10.3.2.1.8 Terms relating to conductance

The line-to-background radiant power ratio is given by the quotient $\phi_{\mathrm{L}} / \phi_{\mathrm{U}}$ with ϕ_{U}

$$
\phi_{\mathrm{U}}=L_{\lambda . \mathrm{U}} \Delta \lambda_{\mathrm{ex}} G_{\mathrm{eff}}
$$

The irradiance E is the radiant power divided by the irradiated area S :

$$
E=\frac{\phi}{s}
$$

The irradiance at the exit slit is

$$
E_{\mathrm{ex}}=\frac{\phi}{S_{\mathrm{ex}}}=\frac{\phi}{h_{\mathrm{ex}} s_{\mathrm{ex}}}=\frac{\phi}{h_{\mathrm{ex}} \Delta \lambda_{\mathrm{ex}}} \frac{\mathrm{~d} \lambda}{\mathrm{~d} x}
$$

The radiant exposure H is the irradiance integrated over the measuring time.

