existence of a phase-shift system by which the experimental
results could be described. The elaboration of a theoretical' phase-shift
system, by which the quantities measured experimentally could be more
exactly described, would be an important step.

(2) The situation is even worse with silver and gold as impurities, if evalua-
tion is performed similarly to that carried out for zinc, gallium and germanium
impurities 19, 7 In this approach the Kohn—Vosko phase shift, giving the best
agreement for the silver impurity, describes well the Knight shift measured
on the melt, but gives about 60 per cent of the measured first-order quadrupole
wipe-out number. The n1 is described well for the gold impurity, but the
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Alloys Phase shifts n1

tb o. 02 meas. calc.

Cu—Zn 022 0.24 0.05 490 400
Cu—Ga 0.52 0.57 0.15 900 820
Cu—Ge 0.71 0.90 0.15 1400 1800

meas. caic. meas. caic.

Cu—Zn 0.33 0.33 0.19 0.25
Cu--Ga 1.42 1.50 0.60 0.49
Cu—Ge 3,75 3.905 1.07 0.90

Knight shift is described with a wrong sign. We suppose that neglecting the
size effect results in the greatest error. The interpretation of the experimental
data is not at all adequate.

(3) We might start the interpretation of the first order wipe-out num-
bers20' 21, 7 measured. on copper-based dilute alloys containing 3d transition
metal impurities, according to the relations 3, 6 and 9. Presuming a dominant
resonance scattering, we do not think the size effect will have an important
part. In Figure 3 the values of charge density oscillation amplitudes for a
copper—3d transition metal row and concerning the 'non-magnetic' and
'magnetic' limits are shown according to the simple model outlined above.
The charge density oscillation amplitude scale and the measured wipe-out

1 2 3 /. 5 6 7 8 9 10 Zd
Figure 3. Charge and spin density oscillation amplitude and first-order quadrupole wipe-out

numbers in copper—3d transition metal dilute alloys
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Table 4. Empirical phase shifts, first-order wipe-out number, impurity resistivity and Knight
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numbers were presented assuming 'resonance only' scattering. (Considering
non-resonant scattering in addition, the two curves become asymmetric for
the Zd = 5 line; and on the right side of the Figure 3 the amplitude of i2 and
n, are also decreasing. Among the impurities manganese and iron are
considered to be in the magnetic state and cobalt and nickel to be non-
magnetic. No numerical agreement is expected, but we are reassured to
find the most characteristic features of the measurement data represented by
the model. As for cases of impurities with different valence, it was observed
that explicitly better agreements were obtained with a smaller (in Figure 3

18 is shown).
The model is of a very interesting consequence: in the 1 magnetic case

from the n1 An r = As ( r (formula 10) measurement, the As r amplitude
and the jeff could be determined for known S37. After the calculations were
performed—presuming only resonant scattering—the following results were
obtained for copper—manganese, jeff = 1.6 eV (c = 25.5), jeff = 2.3 eV
(cz = 18) and presuming that and were the same as those for nickel
impurities7 jeff = 2.1 eV was obtained. For copper—iron and in all the three
cases 3.2 eV, 4.5 eV and 3.8 eV were obtained.

(4) There is nothing more to say about the copper—platinum, copper—
palladium and copper—nickel rows apart from the discussion in ref. 7. The
empirical phase-shift system (, 'i 2) described there is acceptable from the
physical viewpoint; however, theoretically determined phase shifts are
unknown.

Pre-asymptotic results
Interpreting the wipe-out numbers characteristic of the second-order

quadrupole effect, we refer to the studies of Rowland'6 and of Sagalyn et al.26.
We want to make some remarks on these studies and the problem itself. The
n, wipe-out numbers are significantly overestimated in the asymptotic
range by the Kohn—Vosko phase shifts used by them. Sagalyn et al.26
overestimated by a factor often the )Lparameter of the size effect28. Serfözö4°
obtained good agreement on copper—zinc, copper--gallium and copper—
germanium alloys using the Alfred—Van Ostenburg pre-asymptotic formula
(13). At the same time the lattice deformation theory of Nagai4' gave the

= 33 wipe-out number 19 against the measured n2 = 24. According to our
opinion, the problem cannot be regarded as solved.

The interpretation of the field gradient measured at the place of the first
and second neighbours was done by Jensen et al.5 and by Schnakenberg
et al.4. These field gradients calculated by the Alfred—Van Ostenburg38
self-consistent shielding potential and the Hurd—Gordon phase shifts and
phase shift derivatives42, are not sufficient, according to the unanimous
opinion of the authors. (In the model the field gradient has cylindrical
symmetry and so = 0.) Similarly, the field gradient is not sufficient either,
when calculated by Kohn—Vosko phase shifts and the asymptotic formula
(5). We are of the same opinion as those authors.

Considering the field gradient measured in the neighbourhood of the 3d
transition metal impurities, no attempts were made to provide theoretical
interpretations. Their low values, as compared to those of the other alloys,
are remarkable anyway.
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(3) The interpretation of the local magnetic-field measurements

The results of Table 3 cannot be interpreted by the relation 11 or by the
RKKY formula. At the place of the first neighbours a positive shift is calcu-
lated in all the three cases'2 17, 18 against the measured negative shift;
however, this 'disagreement' is not at all surprising43. Lo et al.'7 analysed the
results and came to the conclusion that in copper—nickel and in copper—
cobalt the quotient of the relative shift (AK,/H0) and J5dx(s-d coupling con-
stant, impurity susceptibility) is the same, as the consequence of the simplest

Table 5. Interpretation of local magnetic fields in some copper-3d transition metal dilute alloys

Alloy Cu—Mn' -Co" -Ni'
(a)(AK1/H0) —4.87 x l0 —3.84 x i0 —0.24 x103
(b) x(emu/at) 16 x lO_27 4.0 x 10-27 0.24 x 10-27
( a/b )/1024

[(emu/at) 1] 0.30 0.96 1.0

JSd(e)

a/JSdb I

1.19

0.80

1.35

0.74

(c) Room temp. values, and J = J/(2 I + 1) from our mentioned results J51 = 1.6eV and = 1.1 eV respectively.
(d) Lo ci cii., ref. 17.

relation 11. Their results and a similar analysis for copper—manganese are
presented in Table 5. However, we have to admit that numerical agreement
depends very much on the value of jsd and in this field, authors have an oppor-
tunity to choose from a wide variety.

IV. CONCLUSIONS

We do not intend to repeat our observations about the interpretation, we
only want to emphasize some of the circumstances. It is obvious that the key
to development is improvement of the theories of the problem. The research
worker dealing with experiments does not like to speak about an 'agreement'
with theory, when the theoretical model contains several approximations, the
effect of which cannot be estimated. We have to mention the unanimous
acceptance of the 25.5 value, in spite of the fact that Kohn and Vosko
accepted as correct the value of within a factor of two and in spite of the fact
that its experimental value is unknown. We intended to refer to this fact
repeatedly in this paper, namely, that a smaller offers better results. We
wanted to show that the solution of the problem is of the same importance
as the determination of the relation concerning the appropriate charge
density or the lattice deformation. Finally we want to establish, that now—
with the exception of copper—silver and copper—gold dilute alloys—the
experimental results for the asymptotic range have the best interpretation.
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