Name

Symbol
Definition
SI unit Notes
mass
reduced mass
density, mass density
relative density
surface density
m
μ
ρ
d
ρ_{A}, ρ_{S}
specific volume
momentum
angular momentum, action
moment of inertia
force
torque,
moment of force
energy E
potential energy
kinetic energy
work
pressure
surface tension
weight
gravitational constant
normal stress
m
μ
ρ
ρ_{A}, ρ_{S}
v
p
L
I, J

T, (M)

E
E_{p}, V, Φ
E_{k}, T, K
W, w
p, P
γ, σ
$G,(W, P)$
σ
$I=\Sigma m_{i} r_{i}^{2}$
$\boldsymbol{F}=\mathrm{d} \boldsymbol{p} / \mathrm{d} t=m \boldsymbol{a}$
$\boldsymbol{T}=\boldsymbol{r} \chi \boldsymbol{F} \quad \mathrm{N}$ m
$E_{\mathrm{p}}=-\int \boldsymbol{F} \cdot \mathrm{d} s$
J
$E_{\mathrm{p}}=-\int \boldsymbol{F} \cdot \mathrm{d} s \quad \mathrm{~J}$
$E_{\mathrm{k}}=1 / 2 m v^{2}$
J
$W=\int \boldsymbol{F} \cdot \mathrm{d} s$
J
$p=F / A$
$\gamma=\mathrm{d} W / \mathrm{d} A$
$G=m g$
$G \quad F=G m_{1} m_{2} / r^{2}$
$\sigma=F / A$
kg
$\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right) \quad \mathrm{kg}$
$\rho=m / V \quad \quad \mathrm{~kg} \mathrm{~m}^{-3}$
$d=\rho / \rho^{\theta} \quad 1$
$\mathrm{kg} \mathrm{m}^{-2}$
$\mathrm{m}^{3} \mathrm{~kg}^{-1}$
$\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
J s
$\mathrm{kg} \mathrm{m}{ }^{2}$
N
(2)
(3)
$\mathrm{Pa}, \mathrm{Nm}^{-2}$
$\mathrm{Nm}^{-1}, \mathrm{Jm}^{-2}$
N
$\mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Pa
(1) Usually $\rho^{\theta}=\rho\left(\mathrm{H}_{2} \mathrm{O}, 4^{\circ} \mathrm{C}\right)$.
(2) Other symbols are customary in atomic and molecular spectroscopy; see the section 3.5.
(3) In general I is a tensor quantity: $I_{\alpha \alpha}=\sum m_{i}(\beta+\gamma)$, and $I_{\alpha \beta}=-\sum m_{i} \alpha_{i} \beta_{i}$ if $\alpha \neq \beta$, where α, β, γ is a permutation of x, y, z. For a continuous distribution of mass the sums are replaced by integrals.

shear stress	τ	$\tau=F / A$	Pa	
linear strain, relative elongation	ε, e	$\varepsilon=\Delta l / l$	1	
modulus of elasticity, Young's modulus	E	$E=\sigma / \varepsilon$	Pa	
shear strain	γ	$\gamma=\Delta x / d$	1	
shear modulus	G	$G=\tau / \gamma$	Pa	
volume strain, bulk strain	θ	$\theta=\Delta V / V_{0}$	1	
bulk modulus, compression modulus	K	$K=-V_{0}(\mathrm{~d} p / \mathrm{d} V)$	Pa	
viscosity, dynamic viscosity	η, μ	$\tau_{x, z}=\eta\left(\mathrm{d} v_{x} / \mathrm{d} z\right)$	Pa s	
fluidity	φ	$\varphi=1 / \eta$	$\mathrm{mkg}{ }^{-1} \mathrm{~s}$	
kinematic viscosity	v	$v=\eta / \rho$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	
friction factor	μ, (f)	$F_{\text {frict }}=\mu F_{\text {norm }}$	1	
power	P	$P=\mathrm{d} W / \mathrm{d} t$	W	
sound energy flux	P, P_{a}	$P=\mathrm{d} E / \mathrm{d} t$	W	
acoustic factors, reflection	ρ	$\rho=P_{\mathrm{r}} / P_{0}$	1	(4)
absorption	$\alpha_{\mathrm{a}},(\alpha)$	$\alpha_{\mathrm{a}}=1-\rho$	1	(5)
transmission	τ	$\tau=P_{\text {tr }} / P_{0}$	1	(4)
dissipation	δ	$\delta=\alpha_{\mathrm{a}}-\tau$	1	

(4) $\quad P_{0}$ is the incident sound energy flux, P_{r} the reflected flux and P_{tr} the transmitted flux.
(5) This definition is special to acoustics and is different from the usage in radiation, where the absorption factor corresponds to the acoustic dissipation factor.

