1.3.3 Electricity and magnetism

Name

Symbol
Definition
SI unit
Notes
quantity of electricity, $\quad Q$
electric charge
charge density
surface charge density
ρ
$\rho=Q / V$
Cm^{-3}
electric potential
σ
$\sigma=Q / A$ Cm^{-2}
V, φ
$V=\mathrm{d} W / \mathrm{d} Q$
electric potential
$U, \Delta V, \Delta \varphi$
$U=V_{2}-V_{1}$
V, J C ${ }^{-1}$
difference
electromotive force
E
electric field strength
E
$E=\int(\boldsymbol{F} / Q) \cdot \mathrm{d} s$
V
$\boldsymbol{E}=\boldsymbol{F} / Q=-\nabla V \quad \mathrm{~V} \mathrm{~m}^{-1}$
electric flux Ψ
$\Psi=\int \boldsymbol{D} \cdot \mathrm{d} \boldsymbol{A} \quad \mathrm{C}$
(1)
electric displacement D
$\boldsymbol{D}=\varepsilon \boldsymbol{E}$
Cm^{-2}
capacitance
C
$C=Q / U$
F, C V ${ }^{-1}$
permittivity
ε
$\boldsymbol{D}=\varepsilon \boldsymbol{E}$
Fm^{-1}
permittivity of vacuum ε_{0}
relative permittivity $\varepsilon_{\mathbf{r}}$
dielectric polarization $\quad \boldsymbol{P}$
$\varepsilon_{0}=\mu^{1} \mathrm{c}^{2}$
Fm^{-1}
$\varepsilon_{\mathbf{r}}=\varepsilon / \varepsilon_{0}$
1
V
(dipole moment per volume)
electric susceptibility $\quad \chi_{e}$
electric dipole moment $\boldsymbol{p}, \boldsymbol{\mu}$
$\chi_{\mathrm{e}}=\varepsilon_{\mathrm{r}}-1$
$\boldsymbol{p}=\Sigma Q_{i} \boldsymbol{r}_{i}$
electric current
I, i
$I=\mathrm{d} Q / \mathrm{d} t$
1
C m
(3)
(1) $\mathrm{d} \boldsymbol{A}$ is a vector element of area.
(2) This quantity was formerly called dielectric constant.
(3) When a dipole is composed of two point charages Q and $-Q$ separated by a distance r, the direction of the dipole vector is taken to be from the negative to the positive charge. The opposite convention is sometimes used, but is to be discouraged. The dipole moment of an ion depends on the choice of the origin.

electric current density	j, J	$I=\int \mathrm{j} . \mathrm{d} \boldsymbol{A}$	Am^{-2}	(1)
magnetic flux density, magnetic induction	B	$\boldsymbol{F}=Q \boldsymbol{v} \times \boldsymbol{B}$	T	(4)
magnetic flux	Ф	$\boldsymbol{\Phi}=\int \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{A}$	Wb	(1)
magnetic field strength	H	$\boldsymbol{B}=\mu \boldsymbol{H}$	A m ${ }^{-1}$	
permeability	μ	$\boldsymbol{B}=\mu \boldsymbol{H}$	$\mathrm{NA}^{-2}, \mathrm{Hm}^{-1}$	
permeability of vacuum	μ_{0}	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$	Hm^{-1}	
relative permeability	μ_{r}	$\mu_{\mathrm{r}}=\mu / \mu_{0}$	1	
magnetization (magnetic dipole moment per volume)	M	$\boldsymbol{M}=\boldsymbol{B} / \mu_{0}-\boldsymbol{H} \quad \mathrm{Am}^{-1}$		
magnetic susceptibility	$\chi, \kappa,\left(\chi_{m}\right)$	$\chi=\mu_{\mathrm{r}}-1$	1	(5)
molar magnetic susceptibility	χ_{m}	$\chi_{\mathrm{m}}=V_{\mathrm{m}} \chi$	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	
magnetic dipole moment	$\boldsymbol{m}, \boldsymbol{\mu}$	$E_{\mathrm{p}}=\boldsymbol{m} \cdot \boldsymbol{B}$	$\mathrm{Am}^{2}, \mathrm{~J} \mathrm{~T}^{-1}$	
electric resistance	R	$R=U / I$	Ω	(6)
conductance	G	$G=1 / R$	S	(6)
loss angle	δ	$\delta=\varphi_{\mathrm{I}}-\varphi_{\mathrm{U}}$	1, rad	(7)
reactance	X	$X=(U / I) \sin \delta$	Ω	
impedance, (complex impedance)	Z	$Z=R+\mathrm{i} X$	Ω	
admittance, (complex admittance)	Y	$Y=1 / Z$	S	
susceptance	B	$Y=G+\mathrm{i} B$	S	
resistivity	ρ	$\rho=E / j \quad \Omega \mathrm{~m}$		
conductivity	κ, γ, σ	$\kappa=1 / \rho \quad \mathrm{S} \mathrm{m}^{-1}$		
self-inductance	L	$E=-L(\mathrm{~d} / / \mathrm{d} t)$	H	
mutual inductance	M, L_{12}	$E_{1}=L_{12}\left(\mathrm{~d} I_{2} / \mathrm{d} t\right)$	H	

(4) This quantity is sometimes loosely called magnetic field.
(5) The symbol χ_{m} is sometimes used for magnetic susceptibility, but it should be reserved for molar magnetic susceptibility.
(6) In a material with reactance $R=(U / I) \cos \delta$, and $G=R /\left(R^{2}+X^{2}\right)$.
(7) $\quad \varphi_{\mathrm{I}}$ and φ_{U} are the phases of current and potential difference.

