
18.4.3.8 Estimation  
 
Much of the foregoing discussion treats Performance Characteristics as though they 
were known without error.  In fact, apart from definition, this can never obtain.   Let 
us consider the significance (not just statistical) of this limitation for four of the more 
important CMP characteristics: bias, imprecision (variance, standard deviation), 
sensitivity, and the blank. 
 
 
Estimated Bias ( ∆̂ or ∆~ ).  Estimation of CMP characteristics such as bias and 
imprecision carries two dichotomies: (1) statistical estimation [circumflex] vs 
"scientific" (judgment) estimation [tilde]; and (2) "internal" estimation, via propagated 
contributions of each constituent step of the CMP vs "external" estimation via 
intercomparison of the overall CMP with an appropriate external standard (or 
laboratory, or definitive method).  In the case of bias, it would seem unlikely that the 
CMP would be even considered for use if the internally estimated bias were 
non-negligible.  An external bias estimate (statistical) could be formed ex post facto, 
however, during the evaluation of a CMP in comparison to a known standard.  A 
statistically and practically significant bias estimate generally would lead either to 
rejection of the CMP altogether, or exposure and correction of the source(s) of bias. 
 
Two matters concerning CMP bias are worth noting: (1) The detection limit for bias is 
intimately tied to the imprecision of the measurement process; bias much smaller than 
the repeatability-σ is quite difficult to detect.  (2) "Correction" or adjustment of bias of 
a complex CMP based on an observed discrepancy with a natural matrix CRM can be a 
very tenuous process, unless or until the cause of the discrepancy is thoroughly 
understood. 
 
 
Bias Uncertainty; Bias Bounds (∆M).  More commonly, our concern is with the 
maximum (absolute value) uncorrected bias.  Such a quantity is derived from the 
(scientifically or statistically) estimated bias together with the uncertainty of that 
estimate.  If a statistical estimate is involved, and if one knows the cdf and its 
parameters(s), one can form a confidence interval and upper limit, just as in the case of 
analytical results. 
 
 
Estimated Variance (s2 = σ̂ 2 = V̂ ).  Variance is estimated by the sum of squares of 
the residuals (deviations of the observed from the estimated or "fitted" values) divided 
by the number of degrees of freedom ν, which equals the number of observations n 
minus the number of estimated parameters.  Thus, for a simple set of observations 
 
  s2  =  Σ(xi - x  )2/(n-1) (18.4.23) 
 
where x  = the estimated (arithmetic) mean. 



 
For a fitted (straight-line) calibration curve, 
 

  )2/()ˆ( 22 −−= ∑ nyys ii  (18.4.24) 
 
Note that although the standard deviation equals the square root of the variance σ2, the 
square root of the estimated variance s2 yields a biased estimate for the standard 
deviation.  An approximate correction is given by multiplying s by [1+1/(4ν)]. 
 
 
Propagation of "Error" (Variance).  An "internal" estimate for the overall variance of a 
CMP can be constructed from the variances of the contributing elements or steps of the 
CMP and the functional manner in which they are linked.  If the individual cdfs are 
normal and the links are additive (or subtractive), normality is preserved in the overall 
process.  An illustration is the subtraction of an estimated blank from the observed 
response to get the net signal; in this case variances add.  If the parameters for the 
individual steps are linked multiplicatively, as in the correction of the net signal for the 
estimated chemical yield, relative variances add.  (In this case, normality is only 
asymptotic, as the relative variances become sufficiently small.) 
 
More complicated relations can be treated with the Taylor expansion, suitably adapted 
for variances: 
 
  σf

2   =  Σ(∂f/∂xj)2 σxj
2 (18.4.25) 

 
 where f is the function whose variance is to be determined, and 
 the xj are the individual parameters whose variances are known. 
 
 
Estimated Poisson Variance ("counting statistics").  For counting experiments, if there 
are no extraneous sources of variance, the distribution of counts is Poisson; hence the 
variance σ2 equals the mean µ.  Except for the case of relatively few counts, using the 
observed number of counts as an estimate of the variance is quite adequate. 
 
 
Estimated Variance Bounds.  If the observations are distributed normally, s2/σ2 is 
distributed as χ2/ν.  A 95% interval estimate for this ratio is therefore given by  
 
  (χ2/ν).025 < s2/σ2 < (χ2/ν).975 (18.4.26) 
 
A useful approximation for rapidly estimating the uncertainty in s/σ is 1/2ν.  This is 
roughly equivalent to the standard deviation of the ratio s/σ for large ν.  Thus, about 
200 degrees of freedom are required before the relative standard uncertainty in σ is 
decreased to about 5 %. 



 
Note: Eq. 18.4.26 can be used to derive approximate confidence intervals for the 
relative standard deviation (RSD), given the observed ratio s/ x , without taking into 
account the uncertainty of x ; the approximation improves with increasing degrees of 
freedom, and decreasing RSD.  This has special relevance for the Quantification Limit, 
since the definition of LQ is based on a prescribed value for the RSD. 
 
 
Estimated Sensitivity ( Â ).  The slope (sensitivity) and intercept of the calibration curve 
are generally estimated using Ordinary Least Squares.  Weighted Least Squares may be 
justified if at least the relative statistical weights are reliably known (or can be 
assumed), where the weights are taken as inverse variances.  Although the intercept of 
an instrument calibration curve may give some useful information on the magnitude of 
the blank, for low-level measurements that may be severely affected by contamination, 
it is advisable to make direct estimates of the components of the blank and their 
variability. 
 
Note: When a functional, as opposed to a statistical (structural) relation exists between 
variables -- as in the case of a calibration curve -- the terms "Regression" and 
"Correlation" are inappropriate.  The quality of the fit should be assessed by 
appropriate test statistics, such as F, χ2, the MSSD (Mean Squared Successive 
Deviation), etc.  In some cases, where the individual data are quite precise, such test 
statistics can show a "fit" to be very poor, even though the linear correlation coefficient 
is almost unity.  A related situation where Correlation is appropriately used is for the 
(statistical) relation between parameters (slope, intercept) estimated from the same data 
set.  This statistical relation is commonly displayed in the form of a confidence ellipse. 
 
 
The Blank (B).  The blank is one of the most crucial quantities in trace analysis, 
especially in the region of the Detection Limit.  In fact, as shown above, the 
distribution and standard deviation of the blank are intrinsic to calculating the Detection 
Limit of any CMP.  Standard deviations are difficult to estimate with any precision (ca. 
50 observations required for 10 % RSD for the Standard Deviation).  Distributions 
(cdfs) are harder!  It follows that extreme care must be given to the minimization and 
estimation of realistic blanks for the over-all CMP, and that an adequate number of full 
scale blanks must be assayed, to generate some confidence in the nature of the blank 
distribution and some precision in the blank RSD. 
 
Note: An imprecise estimate for the Blank standard deviation is taken into account 
without difficulty in Detection Decisions, through the use of Student's-t.  Detection 
Limits, however, are themselves rendered imprecise if σB is not well known.  (See 
section 18.4.3.7.) 
 
Blanks or null effects may be described by three different terms, depending upon their 
origin: the instrumental background is the null signal (which for certain instruments 



may be set to zero, on the average) obtained in the absence of any analyte- or 
interference-derived signal; the (spectrum or chromatogram) baseline comprises the 
summation of the instrumental background plus signals in the analyte (peak) region of 
interest due to interfering species; the chemical (or analyte) blank is that which arises 
from contamination from the reagents, sampling procedure, or isolation of the analyte 
steps which corresponds to the very analyte being sought.  Assessment of the blank 
(and its variability) may be approached by an "external" or "internal" route, in close 
analogy to the assessment of random and systematic error components.  The "external" 
approach consists of the generation and direct evaluation of a series of ideal or 
surrogate blanks for the overall measurement process, using test samples which are 
identical or closely similar to those being taken for analysis -- but containing none of 
the analyte of interest.  The CMP and matrix and interfering species should be 
unchanged.  (The surrogate is simply the best available approximation to the ideal blank 
-- ie, one having a similar matrix and similar levels of interferants.)  The "internal" 
approach has been described as "Propagation of the Blank." This means that each step 
of the CMP is examined with respect to contamination and interference contributions, 
and the whole is then estimated as the sum of its parts -- with due attention to 
differential recoveries and variance propagation.  This is an important point: that the 
blank introduced at one stage of the CMP will be attenuated by subsequent partial 
recoveries.  Neither the internal nor the external approach to blank assessment is easy, 
but one or the other is mandatory for accurate low-level measurements; and consistency 
(internal, external) is requisite for quality.  Both approaches require expert chemical 
knowledge concerning the CMP in question. 
 


