1.3.4 Atoms and molecules

Name	Symbol	Definition	SI unit	Notes
nucleon number,	A		1	
mass number				
proton number,	Ζ		1	
atomic number				
neutron number	N	N = A - Z	1	
electron rest mass	me		kg	(1)
mass of atom,	$m_{\rm a}, m$		kg	
atomic mass				
atomic mass constant	mu	$m_{\rm u} = m_{\rm a} (^{12}{\rm C})/12$	kg	(1), (2)
mass excess	Δ	$\varDelta = m_{\rm a}$ - $Am_{\rm u}$	kg	
elementary charge,	е		С	
proton charage				
Planck constant	h		Js	
Planck constant/ 2π	ħ	$\hbar = h/2\pi$	J s	
Bohr radius	a_0	$a_0 = 4\pi\varepsilon_0 \hbar^2 / m_{\rm e} e^2$	m	
Rydberg constant	R_{∞}	$R_{\infty}=E_{ m h}/2hc$	m^{-1}	
fine structure constant	α	$lpha=e^{2}/4\piarepsilon_{0}\hbar~c~1$		
ionization energy	$E_{ m i}$		J	
electron affinity	E_{ea}		J	

⁽¹⁾ Analogous symbols are used for other particles with subscripts: p for proton, n for neutron, a for atom, N for nucleus, etc.

⁽²⁾ m_u is equal to the unified atomic mass unit, with symbol u, i.e. $m_u = 1$ u. In biochemistry the name dalton, with symbol Da, is used for the unified atomic mass unit, although the name and symbols have not been accepted by CGPM.

Name	Symbol	Definition	SI unit	Notes
		u = 1/(E + E) I	(2)	
electronegativity	χ	$\chi = \frac{1}{2}(E_{\rm i} + E_{\rm ea}) \mathrm{J}$	(3)	
dissociation energy	E_{d}, D		J	
from the ground state	D_0		J	(4)
from the potential	D_{e}		J	(4)
minimum				
principal quantum	п	$E = -hcR/n^2 \qquad 1$		
number (H atom)				
angular momentum	see under Spectro	scopy, section 3.5.		
quantum numbers				
magnetic dipole	<i>m</i> , μ	$E_{\rm p} = -\boldsymbol{m} \cdot \boldsymbol{B}$ J T ⁻¹	(5)	
moment of a molecule		1		
magnetizability	ξ	$m = \xi B$	J T ⁻²	
of a molecule	2	2		
		$\mu_{\rm B} = eh/2m_{\rm e}$	I T ⁻¹	
Bohr magneton	$\mu_{ m B}$	$\mu B - en/2m_e$	JI	

$$\chi_{r,A} - \chi_{r,B} = (eV)^{-1/2} \sqrt{E_d(AB) - [E_d(AA) + E_d(BB)]}$$

where χ_r denotes the Pauling relative electronegativity. The scale is chosen so as to make the relative electronegativity of hydrogen $\chi_{r,H} = 2.1$. There is a difficulty in choosing the sign of the square root, which determines the sign of $\chi_{r,A} - \chi_{r,B}$. Pauling made this choice intuitively.

- (4) The symbols D_0 and D_e are mainly used for diatomic dissociation energies.
- (5) Magnetic moments of specific particles may be denoted by subscripts, e.g. μ_e , μ_p , μ_n for an electron, a proton and a neutron.

⁽³⁾ The concept of electronegativity was intoduced by L. Pauling as the power of an atom in a molecule to attract electrons to itself. There are several ways of defining this quantity. The one given in the table has a clear physical meaning of energy and is due to R.S. Mulliken. The most frequently used scale, due to Pauling, is based on bond dissociation energies in eV and it is relative in the sense that the values are dimensionless and that only electronegativity differences are defined. For atoms A and B

Name	Symbol	Definition	SI unit	Notes
nuclear magneten		$\cdots = (m \mid m) \cdots$	$J T^{-1}$	
nuclear magneton	$\mu_{ m N}$	$\mu_{\rm N} = (m_{\rm e}/m_{\rm p})\mu_{\rm B}$	-	
magnetogyric ratio	γ	$\gamma=\mu/L$	$s^{-1} T^{-1}$	(6)
(gyromagnetic ratio)				
g-factor	g	$g=2\mu/\mu_{ m B}$	1	
nuclear g-factor	$g_{ m N}$	$g_{\rm N} = \mu/I\mu_{\rm N}$	1	
Larmor angular frequency	$\omega_{ m L}$	$\omega_{\rm L} = (e/2m)B$	s^{-1}	(7)
Larmor frequency	$v_{ m L}$	$v_{\rm L} = \omega_{\rm L}/2\pi$	Hz	
relaxation time,				
longitudinal	T_1		S	(8)
transverse	T_2		S	(8)
electric field gradient tensor	q	$q_{\alpha\beta} = -\partial^2 V / \partial \alpha \partial \beta$	V m ⁻²	
activity (of a radioactive	A	$A = -dN_{\rm B}/dt$	Bq	(9)
substance)			I	
decay (rate) constant,	λ, k	$A = \lambda N_{\rm B}$	s^{-1}	(9)
disintegration (rate)	.,		-	()
constant				
half life	$t_{1/2}, T_{1/2}$	$N_{\rm B}(t_{2}) = N_{\rm B}(0)/2$	S	(9), (10)
mean life			-	
	τ	$ au = 1/\lambda$	S	(10)
level width	Γ	$\Gamma = h/\tau$	J	
disintegration energy	Q		J	
cross section	σ		m^2	
(of a nuclear reaction)				

(of a nuclear reaction)

- (9) $N_{\rm B}$ is the number of radioactive atoms B.
- (10) Half lives and mean lives are often given in years (a), see conversion tables. $t_{\frac{1}{2}} = \tau \ln 2$ for exponential decays.

⁽⁶⁾ μ is the magnetic moment, *L* the angular momentum.

⁽⁷⁾ This quantity is commonly called Larmor circular frequency.

⁽⁸⁾ These quantities are used in the context of saturation effects in spectroscopy, particularly spin-resonance spectroscopy (see section 3.5).