1.3.12 Transport properties

Name	Symbol	Definition	SI unit	Notes
flux (of a quantity <i>X</i>)	<i>J</i> _X , <i>J</i>	$J_X = A^{-1} \mathrm{d}X/\mathrm{d}t$	(varies)	(1)
volume flow rate	$q_{V\!\!,}\dot{V}$	$q_V = \mathrm{d}V/\mathrm{d}t$	$m^{3} s^{-1}$	
mass flow rate	q_{m},\dot{m}	$q_m = \mathrm{d}m/\mathrm{d}t$	kg s ⁻¹	
mass transfer coefficient	$k_{ m d}$		$\mathrm{m \ s}^{-1}$	
heat flow rate	${\Phi}$	$\Phi = \mathrm{d}q/\mathrm{d}t$	W	
heat flux	J_q	$J_q = \Phi / A$	$W m^{-2}$	
thermal conductance	G	$G = \Phi / \Delta T$	W K ⁻¹	
thermal resistance	R	R = 1/G	$K W^{-1}$	
thermal conductivity	λ, k	$\lambda = J_q / (\mathrm{d}T / \mathrm{d}l)$	$W m^{-1} K^{-1}$	
coefficient of heat transfer	$h, (k, K, \alpha)$	$h = J_q / \Delta T$	$W m^{-2} K^{-1}$	
thermal diffusivity	a	$a = \lambda / \rho c_p$	$m^{2} s^{-1}$	
diffusion coefficient	D	$D = -J_n/(dc / dl)$	$m^2 s^{-1}$	

The following symbols are used in the definitions of the dimensionless quantities: mass (m), time (t), volume (V), area (A), density (ρ) , speed (v), length (l), viscosity (η) , pressure (p), acceleration of free fall (g), cubic expansion coefficient (α) , temperature (T), surface tension (γ) , speed of sound (c), mean free path (λ) , frequency (f), thermal diffusivity (a), coefficient of heat transfer (h), thermal conductivity (k), specific heat capacity at constant pressure (c_p) , diffusion coefficient (D), mole fraction (x), mass transfer coefficient (k_d) , permeability (μ) , electric conductivity (κ) and magnetic flux density (B).

⁽¹⁾ The flux of molecules to a surface, J_N , determines either the rate at which it would be covered if each molecule stuck, or the rate of effusion through a hole in the surface. In studying the exposure, $\int J_N dt$, of a surface to a gas, surface scientists find it useful to use the product of pressure and time as a measure of the exposure since this product is proportional to the number flux, J_N , times the time $J_N t = (\frac{1}{4})C\overline{u} t = (\overline{u}/4kT)pt$, where *C* is the number density of molecules, \overline{u} their average speed, *k* the Boltzmann constant and *T* the thermodynamic temperature. The unit langmuir (symbol: L) corresponds to the exposure of a surface to a gas at 10^{-6} torr for 1 second.

Name	Symbol	Definition	SI unit
Reynolds number	Re	$Re = \rho v l/\eta$	1
Euler number	Eu	$Eu = \Delta p / \rho v^2$	1
Froude number	Fr	$Fr = v/(lg)^{\frac{1}{2}}$	1
Grashof number	Gr	$Gr = l^3 g \alpha \Delta T \rho^2 / \eta^2$	1
Weber number	We	$We = \rho v^2 l/\gamma$	1
Mach number	Ma	Ma = v/c	1
Knudsen number	Kn	$Kn = \lambda/l$	1
Strouhal number	Sr	Sr = lf/v	1
Fourier number	Fo	$Fo = at/l^2$	1
Péclet number	Pe	Pe = vl/a	1
Rayleigh number	Ra	$Ra = l^3 g \alpha \Delta T \rho / \eta a$	1
Nusselt number	Nu	Nu = hl/k	1