1.3. Space and time

Name
Symbol
Definition
SI unit
Notes
cartesian

$$
x, y, z
$$

m
space coordinates
spherical polar
$r ; \theta ; \varphi$
m, 1, 1
coordinates

position vector	\boldsymbol{r}	$\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$	m
length	l		m

special symbols:
height h
breadth b
thickness d, δ
distance d
radius r
diameter d
path length s
length of arc s
area
A, A_{s}, S
volume
V, (v)
plane angle
solid angle
time
period
frequency
angular frequency
$\alpha, \beta, \gamma, \theta, \varphi \ldots$
$\alpha=s / r$
Ω, ω
$\Omega=A / r^{2}$
m^{2}
m^{3}
circular frequency
characteristic
τ, T
$\tau=|\mathrm{d} t / \mathrm{d} \ln x|$
s
time interval,
relaxation time,
time constant
angular velocity
velocity

$$
\begin{array}{ll}
\omega & \omega=\mathrm{d} \varphi / \mathrm{d} t \\
\boldsymbol{v}, \boldsymbol{u}, \boldsymbol{w}, \boldsymbol{c}, \dot{\mathbf{r}} & \boldsymbol{v}=\mathrm{d} \boldsymbol{r} / \mathrm{d} t
\end{array}
$$

$\operatorname{rad~s}^{-1}, \mathrm{~s}^{-1}$
(2)
$\mathrm{m} \mathrm{s}^{-1}$
(1) The unit Hz is not to be used for angular frequency.
(2) Angular velocity can be treated as a vector.
v, u, w, c
$\nu=|\boldsymbol{v}|$
$\mathrm{m} \mathrm{s}^{-1}$
acceleration

\boldsymbol{a}

$\boldsymbol{a}=\mathrm{d} \boldsymbol{v} / \mathrm{d} t$
$\mathrm{m} \mathrm{s}^{-2}$
(3) For the speeds of light and sound the symbol c is customary.
(4) For acceleration of free fall the symbol g is used.

