1.3.2 Classical mechanics

Name	Symbol	Definition	SI unit	Notes
mass	т		kg	
reduced mass	μ	$\mu = m_1 m_2 / (m_1 + m_2)$	kg	
density, mass density	ρ	ho = m/V	kg m ⁻³	
relative density	d	$d= ho/ ho^{ heta}$	1	(1)
surface density	ρ_A, ρ_S	$ ho_A = m/A$	kg m ⁻²	
specific volume	v	$v = V/m = 1/\rho$	$m^3 kg^{-1}$	
momentum	р	p = mv	kg m s ⁻¹	
angular momentum,	L	$L = r \times p$	Js	(2)
action				
moment of inertia	I, J	$I = \sum m_i r_i^2$	kg m^2	(3)
force	F	F = dp/dt = ma	Ν	
torque,	T , (M)	$T = r \times F$	N m	
moment of force				
energy	Ε		J	
potential energy	$E_{ m p}$, V, ${oldsymbol \Phi}$	$E_{\rm p} = -\int \boldsymbol{F} \cdot \mathrm{d}s$	J	
kinetic energy	<i>Е</i> к, <i>Т</i> , <i>К</i>	$E_{\rm k} = \frac{1}{2}mv^2$	J	
work	W, w	$W = \int \boldsymbol{F} \cdot \mathrm{d}s$	J	
pressure	р, Р	p = F/A	Pa, N m^{-2}	
surface tension	γ, σ	$\gamma = dW/dA$	$N m^{-1}, J m^{-2}$	
weight	G, (W, P)	G = mg	Ν	
gravitational constant	G	$F = Gm_1m_2/r^2$	$\mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$	
normal stress	σ	$\sigma = F/A$	Pa	

(1) Usually $\rho^{\theta} = \rho(H_2O, 4^{\circ}C)$.

(3) In general *I* is a tensor quantity: $I_{\alpha\alpha} = \sum m_i(\beta + \gamma)$, and $I_{\alpha\beta} = -\sum m_i \alpha_i \beta_i$ if $\alpha \neq \beta$, where α , β , γ is a permutation of *x*, *y*, *z*. For a continuous distribution of mass the sums are replaced by integrals.

⁽²⁾ Other symbols are customary in atomic and molecular spectroscopy; see the section 3.5.

Name	Symbol	Definition	SI unit	Notes
shear stress	τ	au = F/A	Ра	
linear strain,	Е, С	$arepsilon = \Delta l/l$	1	
relative elongation				
modulus of elasticity,	Ε	$E = \sigma/\varepsilon$	Ра	
Young's modulus				
shear strain	γ	$\gamma = \Delta x/d$	1	
shear modulus	G	$G= au/\gamma$	Ра	
volume strain,	θ	$ heta=\Delta V\!/V_0$	1	
bulk strain				
bulk modulus,	Κ	$K = -V_0(\mathrm{d}p/\mathrm{d}V)$	Ра	
compression modulus	S			
viscosity,	η, μ	$\tau_{x,z} = \eta(\mathrm{d}\nu_x/\mathrm{d}z)$	Pa s	
dynamic viscosity				
fluidity	φ	$\varphi = 1/\eta$	$m kg^{-1} s$	
kinematic viscosity	v	$v = \eta / ho$	$m^{2} s^{-1}$	
friction factor	μ, (f)	$F_{\rm frict} = \mu F_{\rm norm}$	1	
power	Р	P = dW/dt	W	
sound energy flux	P, Pa	P = dE/dt	W	
acoustic factors,				
reflection	ρ	$ ho=P_{ m r}\!/\!P_0$	1	(4)
absorption	$\alpha_{a},(\alpha)$	$\alpha_{a} = 1 - \rho$	1	(5)
transmission	τ	$ au=P_{ m tr}/P_0$	1	(4)
dissipation	δ	$\delta=lpha_{ m a}$ - $ au$	1	

⁽⁴⁾ P_0 is the incident sound energy flux, P_r the reflected flux and P_{tr} the transmitted flux.

⁽⁵⁾ This definition is special to acoustics and is different from the usage in radiation, where the absorption factor corresponds to the acoustic dissipation factor.