
18.4.3.7 Detection and quantification capabilities 
 
Among the most important Performance Characteristics of the Chemical Measurement 
Process (CMP) are those that can serve as measures of the underlying detection and 
quantification capabilities.  These are essential for applications in research, international 
commerce, health, and safety.  Such measures are important for planning measurements, 
and for selecting or developing CMPs that can meet specified needs, such as the detection 
or quantification of a dangerous or regulated level of a toxic substance. 
 
Equations 18.4.1-6 provide the basis for our considering the meaning of minimum 
detectable and minimum quantifiable amounts (signals, concentrations) in Analytical 
Chemistry.  In each case, the determining factor is the distribution function of the 
estimated quantity (estimated net signal Ŝ , concentration or amount x̂ ).  If normality can 
be assumed, it is sufficient to know the standard deviation of the estimated quantity as a 
function of S (or x).  Detection limits (minimum detectable amounts) are based on the 
theory of hypothesis testing and the probabilities of false positives α, and false negatives 
ß.  Quantification limits are defined in terms of a specified value for the relative standard 
deviation.  It is important to emphasize that both types of limits are CMP Performance 
Characteristics, associated with underlying true values of the quantity of interest; they are 
not associated with any particular outcome or result.  The detection decision, on the other 
hand, is result-specific; it is made by comparing the experimental result with the Critical 
Value, which is the minimum significant estimated value of the quantity of interest. 
 
 
Terminology.  Unfortunately, a host of terms have been used within the chemical 
community to describe detection and quantification capabilities.  Perhaps the most widely 
used is "detection limit" (or "limit of detection") as an indicator of the minimum 
detectable analyte net signal, amount, or concentration.  However, because the distinction 
between the minimum significant estimated concentration and the minimum detectable 
true concentration has not been universally appreciated, the same term and numerical 
value has been applied by some, perhaps unwittingly, in both contexts.  Despite this, the 
term "Detection Limit" is widely understood and quoted by most chemists as a measure 
of the inherent detection capability.  As a result of coordinated efforts between IUPAC 
and ISO for the harmonization of "detection" concepts and terminology, the official 
IUPAC recommendation is restricted to the following terms and alternates: 
 
For distinguishing a chemical signal from background noise -- ie., for making the 
Detection Decision: the critical value (LC) of the appropriate chemical variable 
(estimated net signal, concentration, or amount); alternative: the critical level.  As the 
measure of the inherent Detection Capability of a CMP: the minimum Detectable (true) 
value (LD) of the appropriate chemical variable; alternative: the detection limit.  As the 
measure of the inherent Quantification Capability of a CMP, the minimum quantifiable 
(true) value (LQ); alternative: the quantification limit.  Many other terms such as 
"Decision Criterion" for LC, "Identification Limit" for LD, and "Measurement Limit" for 



LQ, appear in the chemical literature.  In the interest of uniform international 
nomenclature, however, only the terms and alternatives defined above are recommended. 
 
Note: For presentation of the defining relations, L is used as the generic symbol for the 
quantity of interest.  This is replaced by S when treating net analyte signals, and x, when 
treating analyte concentrations or amounts.  Thus, LC, LD and LQ may represent SC, SD 
and SQ, or xC, xD and xQ, as appropriate. 
 
 
Specification of the Measurement Process.  Just as with other Performance 
Characteristics, LD and LQ cannot be specified in the absence of a fully defined 
measurement process, including such matters as types and levels of interference as well 
as the data reduction algorithm.  "Interference free detection limits" and "Instrument 
detection limits", for example, are perfectly valid within their respective domains; but if 
detection or quantification characteristics are sought for a more complex chemical 
measurement process, involving for example sampling, analyte separation and 
purification, and interference and matrix effects, then it is mandatory that all these factors 
be considered in deriving values for LD and LQ for that process.  Otherwise the actual 
performance of the CMP (detection, quantification capabilities) may fall far short of the 
requisite performance. 
 
 
Detection -- Fundamental Relations.  The statistical theory of hypothesis testing, 
introduced in Section 18.4.3.6, serves as the framework for the treatment of Detection in 
Analytical Chemistry.  Following this theory two kinds of errors is considered (really 
erroneous decisions): the error of the first kind ("type I," false positive), accepting the 
"alternative hypothesis" (analyte present) when that is wrong; and the error of the second 
kind ("type II," false negative), accepting the "null hypothesis" (analyte absent) when that 
is wrong.  The probability of the type I error is indicated by α; the probability for the type 
II error, by ß.  Default values recommended by IUPAC for α and ß are 0.05, each.  These 
probabilities are directly linked with the one-sided tails of the distributions of the 
estimated quantities ( Ŝ , x̂ ).  A graphical representation of these concepts is given in Fig. 
18.4.2, where the "driving force" in this hypothetical example is the ability to detect the 
release of specific chemical precursors of earthquakes (e.g., radon) at levels 
corresponding to earthquakes of magnitude LR and above.  Thus LR is the "requisite limit" 
or maximum acceptable limit for undetected earthquakes; this is driven, in turn, by a 
maximum acceptable loss to society.  (Derivation of LR values for sociotechnical 
problems, of course, is far more complex than the subject of this report!) The lower part 
of the figure shows the minimum detectable value for the chemical precursor LD, that 
must not exceed LR, and its relation to the probability density functions (pdf) at L = 0 and 
at L = LD together with α and ß, and the decision point (Critical Value) LC.  The figure 
has been purposely constructed to illustrate heteroscedasticity -- in this case, variance 
increasing with signal level, and unequal α and ß.  The point of the latter construct is that, 
although 0.05 is the recommended default value for these parameters, particular 



circumstances may dictate more stringent control of the one or the other.  Instructive 
implicit issues in this example are that (1) a major factor governing the detection 
capability could be the natural variation of the radon background (blank variance) in the 
environment sampled, and (2) a calibration factor or function is needed in order to couple 
the two abscissae in the diagram.  In principle, the response of a sensing instrument could 
be calibrated directly to the Richter scale (earthquake magnitude); alternatively, there 
could be a two-stage calibration: response-radon concentration, and concentration-
Richter scale. 
 
A final point is that, with the exception 
of certain "distribution-free" techniques, 
Detection Limits cannot be derived in 
the absence of known (or assumed) 
distributions.  As with all Performance 
Characteristics, the parameters used to 
compute LC and LD should be estimated 
from measurements in the region of 
interest -- in this case in the range 
between the blank and the detection 
limit.  Similarly, experimental 
verification of computed detection 
limits is highly recommended. 
 
Note: The single, most important 
application of the detection limit is for 
planning (CMP design or selection).  It 
allows one to judge whether the CMP 
under consideration is adequate for the 
detection requirements.  This is in sharp 
contrast to the application of the critical 
value for decision making, given the 
result of a measurement.  The most 
serious pitfall is inadequate attention to the magnitude and variability of the overall 
blank, which may lead to severe underestimation of the detection limit. 
 
 
Detection Decisions (LC).  The decision "detected" or "not detected" is made by 
comparison of the estimated quantity ( L̂ ) with the critical value (LC) of the respective 
distribution, such that the probability of exceeding LC is no greater than α if analyte is 
absent (L = 0, null hypothesis).  The Critical Value is thus the minimum significant value 
of an estimated net signal or concentration, applied as a discriminator against background 
noise.  This corresponds to a 1-sided significance test.   
 
 
The above definition of LC can be expressed as follows, 

 

Fig. 18.4.2  Detection: needs and capabilities.  Top 
portion shows the requisite limit LR, bottom shows 
detection capability LD. 



 
  Pr ( L̂ >LC | L=0) ≤ α (18.4.9) 
 
Generally the equation is stated as an equality, but the inequality is given to 
accommodate discrete distributions, such as the Poisson, where not all values of α are 
possible.  If L̂  is normally distributed with known variance, Eq.  9 reduces to the 
following simple expression, 
 
  LC  =  z1-α σo (18.4.10) 
 
where z1-α (or zP) represents the (1-α)th percentage point or critical value of the standard 
normal variable, and σo is the standard deviation of the estimated quantity (net signal or 
concentration) under the null hypothesis (true value = 0).  Taking the default value for α 
(0.05), LC = 1.645 σo. 
 
Note that Eq. 18.4.9, not Eq. 18.4.10, is the defining equation for LC, and the result 
(1.645σo) applies only if the data are normal with known variance and α is set equal to its 
default value.  If σo is estimated by so, based on ν degrees of freedom, z1-α must be 
replaced by Student's-t.  That is, 
 
  LC  =  t1-α,ν so (18.4.11) 
 
For α = 0.05 and 4 degrees of freedom, for example, LC would be equal to 2.132 so. 
 
Notes: 
(1) Some measurement systems impose an artificial hardware or software threshold 

(de facto LC) to discriminate against small signals.  In such cases statistical 
significance is problematic -- α may be quite small and perhaps unknown, but 
equations 18.4.12 and 18.4.13 below can still be applied to compute LD, given LC 
and ß.  The impact of such a threshold can be profound, severely eroding the 
inherent detection capability of the system. 

 
(2) A result falling below LC, triggering the decision "not detected" should not be 

construed as demonstrating analyte absence.  (See section 18.4.3.6.) Reporting 
such a result as "zero" or as "<LD" is not recommended; the estimated value (net 
signal, concentration) and its uncertainty should always be reported.   

 
 
Minimum Detectable Value; Detection Limit (LD).  The Minimum Detectable Value of 
the net signal (or concentration) is that value (LD) for which the false negative error is ß, 
given LC (or α).  It is the true net signal (or concentration) for which the probability that 
the estimated value L̂  does not exceed LC is ß.  The definition of LD can thus be 
expressed as 
 
  Pr ( L̂ ≤LC | L=LD)  =  ß (18.4.12) 



 
 
For normal data having known variance structure, this yields, 
 
  LD  =  LC + z1-ß σD (18.4.13) 
 
For the special situation where the variance is constant between L = 0 and L = LD, the 
right side of Eq. 13 reduces to (z1-α+z1-ß)σo; if in addition α and ß are equal, this gives 
2z1-ασo which equals 2LC. Taking the default values for α and ß (0.05), this equals 3.29 
σo.  If LC employs an estimate so based on ν degrees of freedom (Eq. 18.4.11), then (z1-

α+z1-ß) must be replaced by δα,ß,ν, the non-centrality parameter of the non-central-t 
distribution.  For α = ß, this parameter is approximately equal to 2t and the appropriate 
expression (for constant variance) is, 
 
  LD  =  δα,ß,ν σo  ≈  2t1−α,ν σo (18.4.14) 
 
For 4 degrees of freedom, for example, the use of 2t would give LD = 4.26 σo.  (The 
actual value for δ in this case is 4.067.) Note that σo must be used in Eq. 18.4.14.  If only 
an estimate so is available, that means that the minimum detectable value is uncertain by 
the ratio (σ/s).  Using the techniques of section 18.4.3.8, confidence limits may then be 
calculated for LD.   (A 95% upper limit for LD, based on an observed so with 4 degrees of 
freedom, would be {4.07/( 178.0 )} so or 9.65 so. 
 
Notes: 
(1) When ν is large, 2t is an excellent approximation for δ.  For ν ≥ 25, with α = ß = 

0.05, the difference is no more than 1 %.  For fewer degrees of freedom, a very 
simple correction factor for 2t, 4ν/(4ν+1), which takes into account the bias in s, 
gives values that are within 1 % of δ for ν ≥ 5.  For the above example where ν = 
4, δ would be approximated as 2(2.132)(16/17) which equals 4.013. 

 
(2) LD is defined by Eq. 18.4.12 in terms of the distribution of L̂  when L = LD, the 

probability of the type-II error ß, and LC, with LC being defined (Eq. 18.4.9) in 
terms of the distribution of L̂  when L = 0, and the probability of the type-I error 
α.  When certain conditions are satisfied, LD can be expressed as the product of a 
specific coefficient and the standard deviation of the blank, such as 3.29 σB, when 
the uncertainty in the mean (expected) value of the blank is negligible, α and ß 
each equal 0.05, and L̂  is normally distributed with known, constant variance.  LD 
is not defined, however, simply as a fixed coefficient (2, 3, 6, etc.) times the 
standard deviation of a pure solution background.  To do so can be extremely 
misleading.  The correct expression must be derived from the proper defining 
equations (Eq. 18.4.9 and 18.4.12), and it must take into account degrees of 
freedom, α and ß, and the distribution of L̂  as influenced by such factors as 
analyte concentration, matrix effects, and interference. 

 



(3) The question of detection has been treated extensively by H. Kaiser for 
spectrochemical analysis.  In the earlier editions of the "Orange Book" the use of 
3sB is recommended as the "limit of detection".  Although originally intended to 
serve as a measure of the detection capability, this quantity was then used as the 
"decision criterion" to distinguish an estimated signal from the background noise.  
Such a definition, which in effect sets LC and LD each equal to 3s, corresponds for 
a normal distribution (large ν) to a type-I error probability of ca. 0.15 % but a 
type-II error probability of 50 % ! (See the Source Document [Currie, 1995] in 
section 18.9 for further comments and references.) 

 
 
Signal Domain (SC, SD).  In many cases the smallest signal SD that can be reliably 
distinguished from the blank, given the critical level SC, is desired, as in the operation of 
radiation monitors.  Assuming normality and knowledge of σ, simple expressions can be 
given for the two quantities involved in Signal Detection.  Eq. 18.4.10 takes the following 
form for the Critical Value, 
 
  SC  =  z1−α σo  →  1.645 σo (18.4.15) 
 
where the expression to the right of the arrow results for α = 0.05.  From Eq. 18.4.3 the 
estimated net signal Ŝ  equals y- B̂ , and its variance is 
 
  V Ŝ  = Vy + BV ˆ  → VB + BV ˆ  = Vo (18.4.16) 
 
The quantity to the right of the arrow is σo

2, the variance of the estimated net signal when 
the true value S is zero.  If the variance of B̂  is negligible, then σo ≈ σB, the standard 
deviation of the Blank.  If B is estimated in a "paired" experiment -- i.e., BV ˆ = VB, then σo 
= σB√2.  Note that σo ≈ σB, and σo = σB√2, are limiting cases.  More generally, σo = 
σB√η, where η = 1 + ( BV ˆ /VB).  Thus, η reflects different numbers of replicates, or, for 
particle or ion counting, different counting times for "sample" vs blank measurements.  
(See section 18.4.3.8 for further discussion of the blank.) 
 
 
The Minimum Detectable Signal SD derives similarly from Eq. 18.4.13, that is, 
 
  SD  =  SC + z1-ß σD (18.4.17) 
 
where σD

2 represents the variance of Ŝ  when S = SD.  For the special case where the 
variance is constant between S = 0 and S = SD, and α = ß = 0.05, the Minimum 
Detectable Signal SD becomes 2SC = 3.29 σo, or (3.29√2)σB = 4.65 σB for paired 
observations.  The treatment using an estimated variance, so

2 and Student's-t follows that 
given above.  The above result is not correct for SD if the variance depends on the 
magnitude of the signal.  A case in point is the counting of particles or ions in 
accelerators or mass spectrometers, where the number of counts accumulated follows the 



Poisson distribution, for which the variance equals the expected number of counts.  If the 
mean value of the background is known precisely, for example, σo

2 = σB
2, which in turn 

equals the expected number of background counts B.  This leads to approximate 
expressions of 1.645 √B, and 2.71 + 3.29 √B for SC and SD (units of counts), respectively, 
for counting experiments with "well known" blanks.  In more complicated cases where 
net signals are estimated in the presence of chromatographic or spectroscopic baselines, 
or where they must be deconvolved from overlapping peaks, the limiting standard 
deviations (σo and σD) must be estimated by the same procedures used to calculate the 
standard deviation of the estimated (net) signal of interest. 
 
Note: The result for counting data given above is based on the normal approximation for 
the Poisson distribution.  Rigorous treatment of discrete and other non-normal 
distributions, which is beyond the scope of this document, requires use of the actual 
distribution together with the defining relations Eq. 18.4.9 and Eq. 18.4.12. 
 
 
Concentration Domain (xC, xD).  For the special category of "direct reading" instrument 
systems, the response is given directly in units of concentration (or amount).  In this case, 
the distinction between the signal domain and the concentration domain vanishes, and the 
treatment in the preceding section applies, with y, ey, B, and S already expressed in 
concentration units.  As before, the development of particular values for the critical level 
and detection limit requires distributional assumptions, such as normality, which should 
be tested.  More generally, the transformation to the minimum detectable concentration 
(amount) involves one or more multiplicative (or divisive) factors, each of which may be 
subject to error.  Collectively, these factors comprise the sensitivity A which relates the 
net signal to the physical or chemical quantity of interest x, as indicated in Eq. 18.4.5.  
We consider two cases.   
 
 
Calibration function known ( Ae ˆ  negligible or constant).  When the uncertainty about the 
calibration function F(x) and its parameters is negligible, the minimum detectable 
concentration xD can be calculated as F-1(yD), where yD = B + SD.  Problems arise only 
when the calibration function is not monotonic; and even if it is monotonic, some 
iteration may be needed if F(x) is not linear in x.  In the linear case where F(x) = B + Ax, 
and the uncertainty of the sensitivity, but not necessarily that of the blank, is negligible, 
the transformation from the minimum detectable signal to the minimum detectable 
concentration is simply 
 
  xD  =  SD/A (18.4.18) 
 
For normal data with constant, known variance, and α = ß, the Minimum Detectable 
Concentration xD is thus 2SC/A.  Taking the default value for α and ß, this becomes (3.29 
σo)/A, where σo is the standard deviation of Ŝ  when S = 0.  For paired observations this 
is equivalent to (4.65 σB)/A, where σB is the standard deviation of the blank.  Since only 
the numerator in Eq. 18.4.18 is subject to random error, the detection test will still be 



made using SC.  When variance is estimated as s2, Student's-t (central and non-central) 
must be used as shown above. 
 
When the assumed value of the sensitivity A is fixed, but biased -- as when an 
independent estimate of the slope from a single calibration operation, or a calibration 
material or a theoretical estimate having non-negligible error, is repeatedly used -- the 
calculated detection limit will be correspondingly biased.  Bounds for the bias in A can be 
applied to compute bounds for the true detection limit.  Since the biased estimate of A is 
fixed, it cannot contribute to the variance of x̂ . 
 
Note: Repeated use of a fixed estimate for the blank is not recommended, unless BV ˆ  
<<VB, as that may introduce a systematic error comparable to the Detection Limit, itself.  
This is of fundamental importance in the common situation, especially in trace analysis, 
where the sensitivity estimate is derived from instrument calibration, but where the blank 
and its variance depend primarily on non-instrumental parts of the CMP including 
isolation of the analyte and even sampling.  (See discussion of the blank in section 
18.4.3.8.) 
 
 
Calibration function estimated ( Ae ˆ  random).  When the error in Â  is random, then its 
effect on the distribution of x̂  must be taken into account, along with random error in y 
and B̂ .  This is the case, for example, where sensitivity (slope) estimation is repeated 
with each application of the measurement process.  For the common situation where x is 
estimated by (y- B̂ )/ Â  [Eq. 18.4.5], the minimum detectable concentration may be 
calculated from the defining equations 18.4.9 and 18.4.12, and their normal equivalents, 
using the Taylor expansion for the variance of x̂  at the detection limit xD:  V x̂ (x=xD) ≈ 
(Vo + xD

2
AV ˆ  + 2xDVAB)/A2, with Vo as given in Eq. 18.4.16.  For the heteroscedastic case 

(Vy varying with concentration), Vo must be replaced by (Vy(xD)+ BV ˆ ) in the above 

expression, and weights used.  The results for constant Vy and α = ß are 
 
  SC  =  t1-α,νso (18.4.19) 
 
  xD  =  (δα,ß,νσo/A)(K/I)  ≈  (2t1-α,νσo/A)(K/I) (18.4.20) 
 
 where: K = 1 + r(B,A)(σ B̂ /σo)[t1-α,ν(σ Â /A)] 
 
   I  =  1 - [t1-α,ν(σ Â /A)]2  
 
When B and A are estimated from the same calibration data set, the estimates will be 
negatively correlated with r(B,A) = - x̂ /xq , xq being the quadratic mean.  The ratio K/I 
may then range from slightly less than one to very much greater, depending on the 
calibration design and the magnitude of σy.  The effect of the factor I in particular, can 
cause xD to differ substantially from 2t1-α,νσo/A.  The extreme occurs when the relative 



standard deviation of Â  approaches 1/t1-α,ν; then xD is unbounded.  When B and A are 
estimated independently, then r(B,A) = 0, and K = 1.  If the relative standard deviation of 
Â  is negligible compared to 1/t1-α,ν, then K and I both approach unity, and xD reduces to 
the form given in Eq. 18.4.18. 
 
 
A note of caution: If the parameters used in equations 18.4.19 and 18.4.20 derive from a 
calibration operation that fails to encompass the entire CMP, the resulting values for SC 
and xD are likely to be much too small.  Such would be the case, for example, if the 
response variance and that of the estimated intercept based on instrument calibration data 
alone were taken as representative of the total CMP, which may have major response and 
blank variations associated with reagents and the sample preparation environment. 
 
Note: When an estimated value Â  is used in Eq. 18.4.20, it gives a rigorous expression 
for the maximum (non-detection) upper limit for a particular realization of the calibration 
curve.  (This result derives from the distribution of y- B̂ - Â x which is normal with mean 
zero and variance Vy+ BV ˆ +x2

AV ˆ +2xVAB.)  Since Â  is a random variable, this means for 

the measurement process as a whole that there is a distribution of limits xD( Â ) 
corresponding to the distribution of Â 's.  When A is used in Eq. 18.4.20, the resulting xD 
can be shown to be approximately equal to the median value of the distribution of the 
maximum upper limits.  (See Note-2 and the references cited in the Source Document 
[Currie], for important additional information on the distribution of the estimated 
concentration ( x̂ ) and multiple detection decisions, and their impact on the minimum 
detectable concentration.) 
 
 
Multicomponent Detection.  When a sensing instrument responds simultaneously to 
several analytes, one is faced with the problem of multicomponent detection and analysis.  
This is a very important situation in chemical analysis, having many facets and a large 
literature, including such topics as "errors-in-variables-regression" and "multivariate 
calibration"; but only a brief descriptive outline will be offered here.  For the simplest 
case, where blanks and sensitivities are known and signals additive, S can be written as 
the summation of responses of the individual chemical components -- i.e., Si = ΣSij = 
ΣAijxj, where the summation index-j is the chemical component index, and i, a time index 
(chromatography, decay curves), or an energy or mass index (optical, mass 
spectrometry).  In order to obtain a solution, S must be a vector with at least as many 
elements Si as there are unknown chemical components.  Two approaches are common: 
 
(1) When the "peak-baseline" situation obtains, as in certain spectroscopies and 

chromatography, for each non-overlapping peak, the sum ΣAx can be partitioned 
into a one component "peak" and a smooth (constant, linear) baseline composed 
of all other (interfering) components.  This is analogous to Eq. 18.4.2, and for 
each such peak, it can be treated as a pseudo one component problem.  

 



(2) In the absence of such a partition, the full matrix equation, S = Ax, must be 
treated, with xkC and xkD computed for component-k, given the complete 
sensitivity matrix A and concentrations of all other (interfering) components. 

 
These quantities can be calculated by iteratively computing, from the Weighted Least 
Squares covariance matrix, the variance of component-k as a function of its 
concentration, keeping all interfering components constant, and using the defining 
equations 9 and 12, or their normal forms, equations 18.4.10 and 18.4.13. 
 
 
 
Minimum Quantifiable Value; Quantification Limit (LQ).  Quantification limits are 
performance characteristics that mark the ability of a CMP to adequately "quantify" an 
analyte.  Like detection limits, quantification limits are vital for the planning phase of 
chemical analysis; they serve as benchmarks that indicate whether the CMP can 
adequately meet the measurement needs.  The ability to quantify is generally expressed in 
terms of the signal or analyte (true) value that will produce estimates having a specified 
relative standard deviation (RSD), commonly 10 %.  That is, 
 
  LQ  =  kQ σQ (18.4.21) 
 
where LQ is the Quantification Limit, σQ is the standard deviation at that point, and kQ is 
the multiplier whose reciprocal equals the selected quantifying RSD.  The IUPAC default 
value for kQ is 10.  As with detection limits, the net signal quantification limit (SQ) and 
analyte (amount or concentration) quantification limit (xQ) derive from the relations in 
equations 18.4.1-5, and the variance structure of the measurement process.  If the 
sensitivity A is known, then xQ = SQ/A; if an estimate Â  is used computing x̂  , then its 
variance must be considered in deriving xQ.  (See Note-1, below.) Just as with the case of 
SD and xD, uncertainties in assumed values for σ and A are reflected in uncertainties in the 
corresponding Quantification limits. 
 
If σ is known and constant, then σQ in Eq. 18.4.21 can be replaced by σo, since the 
standard deviation of the estimated quantity is independent of concentration.  Using the 
default value for kQ, we then have 
 
  LQ  =  10 σQ  =  10 σo (18.4.22) 
 
In this case, the quantification limit is just 3.04 times the detection limit, given normality 
and α = ß = 0.05. 
 
Notes: 
(1) In analogy with xD, the existence of xQ is determined by the RSD of Â .  In this 

case the limiting condition for finite xQ is RSD( Â ) < 1/k.  If x is estimated with 
Eq. 18.4.5, and B̂  and Â  are independent, and σ( Ŝ ) is constant with value σo, 



then xQ = (kσo/A)/[1-(kσA/A)2]½, where (kσo/A) is the limiting result when the 
random error in Â  is negligible.] 

 
(2) One frequently finds in the chemical literature the term "Determination Limit." 

Use of this term is not recommended, because of ambiguity. 
 
 
Heteroscedasticity.  If the variance of the estimated quantity is not constant, then its 
variation must be taken into account in computing detection and quantification limits.  
The critical level is unaffected, since it reflects the variance of the null signal only.  Two 
types of σ variation are common in chemical and physical metrology: (a) σ2 (variance) 
proportionate to response, as with shot noise and Poisson counting processes; and (b) σ 
(standard deviation) increasing in a linear fashion.  This effect, which is too often 
ignored, can be very important.  As shown in the Source Document [Currie], a CMP 
having a "well-known" blank and a 4% asymptotic RSD leads to an increase of LD from 
3.29σB to 3.52σB, and an increase of LQ from 10σB to 16.7σB.  If σ increases too sharply, 
LD and/or LQ may not be attainable for the CMP in question.  This problem may be 
attacked through replication, giving σ reduction by 1/√n, but caution should be exercised 
since unsuspected systematic error will not be correspondingly reduced! 
 
 
 


