9.2.6.2 Retention Parameters

Retention Volume (Time) of an Unretained Compound (V₀, t₀)

The retention volume of a sample component the molecules of which are larger than the largest pores of the gel particles. These will be eluted first from the column. The corresponding retention time is t_0 :

$$t_{\rm o} = V_{\rm o}/F_{\rm c}$$

Ignoring any extra-column volume, V_0 is equal to the *Interparticle Volume of the Column*.

Retention Volume (Time) $V_{\rm R}(t_{\rm R})$

The retention volume (time) of a sample component the molecules of which are smaller than the largest pores of the gel particles but larger than the smallest pores. The corresponding retention time is $t_{\rm R}$:

$$t_{\rm R} = V_{\rm R}/F_{\rm c}$$

Adjusted Retention Volume (Time) $V_{\rm R}$ ' ($t_{\rm R}$ ')

The total retention volume less the retention volume of an unretained compound:

$$V_{\rm R}' = V_{\rm R} - V_{\rm o}$$

The corresponding retention time is $t_{\rm R}$ ':

$$t_{\rm R}' = t_{\rm R} - t_{\rm o} = V_{\rm R}'/F_{\rm c} = (V_{\rm R} - V_{\rm o})/F_{\rm c}$$

Total Mobile Phase Volume (Time) V_t (t_t)

The retention volume (time) of a sample component the molecules of which are smaller than the smallest pores of the gel particles. The corresponding retention time is t_t :

$$t_{\rm t} = V_{\rm t}/F_{\rm c}$$

Figure 9.2.7 Retention characteristics in exclusion chromatography. A standard sample is analyzed (top); subsequently, the retention volumes (times) are plotted against the logarithms of the corresponding molecular weights. Peak A corresponds to a non-retained sample component the molecules of which are larger than the largest pores in the gel particles (total exclusion); peak D corresponds to a sample component the molecules of which are smaller than the smallest pores in the gel particles (total penetration).

Retention Factor (*k*_e)

The ratio of the adjusted retention volume (time) and the retention volume (time) of an unretained compound:

$$k_{\rm e} = \frac{V_{\rm R} - V_{\rm o}}{V_{o}} = \frac{t_{\rm R} - t_{o}}{t_{o}}$$

It may also be called the *Capacity Factor*. However, the suggested expression better defines its real meaning (see also *Retention Factor*).

Distribution Constant in Exclusion Chromatography (K_o)

The fraction of the intraparticle volume (the volume of the pores) available to the molecules of a particular sample component for diffusion:

$$K_{\rm o} = \frac{V_{\rm R} - V_{\rm o}}{V_{\rm i}}$$

For an unretained compound, $V_{\rm R} = V_{\rm o}$ and thus, $K_{\rm o} = 0$. On the other hand, for a compound the molecules of which are smaller than the smallest pores, $V_{\rm R} = V_{\rm t}$ and thus, $K_{\rm o} = 1$. In other words, the value of $K_{\rm o}$ varies between zero and unity.

In exclusion chromatography, K_0 is related to the retention volume of a sample component and the inter- and intraparticle volumes of the column (V_0 and V_i , respectively) in a manner analogous to the relationship in general liquid chromatography (see *Distribution Constant*):

$$V_{\rm R} = V_{\rm o} + K_{\rm o} V_{\rm i}$$