
18.4.3.2 The observed signal; calibration function 
 
The calibration function is defined as the functional (not statistical) relationship for the 
CMP, relating the expected value of the observed signal or response variable E(y) to 
the analyte amount x.  The corresponding graphical display for a single analyte is 
referred to as the calibration curve.  When extended to additional variables or analytes 
which occur in multicomponent analysis, the "curve" becomes a calibration surface or 
hypersurface.  The functional relationship, E(y) = F(x), may in general be quite 
complicated -- and functions assumed (for data reduction) may be wrong, thus 
comprising a source of systematic error.  We consider here only the simplest case, the 
linear calibration curve, where the observed signal or response y is given by 
    
  y = F(x) +  ey (18.4.1) 
 
with  
 
  F(x) = B + S = B + Ax (18.4.2) 
 
where S denotes the net signal; B, the blank (or background or baseline, as 
appropriate); x, the analyte amount or concentration; and A, the sensitivity.  The error 
ey is taken to be random and normal, with zero mean (no bias) and dispersion parameter 
σ (standard deviation).  The estimated net signal is thus 
 
  ByS ˆˆ −=   (18.4.3) 
 
In the more general case of multicomponent analysis Eq. (1) takes the form  
 
  y  =  F(x)  +  ey (18.4.4) 
 
where y, x, and ey are vectors, and the Calibration Function takes into account the 
response relations for all analytes and interferences.  Under the best of circumstances, 
Eq.  (4) is a linear matrix equation. 
 
Notes: 
(1) Symbols used to represent the calibration parameters vary among disciplines.  In 

statistics, for example, it is conventional to use ßi -- e.g., for a quadratic 
relationship:  F(x) = ßo + ß1x + ß2x2.  In analytical chemistry, identification of 
ßo and ß1 with the blank B and sensitivity A, respectively, is valid only if the 
calibration data represent the entire CMP and the calibration relation is linear. 

 
(2) The symbol B appearing in Fig. 18.4.1, and in Equations 18.4.2 et seq., refers 

to the blank, as manifest in the sample itself - i.e., as impacted by matrix and 
interference effects, and multiple occurrences (injection points) and partial 
recoveries -including possible effects of the sample configuration and 
composition on the instrumental background.  Inadequate attention to this 



matter, either through properly designed "blank" experiments or thorugh 
appropriate adjustments for differing sensitivities, will invalidate the use of the 
additive model and lead to biased analyte concentration estimates.  The reader is 
encouraged to examine the discussions in the following papers: 

  K. Camman: Z. Anal. Chem. 312 (1982) 515-516; 
  L.A. Currie: Detection in Analytical Chemistry Ch.1, 

ACS Symp. Series 361, Am. Chem. Soc, Washington 
(1988). 

 
 
Sensitivity 
 
In metrology and in analytical chemistry, the sensitivity A is defined as the slope of the 
calibration curve.  (If the curve is in fact a "curve", rather than a straight line, then of 
course sensitivity will be a function of analyte concentration or amount.) If sensitivity is 
to be a unique performance characteristic, it must depend only on the CMP, not upon 
scale factors.  For this reason the slope dy/dx must be defined in absolute terms, such 
as mV/µg. 
 
Notes: 
(1) Alternative uses for this term in analytical chemistry, such as a qualitative 

descriptor for detection capability, or slope A divided by σ, etc., are not 
recommended. 

 
(2) It is recognized that the term "sensitivity" has different meanings for different 

disciplines.  In clinical chemistry (diagnostics), for example, sensitivity is 
defined as "the fraction of all affected subjects in whom the test result is 
positive: best positivity in the presence of the disease". 

 
(3) When a measurement process parameter is estimated by performing an operation 

on the observed responses, the resulting statistic is called an estimator; it is 
designated by a circumflex as shown in equations 18.4.3 and 18.4.5.  Thus, Â  
indicates an estimator such as the least squares estimator for the sensitivity, and 
its standard deviation σ( Â ) determines the random uncertainty component for 
any particular estimate.  If E( Â ), the expectation or mean value of the Â  
distribution, equals the true value A, the estimator is said to be unbiased.   

 
 


