Name	Symbol	Definition	SI unit
			Notes
flux (of a quantity X)	J_{X}, J	$J_{X}=A^{-1} \mathrm{~d} X / \mathrm{d} t$	$($ varies)
volume flow rate	q_{V}, \dot{V}	$q_{V}=\mathrm{d} V / \mathrm{d} t$	$\mathrm{~m}^{3} \mathrm{~s}^{-1}$
mass flow rate	q_{m}, \dot{m}	$q_{m}=\mathrm{d} m / \mathrm{d} t$	$\mathrm{~kg} \mathrm{~s}^{-1}$
mass transfer coefficient	k_{d}		$\mathrm{m} \mathrm{s}^{-1}$
heat flow rate	Φ	$\Phi=\mathrm{d} q / \mathrm{d} t$	W
heat flux	J_{q}	$J_{q}=\Phi / A$	$\mathrm{~W} \mathrm{~m}^{-2}$
thermal conductance	G	$G=\Phi / \Delta T$	$\mathrm{~W} \mathrm{~K}^{-1}$
thermal resistance	R	$R=1 / G$	$\mathrm{~K} \mathrm{~W}^{-1}$
thermal conductivity	λ, k	$\lambda=J_{q} /(\mathrm{d} T / \mathrm{d} l)$	$\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}$
coefficient of heat transfer	$h,(k, K, \alpha)$	$h=J_{q} / \Delta T$	$\mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$
thermal diffusivity	a	$a=\lambda / \rho c_{p}$	$\mathrm{~m}^{2} \mathrm{~s}^{-1}$
diffusion coefficient	D	$D=-J_{n} /(d \mathrm{dc} / \mathrm{d} l)$	$\mathrm{m}^{2} \mathrm{~s}^{-1}$

The following symbols are used in the definitions of the dimensionless quantities: mass (m), time (t), volume (V), area (A), density (ρ), speed (v), length (l), viscosity (η), pressure (p), acceleration of free fall (g), cubic expansion coefficient (α), temperature (T), surface tension (γ), speed of sound (c), mean free path (λ), frequency (f), thermal diffusivity (a), coefficient of heat transfer (h), thermal conductivity (k), specific heat capacity at constant pressure $\left(c_{p}\right)$, diffusion coefficient (D), mole fraction (x), mass transfer coefficient $\left(k_{\mathrm{d}}\right.$), permeability (μ), electric conductivity (κ) and magnetic flux density (B).
(1) The flux of molecules to a surface, J_{N}, determines either the rate at which it would be covered if each molecule stuck, or the rate of effusion through a hole in the surface. In studying the exposure, $\int J_{N} \mathrm{~d} t$, of a surface to a gas, surface scientists find it useful to use the product of pressure and time as a measure of the exposure since this product is proportional to the number flux, J_{N}, times the time $J_{N} t=(1 / 4) C \bar{u} t=(\bar{u} / 4 k T) p t$, where C is the number density of molecules, \bar{u} their average speed, k the Boltzmann constant and T the thermodynamic temperature. The unit langmuir (symbol: L) corresponds to the exposure of a surface to a gas at 10^{-6} torr for 1 second.

Reynolds number	$R e$	$R e=\rho v l / \eta$	1
Euler number	$E u$	$E u=\Delta p / \rho v^{2}$	1
Froude number	$F r$	$F r=v /(l g)^{1 / 2}$	1
Grashof number	$G r$	$G r=l^{3} g \alpha \Delta T \rho^{2} / \eta^{2}$	1
Weber number	$W e$	$W e=\rho v^{2} l / \gamma$	1
Mach number	$M a$	$M a=v / c$	1
Knudsen number	$K n$	$K n=\lambda / l$	1
Strouhal number	$S r$	$S r=l f / v$	1
Fourier number	$F o$	$F o=a t / l^{2}$	1
Péclet number	$P e$	$P e=v l / a$	1
Rayleigh number	$R a$	$R a=l^{3} g \alpha \Delta T \rho / \eta a$	1
Nusselt number	$N u$	$N u=h l / k$	1

